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Abstract

We study the extreme points of the unit ball of the algebra generated by com-
position operators on the disk algebra.

1 Introduction

Let $\mathrm{D}$ be the open unit disk. We denote by $\overline{\mathrm{D}}$ its closure and by $\partial \mathrm{D}$ its boundary. Let
$H(\mathrm{D})$ be the set of all analytic functions on $\mathrm{D}$ and $S(\mathrm{D})$ be the set of all analytic self-map
of D. Every analytic self-map $\varphi\in S(\mathrm{D})$ the composition operator $C_{\varphi}$ on $H(\mathrm{D})$ defined by

$C_{\varphi}f(z)=f(\varphi(z))$ .

Let $H^{\infty}$ be the set of all bounded analytic functions on D. Then $H^{\infty}$ is a Banach algebra
with the supremum norm,

$||f||_{\infty}=\mathrm{s}\iota\iota \mathrm{p}|f(z)|z\in\emptyset$
.

Every composition operator is bounded on $H^{\infty}$ and $||C_{\varphi}||=1$ . It is known that $C_{\varphi}$ is
compact on $H^{\infty}$ if and only if $||\varphi||_{\infty}<1$ .

Recall that the disk algebra $A$ is the Banach algebra of all functions analytic on $\mathrm{D}$ and
continuous on $\overline{\mathrm{D}}$ with the supremum norm. To define $C_{\varphi}$ on $A$ , we need the condition
$C_{\varphi}z=\varphi\in A$ . Denote by $S(\overline{\mathrm{D}})$ the closed lrnit ball of $A$ . Then every $\varphi\in S(\overline{\mathrm{D}})$ induces $C_{\varphi}$

which acts on $A$ . If $\varphi$ is a constant function with value $\omega\in\partial \mathrm{D}$, then $\varphi$ is not in $S(\mathrm{D})$ but
in $S(\overline{\mathrm{D}})$ . We denote that $\mathrm{T}=\{\varphi\equiv\omega\in\partial \mathrm{D}\}$. By the maximum modulus principle, it is
shown that $S(\overline{\mathrm{D}})\backslash ’\mathrm{F}=S(\mathrm{D})\cap A$ . Similarly to the case of $H^{\infty}’$. we can see that $||C_{\varphi}||_{A}=1$

for every $\varphi\in S(\overline{\mathrm{D}})$ and $C_{\varphi}$ is compact on $A$ if and only if $||\varphi||_{\infty}<1$ or $\varphi\equiv e^{i\theta}$ .
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Let $\mathcal{X}$ be an analytic functional Banach space on $\mathrm{D}$ , that is, each element is analytic

on $\mathrm{D}$ and the evaluation at each point of $\mathrm{D}$ is a non-zero bounded linear functional on
,V. Let $C(\mathcal{X})$ be the collection of all bounded composition operators on $\mathcal{X}$ , endowed with
the operator norm topology. Originally this topic was posed for the case of $C(H^{2})$ by
Shapiro and Sundberg in [7]. They raised the following three problems: (i) Characterize
the path components of $C(H^{2})$ . $(\mathrm{i}\mathrm{i})$ Which composition operators are isolated in $C(H^{2})$ ?
(iii) Which differences of composition operators are compact on $H^{2}$? These problems are
still open. In [6], $\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{C}\mathrm{l}\mathrm{u}\mathrm{e}\mathrm{r}$ , Ohno and Zhao solved (i) and (ii) of the problems above for
$C(H^{\infty})$ .

Their results was descrived by the terms of the pseudo-hyperbolic distance on D. For
$p\in \mathrm{D}$ , let $\alpha_{p}$ be the automorphism of $\mathrm{D}$ exchanging $0$ for $p$ . Then $\alpha_{p}$ has the following
form;

$\alpha_{p}(z)=\frac{p-z}{1-\overline{p}z}$ .

The pseudo-hyperbolic distance $\rho(z, w)$ between $z$ and $w$ in $\mathrm{D}$ is defined by

$\rho(z, w)=|\alpha_{z}(w)|=|\frac{z-w}{1-\overline{z}w}|$ .

Here we define the induced distance $d_{\rho}$ on $S(\mathrm{D})$ , that is,

$d_{\rho}( \varphi, \psi)=\sup_{z\in \mathrm{D}}\rho(\varphi(z),\psi(z))$

for $\varphi$ and $\psi$ in $S(\mathrm{D})$ . In [6] the operator norms of the differences of composition operators

on $H^{\infty}$ are estimated as following;

$||C_{\varphi}-C_{\psi}||= \frac{2-2\sqrt{1-d_{\rho}(\varphi,\psi)^{2}}}{d_{\rho}(\varphi,\psi)}$ . (1)

Hence $C(H^{\infty})$ can be identified with the space $S(\mathrm{D}, d_{\rho})$ . We denote $C_{\varphi}\sim\chi C_{\psi}$ if they

are in the same component of $C(\mathcal{X})$ . In [6], it is proved that $C_{\varphi}\sim_{H\infty}C_{\psi}$ if and only if
$d_{p}(\varphi, \psi)<1$ .

Let $\mathcal{Y}$ be a convex subset of a locally convex space. We recall that an element $y$ of $\mathcal{Y}$ is
called an extreme point of $\mathcal{Y}$ if the conditions $0<r<1,$ $y_{1},$ $y_{2}\in \mathcal{Y}$ and $y=(1-r)y_{1}+ry_{2}$ ,
implies that $y_{1}=y_{2}=y$ . For a normed space $Z$ , we denote by $U_{\mathcal{Z}}$ the cloed unit ball of
$Z$ . By Rudin-de Leeuw’s Theorem([4, Ch.9]), $\varphi$ is an extreme point of $U_{H\infty}$ if and only if

$\int_{0}^{2\pi}\log(1-|\varphi(e^{i\theta})|)d\theta=-\infty$ . (2)
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$\mathrm{M}\mathrm{a}\mathrm{c}\mathrm{C}\mathrm{l}\mathrm{u}\mathrm{e}\mathrm{r}$ , Ohno and Zhao proved that if $C_{\varphi}$ is isolated in $C(H^{\infty})$ , then $\varphi$ is an extreme
point of $U_{H^{\infty}}$ . In [5], the converse was proved. We remark that the connected components
of $C(H^{\infty})$ are characterized by a equivalence relation which is in the similar form of the
Gleason parts of the maximal ideal space of $H^{\infty}$ . In this sense, the isolated points of
$C(H^{\infty})$ corresponds to the single Gleason parts.

The topological structure of $C(\mathrm{A})$ is similar to that of $C(H^{\infty})$ . To introduce such
results, we extend the pseudo-hyperbolic distance to $\overline{\mathrm{D}}$ as following; For $z\in\partial \mathrm{D}$ and
$w\in\overline{\mathrm{D}}$ such that $z\neq w$ , define that $\rho(z, z)=0$ and $\rho(z, w)=1$ . Hence the induced
distance $d_{\rho}$ is defined on $S(\overline{\mathrm{D}})$ . We remark that $\varphi$ is extreme point of the closed unit
ball $S(\overline{\mathrm{D}})$ of $A$ if and only if the condition (2) holds (see [4, p. 139]). We denote that
$\mathit{1}C=$ { $C_{\varphi}$ is compact on $A$} and $\Delta=\{C_{\varphi}\in C(A) : \varphi\equiv\omega\in\partial \mathrm{D}\}$. Now the results on the
topological structure of $C(H^{\infty})$ can be applied on $C(A)$ by the similar proof in [5] and [6].

Theorem 1.1 Let $C_{\varphi}$ , $C_{\psi}$ be in $C(A)$ . Then

(i) $||C_{\varphi}-C_{\psi}||_{A}= \frac{2-2\sqrt{1-d_{\rho}(\varphi,\psi)^{2}}}{d_{\rho}(\varphi,\psi)}$.

(ii) $C_{\varphi}\sim_{A}C_{\psi}$ if and only $if||C_{\varphi}-C_{\psi}||_{A}<2$ .

(iii) The following are equival$e\mathrm{n}\mathrm{t}$:

(a) $C_{\varphi}$ is isola$ted$ in $C(A)$ .

(b) For all $C_{\psi}\neq C_{\varphi},$ $||C_{\varphi}-C_{\psi}||_{A}=2$ .

(c) $\varphi$ is an extrem$e$ point of the closed unit ball of $A$ .

$(d) \int_{0}^{2\pi}\log(1-|\varphi(e^{i\theta})|)d\theta=-\infty$ .

(iv) Every $C_{\varphi}\in\Delta$ is compact on $A$ and isola$ted$ in $C(A)$ .

(v) $\mathcal{K}\backslash \Delta$ is a component of $C(A)$ .

Denote by $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}_{\mathcal{X}}(\varphi)$ the path component of $C(\mathcal{X}\rangle$ which contains $C_{\varphi}$ . Then we
can immediately get the following corollary, which mentions the relation between the
topological structure of $C(A)$ and that of $C(H^{\infty})$ .
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Corollary 1.2 Let $C_{\varphi}$ and $C_{\psi}$ be in $C(A)\backslash \Delta$ . Then we $h\mathrm{a}\mathrm{v}e$ the following.

(i) $\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}_{A}(\varphi)=\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}_{H^{\infty}}(\varphi)\cap C(\mathrm{A})$ .

(ii) $C_{\varphi}\sim C_{\psi}$ in $C(A)$ if and only if $C_{\varphi}\sim C_{\psi}$ in $C(H^{\infty})$ .

(iii) $C_{\varphi}$ is isolated in $C(A)$ if and only if $C_{\varphi}$ is isola$ted$ in $C(H^{\infty})$ .

In general, $C(\mathcal{X})$ is a semigroup with respect to the products, but the finite linear

combinations of composition operators are not in $C(\mathcal{X})$ . We denote by $\langle C(\mathcal{X})\rangle$ the collec-

tion of all finite linear combinations of composition operators on V. Let $\mathcal{L}(\mathcal{X})$ denote the
operator norm closure of $\langle C(\mathcal{X})\rangle$ . In the next section, we investigate the relation between
the isolated points of $C(A)$ and the extreme points of $U_{\mathcal{L}(A)}$ . Our main result states that
$C_{\varphi}$ is a extreme point of $\mathcal{L}(A)$ if and only if $C_{\varphi}$ is a isolated point of $C(A)$ .

2 Extreme point of $U_{\mathcal{L}(A)}$

At first, we observe that composition operators are linearly independent each other in
$\langle C(A)\rangle$ .

Proposition 2.1 Let $\varphi_{1},$ $\cdots,$ $\varphi_{n}$ be the distin$\mathrm{c}t$ analy$\mathrm{t}\mathrm{i}c$ maps $ofS(\overline{\mathrm{D}})$ and le$t\lambda_{1},$ $\cdots$ , $\mathrm{A}_{n}\in$

C. If $\lambda_{1}C_{\varphi_{1}}+\cdots+\lambda_{n}C_{\varphi_{\hslash}}$ is the zero operator on $A$ , then $\lambda_{1}=\cdots=\lambda_{n}=0$ .

In [3], Gorkin and Mortini investigated the norms and essential norms of finite linear

combinations of composition operators. They also proved that $\langle C(A)\rangle$ is not closed. and

the multiplication operator $M_{z}$ is not contained in $\mathcal{L}(A)$ . Here we will construct an
example of elements of $\mathcal{L}(A)\backslash \langle C(A)\rangle$ . For a continuous curve $\{C_{\varphi\iota}\}_{\ell\in[0,1]}$ in $C(A)$ , we
define that

$T_{n}= \sum_{k=1}^{n}\frac{1}{n}C_{\varphi \mathrm{g},n}$ .

Then $||T_{n}||=1$ . For $f\in A$ and $p\in \mathrm{D}$ , we have that

$T_{n}f(p)= \sum_{k=1}^{n}\frac{1}{n}f(\varphi_{\frac{k}{n}}(p))arrow\int_{0}^{1}f(\varphi_{t}(p))dt$

as $narrow\infty$ . Since $\{T_{n}f\}$ is Cauchy sequence in $A$ , we have that

$\int_{0}^{1}f(\varphi_{t}(z))dt\in H^{\infty}$ .
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Here we denote by $I_{\varphi_{t}}$ the following integral operator:

$I_{\varphi\iota}f(z)= \int_{0}^{1}f(\varphi_{t}(z))dt$ . (3)

Then the Banach-Steinhaus Theorem implies the following lemma.

Lemma 2.2 If $\{C_{\varphi_{t}}\}_{t\in[0,1]}$ is a contin$\mathrm{u}o$us curve in $C(A)$ , then the corresponding integral

operator $I_{\varphi \mathrm{r}}$ is in $U_{\mathcal{L}(A)}$ .

Example 2.3 (i) Suppose that $C_{\varphi}\sim_{A}C_{\psi}$ . Put $\varphi_{t}=(1-t)\varphi+t\psi$ . Then $\{C_{\varphi\iota}\}_{t\in[0,1]}$

is a contin$uo$us curve in $C(H^{\infty})$ (see $\int \mathit{6}]$) and

$I_{\varphi c}f(z)= \frac{F(\psi(z))F(\varphi(z))}{\psi(z)\varphi(z)}=$

where $F(z)$ is the primitive function of $f(z)$ .

(ii) $S\mathrm{u}$ppose that $||\varphi||_{\infty}<1$ . Choose a positive $n$umber $rsu\mathrm{c}b$ that $r<1-||\varphi||_{\infty}$ . We
define that $\varphi_{\mathrm{t}}(z)=\varphi(z)+re^{2\pi it}z$. Then $||\varphi_{t}||_{\infty}<1$ for all $t$ . Since every $\varphi_{t}(\mathrm{D})$

is a $co\mathrm{m}$pact $s\mathrm{u}$bset of $\mathrm{D},$ $d_{\rho}(\varphi_{s}, \varphi_{t})arrow 0$ as $sarrow t$ . Thus $\{C_{\varphi e}\}_{t\in[0,1]}$ is a closed

continuous curve in $C(H^{\infty})$ . By the Cauchy’s Formula, we have that $I_{\varphi_{\mathrm{t}}}=C_{\varphi}$ .

We remark that the condition $||\varphi||_{\infty}<1$ induces that $C_{\varphi}$ is not an extreme point of
$U_{\mathcal{L}(A)}$ . From (ii) of Example 2.3, we have that, for $f\in A$ and $p\in \mathrm{D}$ ,

$C_{\varphi}f(p)= \int_{0}^{\frac{1}{2}}f(\varphi(p)+rpe^{2\pi it})dt+\int_{\frac{1}{2}}^{1}f(\varphi(p)+rpe^{2\pi it})dt$

Let $\sigma_{t}(z)=\varphi(z)+re^{\pi it}z$ and $\tau_{t}(z)=\varphi(z)-re^{\pi it}z$ . By changing variables,

$C_{\varphi}= \frac{1}{2}I_{\sigma_{t}}+\frac{1}{2}I_{\tau c}$ . (4)

Since $I_{\sigma_{l}}\neq I_{\tau c}$ , we can conclude that $C_{\varphi}$ is not an extreme point. Then we have the

following.

Proposition 2.4 If $C_{\varphi}$ is compact on $A$ , then $C_{\varphi}$ is not an extreme point of $U_{\mathcal{L}(A)}$ .

Here we state our main result.

Theorem 2.5 $C_{\varphi}$ is an extreme point of $U_{L(A)}$ if and only if $C_{\varphi}$ is an isola$\mathfrak{t}ed$ point of
$C(A)$ .

We remark that the same proof of the “only if” part can be applied to $\mathcal{L}(H^{\infty})$ . We
here present two problems.

Problem (i) Can Theorem 2.5 be applied to $\mathcal{L}(H^{\infty})Q$

(ii) Is there other $e\dot{x}$ttreme point of the closed unit ball of $\mathcal{L}(A)$ ?
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