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Abstract

We study the multiplication operators and the integration operators and the composition
operators with closed range on the Bergman spaces by using the sampling property.
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\S 0. Introduction

Let $D$ be the open unit disk in complex plane $C$ . For $z,$ $w\in D,$ $0<r<1$ , let $\varphi_{z}(w)=\frac{z-w}{1-\overline{z}w}$

and let $\rho(z, w)=|\frac{z-w}{1-\overline{z}w}|$ and $D(w, r)=\{z\in D, \rho(w, z)<r\}$ . Let $H(D)$ be the space of all

analytic functions on $D$ .
For $\alpha>0$ , the space $\mathcal{B}_{\alpha}$ of $D$ is defined to be the space of analytic functions $f$ on $D$ such that

$||f||_{\beta_{\alpha}}=|f(0)|+||f||g_{\alpha}<+\infty$ ,

where $|| \beta||\epsilon_{\alpha}=\sup_{z\in D}(1-|z|^{2})^{\alpha}|f’(z)|$ . Note that $B_{1}=B$ is the Bloch space.

The space $B_{\alpha,0}$ of $D$ is defined to be the space of analytic functions $f$ on $D$ such that

$(1-|z|^{2})^{\alpha}|f’(z)|arrow 0$ $(|z|arrow 1^{-})$ .

Note that $B_{1,0}=B_{0}$ is the little Bloch space.
The space $B^{\alpha}$ of $D$ is defined to be the space of analytic functions $f$ on $D$ such that

$\sup_{z\in D}(1-|z|^{2})^{\alpha}|f(z)|<+\infty$.
For $\alpha>-1$ , the weighted Dirichret space $D^{\alpha}$ is defined to be the space of analytic functions

$f$ on $D$ such that
$\int_{D}|f’(z)|^{2}(\alpha+1)(1-|z|^{2})^{\alpha}dA(z)<+\infty$,

where $dA(z)$ denote the area measure on $D$ . In the case of $\alpha=1$ , then $D^{1}=H^{2}$ is the Hardy space.
In the case of $\alpha=2$ , then $D^{2}=L_{a}^{2}$ is the Bergman space. If $\alpha>1$ , then $\int_{D}|f’(z)|^{2}(1-|z|^{2})^{\alpha}dA(z)$

is comparable to $\int_{D}|f(z)|^{2}(\alpha+1)(1-|z|^{2})^{\alpha-2}dA(z)$ .
Let $X$ be Banach spaces and let $T$ be a linear operator from $X$ into $X$ . Then $T$ is called to
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be bounded below on $X$ if $||Tf||\geq C||f||$ for all $f\in X$ and positive constants $C>0$ .
For $g$ analytic on $D$ , the operators $I_{J}(’ J_{\mathit{9}},$ $\mathrm{A}/I_{g}$ are defined by the following:

$I_{g}(f)(z)= \int_{0}^{z}g(\zeta)f’(\zeta)d\zeta,$ $J_{g}(f)(z)= \int_{0}^{z}f(\zeta)g’(\zeta)d\zeta,$ $M_{\mathit{9}}(f)(z)=g(z)f(z)$ .

If $g(z)=z$ , then $J_{\mathit{9}}$ is the integration operator. If $g(z)= \log\frac{1}{1-z}$ , then $J_{g}$ is the Ces\’aro operator.
In [10] Ch.Pommerenke proved the result with respect to the operator $J_{g}$ . In [1] A.Aleman and
A.G.Siskakis proved the result with respect to the operator $J_{g}$ : In [2] A.Aleman and A.G.Siskakis
proved the result with respect to the operator $J_{g}$ .

In [3] Paul S.Bourdon proved the following result with respect to the the multiplication
operators:

Theorem 0.1.(Paul S.Bourdon) Let $h\in H^{\infty}$ . The operator $\Lambda f_{h}$ : $L_{a}^{2}arrow L_{a}^{2}$ is bounded
below if and only if $h=\varphi F$ , where $F,$ $1/F\in H^{\infty}$ and where $\varphi$ is a finite product of
interpolating Blaschke products.

In [7] D.Luecking proved the following result with respect to the reverse Carleson measure:

TheOrem $0.2.(\mathrm{D}.\mathrm{L}\mathrm{u}\mathrm{e}\mathrm{c}\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{g})$ Let $\tau$ be a bounded nonnegative measurable function in $D$ .
Then there is a constant $k>0$ such that

$\int_{D}|f’(z)|^{2}\tau(z)\log\frac{1}{|z|^{2}}dA(z)\geq k\int_{D}|\beta^{l}(z)|^{2}\log\frac{1}{|z|^{2}}dA(z)$

for all $f\in H^{2}$ if and only if there exists a constant $c>0$ such that the set $G_{c}=\{z\in D$ :
$\tau(z)>c\}$ satisfies the condition:

$(*)$ There exists a constant $\delta>0$ such that

$dA(G_{c}\cap D(\zeta,r))>\delta dA(D\cap D(\zeta, r))$

for all $\zeta\in\partial D$ and $r>0$ , where $D(\zeta, r)$ is a disc with a center $\zeta$ and a radius $r$ .

In [8] D.Luecking proved the following result:

TheOrem $0.3.(\mathrm{D}.\mathrm{L}\mathrm{u}\mathrm{e}\mathrm{c}\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{g})$ Let $\alpha>-1$ , and let $\mu$ be a finite positive Borel measure
on D. In order that there exists a constant $C>0$ such that

$( \int_{D}|\beta’(z)|^{2}d\mu(z))^{\frac{1}{2}}\leq C(\int_{D}|f(z)|^{2}(1-|z|^{2})^{\alpha}dA(z))^{\frac{1}{2}}$

for all analytic functions $f$ if and only if there exists a constant $C’>0$ such that

$\mu(\{z\in D, \rho(z, a)<\frac{1}{2}\})\leq C’(1-|z|^{2})^{4+\alpha}$ .

In [5] P.Ghatage and D.Zheng and Nina Zorboska determined the composition operators on
the Bloch space that have a closed range using sampling set for $B$ . So we also study when the
operators $I_{\mathit{9}},$ $J_{\mathit{9}},$ $M_{g}$ and the composition operators are bounded below on the Bergman spaces
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and the (weighted) Bloch space using sampling set for weighted Bloch spaces. In particular, the
fact that $I_{g}$ have the closed range on the weighted Dirichlet space $D^{\alpha}$ is equivalent to “ the reverse
Carleson measure”, i.e. the definition of $I_{g}$ with the closed range on the weighted Dirichlet space
$D^{\alpha}$ is the following:

$\mathit{1}_{D}^{|f’(z)|^{2}|g(z)|^{2}(\alpha+1)(1-|z|^{2})^{\alpha}dA(z)\geq k}.\int_{D}|f’(z)|^{2}(\alpha+1)(1-|z|^{2})^{\alpha}dA(z)$

And it is exactly equal to the definition of the reverse Carleson measure. And we character-
ize the reverse Carleson measure by using new way completely that is different from Theorem
0.2(D.Luecking’s result) in this paper(Theorem 1.8). And by characterizing the operator $J_{g}$ with
closed range, we also get the result that corresponds to Theorem 0.3(D.Luecking’s result) in this
paper(Theorem 2.3). Moreover we also characterize the multiplication operator with the closed
range on the weighted Bergman spaces that corresponds to Theorem 0.1 in this paper(Theorem
2.6).

\S 1. The closed range operator $I_{g}$ on the Bergman space and Luecking’s
inequalities

In this section, we study the closed range operator $I_{g}$ on the Bergman space and Luecking’s
inequalities.

Definition 1.1. Let $\alpha>0.$ A set $\Gamma$ of the open unit disk $D$ is called a sampling set
for $B^{\alpha}$ if there exists a positive constant $C>0$ such that

$\sup_{z\in D}(1-|z|^{2})^{\alpha}|f(z)|\leq C\sup_{z\in\Gamma}(1-|z|^{2})^{\alpha}|f(z)|$ ,

for all $f\in B^{\alpha}$ .

Definition 1.2. Let $\alpha>0.$ A set $\Gamma$ of the open unit disk $D$ is called a sampling set
for $\mathcal{B}_{\alpha}$ if there exists a positive constant $C>0$ such that

$\sup_{z\in D}(1-|z|^{2})^{\alpha}|f’(z)|\leq C\sup_{z\in\Gamma}(1-|z|^{2})^{\alpha}|\beta’(z)|$ ,

for all $\beta\in B_{\alpha}$ .

In [12] we also proved the following result:

TheOrem R. 1. Let $\beta\geq\alpha>0$ . Then the operator $I_{g}$ : $\mathcal{B}_{\alpha}arrow B_{\beta}$ is bounded (compact)
if and only if

$\sup_{z\in D}(1-|z|^{2})^{\beta-\alpha}|g(z)|<+\infty$ $( \lim_{|z|arrow 1^{-}}(1-|z|^{2})^{\beta-\alpha}|g(z)|=0)$.
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By using a sampling set for $B_{\alpha}$ , we can prove the following result with respect to the operator
$I_{\mathit{9}}$ :

Theorem 1.3. Let $\beta\geq\alpha>0$ and $g\in H(D)$ . Let the operator $I_{\mathit{9}}$ : $B_{\alpha}arrow B_{\beta}$ be bounded
(i.e. $\sup_{z\in D}(1-|z|^{2})^{\beta-\alpha}|g(z)|<+\infty$ ). Then the operator $I_{g}$ : $B_{\alpha}arrow \mathcal{B}_{\beta}$ is bounded below if and
only if there exists a positive constant $(1>)\epsilon>0$ such that $\{z\in D, (1-|z|^{2})^{\beta-\alpha}|g(z)|\geq\epsilon\}$ is
a sampling set for $\mathcal{B}_{\alpha}$ .

DefinitiOn 1.4. The space BMOA is defined to be the space of $f\in H(D)$ such that
$\sup_{a\in D}\int_{D}(1-|\varphi_{a}(z)|^{2})|f’(z)|^{2}dA(z)<+\infty$ .

In the case of $0<\alpha<1$ , the space $Q_{\alpha}$ is defined to be the space of $f\in H(D)$ such that
$\sup_{a\in D}\int_{D}(1-|\varphi_{a}(z)|^{2})^{\alpha}|f’(z)|^{2}dA(z)<+\infty$ .

The following lemma is well-known (See [6] and [13]):

Lemma 1.5. Let $\beta\in H(D\rangle$
$.$ $If\alpha>1$ , then $\beta\in Bif$ and only if

$\sup_{a\in D}\int_{D}(1-|\varphi_{a}(z)|^{2})^{\alpha}|f’(z)|^{2}dA(z)<+\infty$ .

By using the following proposition, we can prove Theorem 1.8:

Proposition 1.6. Let $g\in H^{\infty}$ . If the operator $I_{\mathit{9}}$ : $H^{2}arrow H^{2}$ is bounded below, then
$I_{g}$ ; $BMOAarrow BMOA$ is bounded below. $If$ the operator $I_{\mathit{9}}$ : $L_{a}^{2}arrow L_{a}^{2}$ is bounded below, then
$I_{g}$ : $\mathcal{B}arrow B$ is bounded below. For $0<\alpha<1,$ $if$ the operator $I_{\mathit{9}}$ : $D^{\alpha}arrow D^{\alpha}$ is bounded below,
then $I_{g}$ : $Q_{\alpha}arrow Q_{\alpha}$ is bounded below.

In [7] D.Leucking proved the following result:

TheOrem D. ([7]) Let $\alpha>-1$ . There is a constant $C>0$ such that

$\int_{D}|f’(z)|^{2}(1-|z|^{2})^{\alpha}dA(z)\leq C\int_{G}|f’(z)|^{2}(1-|z|^{2})^{\alpha}dA(z)$

for all $f\in D_{2}^{\alpha}i\beta$ and only if a subset $G$ of $D$ satisfy the condition that there exist $\delta>0$ and
$r>0$ such that $\delta|D(a, r)|\leq|D(a, r)\cap G|$ , where $|D(a,r)|$ is the (normalized) area of $D(a, r)$ .

Lemma 1.7. The operator $I_{g}$ : $L_{a}^{2}arrow$ $L_{a}^{2}$ is $b\alpha mded$ if and only \’if

$\sup_{z\in D}|g(z)|<+\infty$ .
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We determined the integration operators $I_{g}$ on the Bergman spaces that have a closed range
using sampling set for B. And the following theorem corresponds to Theorem 0.2:

TheOrem 1.8. Suppose that the operator $I_{g}$ : $L_{a}^{2}arrow L_{a}^{2}$ is bounded $(i.eg\in H^{\infty})$ .
Then the following are equivalent.

(1) There isaconstantk $>0suchthat$

$\int_{D}|f’(z)|^{2}|g(z)|^{2}(1-|z|^{2})^{2}dA(z)\geq k\int_{D}|f’(z)|^{2}(1-|z|^{2})^{2}dA(z)$

for all $f\in L_{a}^{2}$

(2) There exists a positive constant $\epsilon>0$ such that $\{z\in D, |g(z)|\geq\epsilon\}$ is a sampling
set for $B$ .

(3) $\sup_{z\in D}(1-|z|^{2})|g(z)\varphi_{w}’(z)|\geq k$ for all $w\in D$ .
(4) For any $\epsilon<k,$ $\rho(\Gamma, w)\leq R<1$ for all $w\in D,$ $R$ depending only on $\epsilon$ , where

$\Gamma=\{z\in D, |g(z)|\geq\epsilon\}$ .

\S 2. The integration operators $J_{\mathit{9}}$ and the multiplication operators $M_{g}$ on
the weighted Bergman spaces and Luecking’s inequalities

In this section, we study the integration operators and the mtlltiplication operators with
closed range on the weighted Bergman space $L_{a}^{2}$ by using the sampling property.

The following lemma is well-known result:

Lemma $\mathrm{C}.([17])$ Let $\alpha>1$ . For $f\in B_{\alpha}$ , the norm

$|f(0)|+ \sup_{z\in D}(1-|z|^{2})^{\alpha}|f’(z)|$

is equivalent to the norm
$\sup_{z\in D}(1-|z|^{2})^{\alpha-1}|f(z)|$ .

i.e. for some constant $C_{1}>0$ (independent of $\beta\in B_{\alpha}$ ),

$\frac{1}{C_{1}}\sup_{z\in D}(1-|z|^{2})^{\alpha-1}|f(z)|\leq|f(0)|+\mathrm{S}1\iota \mathrm{p}(1-|z|^{2})^{\alpha}z\in D$ I $f’(z)|\leq C_{1\sup_{z\in D}}(1-|z|^{2})^{\alpha-1}|\beta(z)|$ .

In [11] we also proved the following result :

Theorem R,2. Let $\beta\geq 1$ . Then the operator $J_{\mathit{9}}$ : $Barrow B_{\beta}$ is bounded (compact) if
and only $if$

$\sup_{z\in D}(1-|z|^{2})^{\beta}(\log\frac{1}{1-|z|^{2}})|g’(z)|<+\infty$ $( \lim_{|z|arrow 1^{-}}(1-|z|^{2})^{\beta}(\log\frac{1}{1-|z|^{2}})|g’(z)|=0)$
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If $\beta\geq\alpha>1$ , then the operator $J_{g}$ : $B_{\alpha}arrow B_{\beta}$ is bounded (compact) if and only if $g\in B_{\beta-\alpha+1}$

$(g\in B_{\beta-\alpha+1,0}).$ $If0<\alpha<1$ , and $\alpha\leq\beta$ , then the operator $J_{g}$ : $B_{\alpha}arrow B_{\beta}$ is bounded (com.pact)
if and only if $g\in \mathcal{B}_{\beta}(g\in B_{\beta,0})$ .

By using a sampling set for $B^{\alpha}$ and Lemma $\mathrm{C}$ , we can prove the following result with respect
to the operator $J_{g}$ :

TheOrem 2.1. Let $\beta\geq\alpha>1$ and $g\in H(D)$ . Let the operator $J_{g}$ : $B_{\alpha}arrow B\rho$ be bounded
(i.e. $g\in B_{\beta-\alpha+1}$ ). Then the operator $J_{g}$ : $\mathcal{B}_{\alpha}arrow B_{\beta}$ is bounded below if and only if there exists
a positive constant $\epsilon>0$ such that $\{z\in D, (1-|z|^{2})^{\beta-\alpha+1}|g’(z)|\geq\epsilon\}$ is a sampling set for $B^{\alpha-1}$

In [15] R.Zhao proved the following lemma:

Lemma $\mathrm{R}.\mathrm{Z}$ . Let $\beta$ be an analytic function on D. Then $\beta\in B_{2}$ if and only if
$\sup_{a\in D}\int_{D}(1-|z|^{2})^{2}(1-|\varphi_{a}(z)|^{2})^{2}|f’(z)|^{2}dA(z)<+\infty$.

To prove Theorem 2.3, we prove the following result at first:

PrOpOSitiOn 2.2. Let $g\in B.$ If $J_{\mathit{9}}$ : $D^{4}arrow D^{4}$ is bounded below, then $J_{\mathit{9}}$ : $\mathcal{B}_{2}arrow B_{2}$ is
bounded below.

In $[7]\mathrm{D}.\mathrm{L}\mathrm{e}\mathrm{u}\mathrm{c}\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{g}-$ proved the following result:

Theorem $\mathrm{D}’$ . $([7])$ Let $\alpha>-1$ . There is a constant $C>0$ such that

$\int_{D}|\beta(z)|^{2}(1-|z|^{2})^{\alpha}dA(z)\leq C\int_{G}|f(z)|^{2}(1-|z|^{2})^{\alpha}dA(z)$

for all $\beta\in L_{a}^{2}((1-|z|^{2})^{\alpha}dA(z))$ if and only if a subset $G$ of $D$ satisfy the condition that there
exist $\delta>0$ and $r>0$ such that $\delta|D(a, r)|\leq|D(a, r)\cap G|$ , where $|D(a, r)|$ is the (normalized)
area of $D(a, r)$ .

We determined the integration operators $J_{g}$ on the weighted Bergman spaces that have a
closed range using sampling set for $B^{1}$ . And the following theorem corresponds to Theorem 0.3:
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Theorem 2.3. Suppose that the operator $J_{g}$ : $D^{4}arrow D^{4}$ is bounded $(i.eg\in B)$ . Then
the following are equivalent.

(1) There is aconstant $k>0$ such that

$\int_{D}|\beta(z)|^{2}|g’(z)|^{2}(1-|z|^{2})^{4}dA(z)\geq k\int_{D}|\beta’(z)|^{2}(1-|z|^{2})^{4}dA(z)$

for all $\beta\in D^{4}$

(2) There exists apositive constant $\epsilon>0$ such that $\{z\in D, (1-|z|^{2})|g’(z)|\geq\epsilon\}$ is a
samplin9 set for $B^{1}$ .

(3) $\sup_{z\in D}(1-|z|^{2})^{2}|g’(z)\varphi_{w}’(z)|\geq k$ for all $w\in D$ .
(4) For any $\epsilon<k,$ $\rho(\Gamma,w)\leq R<1$ for all $w\in D,$ $R$ depending only on $\epsilon$ , where

$\Gamma=\{z\in D, (1-|z|^{2})|g’(z)|\geq\epsilon\}$ .

By using a sampling set for $B^{\alpha}$ , we can prove the following result with respect to the multipli-
cation operator $kf_{g}$ :

TheOrem 2.4. Let $\beta\geq\alpha>1$ and $g\in H(D)$ . Let the operator $M_{g}$ : $B_{\alpha}arrow B_{\beta}$ be
bounded. Then the operator $M_{\mathit{9}}$ : $\mathrm{B}_{\alpha}arrow B_{\beta}$ is bcrunded below if and only if there exists a
positive constant $\epsilon>0$ such that $\{z\in D, (1-|z|^{2})^{\beta-\alpha}|g(z)|\geq\epsilon\}$ is a sampling set for $B^{\alpha-1}$

With respect to the multiplication operators, we can prove the following:

Proposition 2.5. Let $g\in H^{\infty}$ . If $M_{g}$ : $D^{4}arrow D^{4}$ is bounded below, then $\mathrm{A}I_{g}$ : $B_{2}arrow$

$B_{2}$ is bounded below.

We determined the multiplication operators $\Lambda\prime f_{g}$ on the weighted Bergman spaces that have
a closed range using sampling set for $\mathcal{B}^{1}$ .

Theorem 2.6. Suppose that the operator $\Lambda f_{\mathit{9}}$ : $D^{4}arrow D^{4}$ is bounded $(i.eg\in H^{\infty})$ .
Then the following are equivalent.

(1) There is aconstant $k>0$ such that

$\int_{D}|f(z)|^{2}|g(z)|^{2}(1-|z|^{2})^{2}dA(z)\geq k\int_{D}|\beta(z)|^{2}(1-|z|^{2})^{2}dA(z)$

for all $f\in D^{4}$

(2) There exists apositive constant $\epsilon>0such$ that $\{z\in D, |g(z)|\geq\epsilon\}is$ asampling
set for $\mathcal{B}^{1}$ .

(3) $\sup_{z\in D}(1-|z|^{2})|g(z)\varphi_{w}’(z)|\geq k$ for all $w\in D$ .
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(4) For any $\epsilon<k,$ $\rho(\Gamma, w)\leq R<1$ for all $w\in D,$ $R$ depending only on $\epsilon$ , where
$\Gamma=\{z\in D, |g(z)|\geq\epsilon\}$ .

Suppose that $\mathit{9}\in H^{\infty}$ . Then there is a constant $k>0$ such that

$\int_{D}|f(z)|^{2}|g(z)|^{2}(1-|z|^{2})^{2}dA(z)\geq k\int_{D}|\beta(z)|^{2}(1-|z|^{2})^{2}dA(z)$

for all $f\in D^{4}$ if and only if there exists a positive constant $\epsilon>0$ such that $\{z\in D, |g(z)|\geq\epsilon\}$

is a sampling set for $\mathcal{B}^{1}$ .

\S 3. The composition operators with closed range

In this section, we study the composition operators with closed range on the space BMOA,
the Bloch spaces, the Bergman spaces, and the Hardy space. We use the following consequence ([5]
P.Ghatage and D.Zheng and Nina Zorboska’s results) in our proof of Proposition 3.1.

Theorem GZN. 1. ([5]) Suppose $\varphi$ is a univalent self-map of the open unit disk $D$ .
Then the following are equivalent.

(1) $C_{\varphi}$ is bounded below on $B$ .
(2) $||\varphi_{w}0\varphi||_{B/C}\geq k$ for all $w\in D$ .
(3) For any $\epsilon<k,$ $\rho(G_{\epsilon}, z)\leq r<1$ for all $z\in D,$ $r$ depending only on $\epsilon$

(4) For any $\epsilon<k$ , for some $r,$ $G_{\epsilon}$ satisfying $G_{\epsilon}\cap D(w,r)|\geq C|D(w, r)|$ for all $w\in D$ .

Theorem GZN.$2.([5])$ The composition operator $C_{\varphi}$ is bounded below on $B$ if and
only if there exists some $\epsilon>0$ such that $G$

‘ is a sampling set, for $B$ .

Theorem GZN.$3.([5])$ $If\varphi$ is univalent and $C_{\varphi}$ is bounded below on BMOA, then it
is bounded below on the Bloch space.

Theorem $\mathrm{Z}.([18])$ Suppose $\varphi$ is univalent $self$-map of the open unit disk D. Then $C_{\varphi}$

is bounded below on $L_{a}^{2}$ if and only $ifC_{\varphi}$ is bounded below on $H^{2}$ .

In [15] R.Zhao proved the following lemma:

Lemma $\mathrm{R}.\mathrm{Z}$ . Let a $\geq 1$ . Let $f$ be an analytic function on D. Then $f\in B_{\alpha}$ if and
only if $\sup_{a\in D}\int_{D}(1-|z|^{2})^{2(\alpha-1)}(1-|\varphi_{a}(z)|^{2})^{2}|f’(z)|^{2}dA(z)<+\infty$ .
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If $\varphi(0)=a$ and th $=\varphi_{a}\circ\varphi$, then $C_{\varphi}$ is bounded below on BMOA if and only if $C\psi$ is
bounded below on BMOA. So we assume from now on that $\varphi(0)=0$ and that $C_{\varphi}$ is acting on the
subspace of functions that vanish at the origin.

PrOpOSitiOn 3.1. Suppose $\varphi$ is a univalent $self$-map of the open unit disk D. Suppose
that there exists a positive constant $\epsilon$ satisfying the condition of TheoremA such that

$\{z\in D,\frac{\sup_{(1-|z|^{2})|\varphi(\approx)|}}{1-|\varphi(z)|^{2}},\geq\epsilon\}|\varphi’(z)|<+\infty.$

$IfC_{\varphi}$ : $Barrow B$ is bounded below, then $C_{\varphi}$ : $H^{2}arrow H^{2}$ is

bounded below.

Theorem 3.2. If the composition operator $C_{\varphi}$ : $L_{a}^{2}arrow L_{a}^{2}$ is bounded below, then $C_{\varphi}$ :
$\mathcal{B}arrow \mathcal{B}$ is bounded below.

TheOrem 3.3. Let $\alpha\geq 0$ . $s_{uw}ose$ that $C_{\varphi}$ is bounded on $D^{\alpha+2}$ . If $C_{\varphi}$ : $D^{\alpha+2}arrow$

$D^{\alpha+2}$ is bounded below, then $C_{\varphi}$ : $B_{\alpha+1}arrow B_{\alpha+1}$ is bounded below.

In [3] P.S.Bourdon and J.A.Cima and A.L.Matheson have shown that compactness of $C_{\varphi}$ on
BMOA implies its compactness on the Hardy space $H^{2}$ . Since the operator $C_{\varphi}$ is bounded on the
Hardy space, we can prove the following result :

Theorem 3.4. $If$ the composition operator $C_{\varphi}$ : $H^{2}arrow H^{2}$ is bounded below, then $C_{\varphi}$

: $BMOAarrow BMOA$ is bounded below.

Using Theorem 3.4 and Theorem GZN.3, we see the following.

COrOllary 3.5. Suppose $\varphi$ is univalent self-map of the open unit disk D. Then if the
composition operator $C_{\varphi}$ : $H^{2}arrow H^{2}$ is bounded below, then $C_{\varphi}$ : $Barrow B$ is bounded below.

The following example shows that $C_{\varphi}$ : $Barrow B$ is bounded below does not imply that $C_{\varphi}$ :
$H^{2}arrow H^{2}$ is bounded below.

Considering Example 3.6, and using Proposition 3.1, Theoreg 3.3 and Corollary 3.5, we have
the following:
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PrOpOSitiOn 3.7. Suppose $\varphi$ is a univalent self-map of the open unit disk $D$ and
there exists a sufficiently small positive constant $\epsilon(<k)$ , where $k$ satisfies the condition of
TheoremA such that

$\sup_{\{z\in D,\frac{(1-|x|^{2})|\varphi’(_{\sim})|}{1-|\varphi(z)|^{2}}\geq\epsilon\}}‘.|\varphi’(z)|<+\infty$
. Then the following statements are

equivalent :
(1) $C_{\varphi}$ : $BMOAarrow BMOA$ is bounded below.
(2) $C_{\varphi}$ : $Barrow \mathcal{B}$ is bounded below.
(3) $C_{\varphi}$ : $H^{2}arrow H^{2}$ is bounded below.
(4) $C_{\varphi}$ : $L_{a}^{2}arrow L_{a}^{2}$ is bounded below.

The following is an example that does not satisfy the condition
$\sup_{\{z\in D,\ovalbox{\tt\small REJECT}^{2}\geq\epsilon\}}1-z’ z1-|\varphi(z)||\varphi’(z)|<$

$+\infty$ .

Example 3.8. The singular inner function

$\varphi(z)=\exp(\frac{z+1}{z-1})$

is in $H^{\infty}$ but not in the little Bloch spaces $B_{0}$ . And it satisfies
$\sup_{\{z\in D,\ovalbox{\tt\small REJECT}^{2}\geq\epsilon\}}1-z’ z1-|_{1}\rho\langle z\rangle||\varphi’(z)|=+\infty$ .

But $C_{\varphi}$ : $H^{2}arrow H^{2}$ is bounded below.
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