Extreme points of the unit ball of the algebra generated by composition operators

細川 卓也（Takuya Hosokawa）

Abstract

We study the extreme points of the unit ball of the algebra generated by com－ position operators on the disk algebra．

1 Introduction

Let \mathbb{D} be the open unit disk．We denote by $\overline{\mathbb{D}}$ its closure and by $\partial \mathbb{D}$ its boundary．Let $H(\mathbb{D})$ be the set of all analytic functions on \mathbb{D} and $S(\mathbb{D})$ be the set of all analytic self－map of \mathbb{D} ．Every analytic self－map $\varphi \in S(\mathbb{D})$ the composition operator C_{φ} on $H(\mathbb{D})$ defined by

$$
C_{\varphi} f(z)=f(\varphi(z))
$$

Let H^{∞} be the set of all bounded analytic functions on \mathbb{D} ．Then H^{∞} is a Banach algebra with the supremum norm，

$$
\|f\|_{\infty}=\sup _{z \in \mathbb{D}}|f(z)| .
$$

Every composition operator is bounded on H^{∞} and $\left\|C_{\varphi}\right\|=1$ ．It is known that C_{φ} is compact on H^{∞} if and only if $\|\varphi\|_{\infty}<1$ ．

Recall that the disk algebra A is the Banach algebra of all functions analytic on \mathbb{D} and continuous on $\overline{\mathbb{D}}$ with the supremum norm．To define C_{φ} on A ，we need the condition $C_{\varphi} z=\varphi \in A$ ．Denote by $S(\overline{\mathbb{D}})$ the closed unit ball of A ．Then every $\varphi \in S(\overline{\mathbb{D}})$ induces C_{φ} which acts on A ．If φ is a constant function with value $\omega \in \partial \mathbb{D}$ ，then φ is not in $S(\mathbb{D})$ but in $S(\overline{\mathbb{D}})$ ．We denote that $\mathbb{T}=\{\varphi \equiv \omega \in \partial \mathbb{D}\}$ ．By the maximum modulus principle，it is shown that $S(\overline{\mathbb{D}}) \backslash \mathbb{T}=S(\mathbb{D}) \cap A$ ．Similarly to the case of H^{∞} ，we can see that $\left\|C_{\varphi}\right\|_{A}=1$ for every $\varphi \in S(\overline{\mathbb{D}})$ and C_{φ} is compact on A if and only if $\|\varphi\|_{\infty}<1$ or $\varphi \equiv e^{i \theta}$ ．

Let \mathcal{X} be an analytic functional Banach space on \mathbb{D}, that is, each element is analytic on \mathbb{D} and the evaluation at each point of \mathbb{D} is a non-zero bounded linear functional on \mathcal{X}. Let $\mathcal{C}(\mathcal{X})$ be the collection of all bounded composition operators on \mathcal{X}, endowed with the operator norm topology. Originally this topic was posed for the case of $\mathcal{C}\left(H^{2}\right)$ by Shapiro and Sundberg in [7]. They raised the following three problems: (i) Characterize the path components of $\mathcal{C}\left(H^{2}\right)$. (ii) Which composition operators are isolated in $\mathcal{C}\left(H^{2}\right)$? (iii) Which differences of composition operators are compact on H^{2} ? These problems are still open. In [6], MacCluer, Ohno and Zhao solved (i) and (ii) of the problems above for $\mathcal{C}\left(H^{\infty}\right)$.

Their results was descrived by the terms of the pseudo-hyperbolic distance on \mathbb{D}. For $p \in \mathbb{D}$, let α_{p} be the automorphism of \mathbb{D} exchanging 0 for p. Then α_{p} has the following form;

$$
\alpha_{p}(z)=\frac{p-z}{1-\bar{p} z}
$$

The pseudo-hyperbolic distance $\rho(z, w)$ between z and w in \mathbb{D} is defined by

$$
\rho(z, w)=\left|\alpha_{z}(w)\right|=\left|\frac{z-w}{1-\bar{z} w}\right|
$$

Here we define the induced distance d_{ρ} on $S(\mathbb{D})$, that is,

$$
d_{\rho}(\varphi, \psi)=\sup _{z \in \mathbb{D}} \rho(\varphi(z), \psi(z))
$$

for φ and ψ in $S(\mathbb{D})$. In [6] the operator norms of the differences of composition operators on H^{∞} are estimated as following;

$$
\begin{equation*}
\left\|C_{\varphi}-C_{\psi}\right\|=\frac{2-2 \sqrt{1-d_{\rho}(\varphi, \psi)^{2}}}{d_{\rho}(\varphi, \psi)} \tag{1}
\end{equation*}
$$

Hence $\mathcal{C}\left(H^{\infty}\right)$ can be identified with the space $S\left(\mathbb{D}, d_{\rho}\right)$. We denote $C_{\varphi} \sim_{\mathcal{X}} C_{\psi}$ if they are in the same component of $\mathcal{C}(\mathcal{X})$. In [6], it is proved that $C_{\varphi} \sim_{H^{\infty}} C_{\psi}$ if and only if $d_{\rho}(\varphi, \psi)<1$.

Let \mathcal{Y} be a convex subset of a locally convex space. We recall that an element y of \mathcal{Y} is called an extreme point of \mathcal{Y} if the conditions $0<r<1, y_{1}, y_{2} \in \mathcal{Y}$ and $y=(1-r) y_{1}+r y_{2}$, implies that $y_{1}=y_{2}=y$. For a normed space \mathcal{Z}, we denote by $U_{\mathcal{Z}}$ the cloed unit ball of \mathcal{Z}. By Rudin-de Leeuw's Theorem([4, Ch.9]), φ is an extreme point of $U_{H} \infty$ if and only if

$$
\begin{equation*}
\int_{0}^{2 \pi} \log \left(1-\left|\varphi\left(e^{i \theta}\right)\right|\right) d \theta=-\infty \tag{2}
\end{equation*}
$$

MacCluer, Ohno and Zhao proved that if C_{φ} is isolated in $\mathcal{C}\left(H^{\infty}\right)$, then φ is an extreme point of $U_{H^{\infty}}$. In [5], the converse was proved. We remark that the connected components of $\mathcal{C}\left(H^{\infty}\right)$ are characterized by a equivalence relation which is in the similar form of the Gleason parts of the maximal ideal space of H^{∞}. In this sense, the isolated points of $\mathcal{C}\left(H^{\infty}\right)$ corresponds to the single Gleason parts.

The topological structure of $\mathcal{C}(A)$ is similar to that of $\mathcal{C}\left(H^{\infty}\right)$. To introduce such results, we extend the pseudo-hyperbolic distance to $\overline{\mathbb{D}}$ as following; For $z \in \partial \mathbb{D}$ and $w \in \overline{\mathbb{D}}$ such that $z \neq w$, define that $\rho(z, z)=0$ and $\rho(z, w)=1$. Hence the induced distance d_{ρ} is defined on $S(\overline{\mathbb{D}})$. We remark that φ is extreme point of the closed unit ball $S(\overline{\mathbb{D}})$ of A if and only if the condition (2) holds (see [4, p. 139]). We denote that $\mathcal{K}=\left\{C_{\varphi}\right.$ is compact on $\left.A\right\}$ and $\Delta=\left\{C_{\varphi} \in \mathcal{C}(A): \varphi \equiv \omega \in \partial \mathbb{D}\right\}$. Now the results on the topological structure of $\mathcal{C}\left(H^{\infty}\right)$ can be applied on $\mathcal{C}(A)$ by the similar proof in [5] and [6].

Theorem 1.1 Let C_{φ}, C_{ψ} be in $\mathcal{C}(A)$. Then
(i) $\left\|C_{\varphi}-C_{\psi}\right\|_{A}=\frac{2-2 \sqrt{1-d_{\rho}(\varphi, \psi)^{2}}}{d_{\rho}(\varphi, \psi)}$.
(ii) $C_{\varphi} \sim_{A} C_{\psi}$ if and only if $\left\|C_{\varphi}-C_{\psi}\right\|_{A}<2$.
(iii) The following are equivalent:
(a) C_{φ} is isolated in $\mathcal{C}(A)$.
(b) For all $C_{\psi} \neq C_{\varphi},\left\|C_{\varphi}-C_{\psi}\right\|_{A}=2$.
(c) φ is an extreme point of the closed unit ball of A.
(d) $\int_{0}^{2 \pi} \log \left(1-\left|\varphi\left(e^{i \theta}\right)\right|\right) d \theta=-\infty$.
(iv) Every $C_{\varphi} \in \Delta$ is compact on A and isolated in $\mathcal{C}(A)$.
(v) $\mathcal{K} \backslash \Delta$ is a component of $\mathcal{C}(A)$.

Denote by $\operatorname{Comp}_{\mathcal{X}}(\varphi)$ the path component of $\mathcal{C}(\mathcal{X})$ which contains C_{φ}. Then we can immediately get the following corollary, which mentions the relation between the topological structure of $\mathcal{C}(A)$ and that of $\mathcal{C}\left(H^{\infty}\right)$.

Corollary 1.2 Let C_{φ} and C_{ψ} be in $\mathcal{C}(A) \backslash \Delta$. Then we have the following.
(i) $\operatorname{Comp}_{A}(\varphi)=\operatorname{Comp}_{H^{\infty}}(\varphi) \cap \mathcal{C}(A)$.
(ii) $C_{\varphi} \sim C_{\psi}$ in $\mathcal{C}(A)$ if and only if $C_{\varphi} \sim C_{\psi}$ in $\mathcal{C}\left(H^{\infty}\right)$.
(iii) C_{φ} is isolated in $\mathcal{C}(A)$ if and only if C_{φ} is isolated in $\mathcal{C}\left(H^{\infty}\right)$.

In general, $\mathcal{C}(\mathcal{X})$ is a semigroup with respect to the products, but the finite linear combinations of composition operators are not in $\mathcal{C}(\mathcal{X})$. We denote by $\langle\mathcal{C}(\mathcal{X})\rangle$ the collection of all finite linear combinations of composition operators on \mathcal{X}. Let $\mathcal{L}(\mathcal{X})$ denote the operator norm closure of $\langle\mathcal{C}(\mathcal{X})\rangle$. In the next section, we investigate the relation between the isolated points of $\mathcal{C}(A)$ and the extreme points of $U_{\mathcal{L}(A)}$. Our main result states that C_{φ} is a extreme point of $\mathcal{L}(A)$ if and only if C_{φ} is a isolated point of $\mathcal{C}(A)$.

2 Extreme point of $U_{\mathcal{L}(A)}$

At first, we observe that composition operators are linearly independent each other in $\langle\mathcal{C}(A)\rangle$.

Proposition 2.1 Let $\varphi_{1}, \cdots, \varphi_{n}$ be the distinct analytic maps of $S(\overline{\mathbb{D}})$ and let $\lambda_{1}, \cdots, \lambda_{n} \in$ \mathbb{C}. If $\lambda_{1} C_{\varphi_{1}}+\cdots+\lambda_{n} C_{\varphi_{n}}$ is the zero operator on A, then $\lambda_{1}=\cdots=\lambda_{n}=0$.

In [3], Gorkin and Mortini investigated the norms and essential norms of finite linear combinations of composition operators. They also proved that $\langle\mathcal{C}(A)\rangle$ is not closed. and the multiplication operator M_{z} is not contained in $\mathcal{L}(A)$. Here we will construct an example of elements of $\mathcal{L}(A) \backslash\langle\mathcal{C}(A)\rangle$. For a continuous curve $\left\{C_{\varphi_{t}}\right\}_{t \in[0,1]}$ in $\mathcal{C}(A)$, we define that

$$
T_{n}=\sum_{k=1}^{n} \frac{1}{n} C_{\varphi_{\frac{k}{n}}} .
$$

Then $\left\|T_{n}\right\|=1$. For $f \in A$ and $p \in \mathbb{D}$, we have that

$$
T_{n} f(p)=\sum_{k=1}^{n} \frac{1}{n} f\left(\varphi_{\frac{k}{n}}(p)\right) \rightarrow \int_{0}^{1} f\left(\varphi_{t}(p)\right) d t
$$

as $n \rightarrow \infty$. Since $\left\{T_{n} f\right\}$ is Cauchy sequence in A, we have that

$$
\int_{0}^{1} f\left(\varphi_{t}(z)\right) d t \in H^{\infty}
$$

Here we denote by $I_{\varphi_{t}}$ the following integral operator:

$$
\begin{equation*}
I_{\varphi_{t}} f(z)=\int_{0}^{1} f\left(\varphi_{t}(z)\right) d t \tag{3}
\end{equation*}
$$

Then the Banach-Steinhaus Theorem implies the following lemma.
Lemma 2.2 If $\left\{C_{\varphi_{t}}\right\}_{t \in[0,1]}$ is a continuous curve in $\mathcal{C}(A)$, then the corresponding integral operator $I_{\varphi_{t}}$ is in $U_{\mathcal{L}(A)}$.

Example 2.3 (i) Suppose that $C_{\varphi} \sim_{A} C_{\psi}$. Put $\varphi_{t}=(1-t) \varphi+t \psi$. Then $\left\{C_{\varphi_{t}}\right\}_{t \in[0,1]}$ is a continuous curve in $\mathcal{C}\left(H^{\infty}\right)$ (see [6]) and

$$
I_{\varphi_{t}} f(z)=\frac{F(\psi(z))-F(\varphi(z))}{\psi(z)-\varphi(z)}
$$

where $F(z)$ is the primitive function of $f(z)$.
(ii) Suppose that $\|\varphi\|_{\infty}<1$. Choose a positive number r such that $r<1-\|\varphi\|_{\infty}$. We define that $\varphi_{t}(z)=\varphi(z)+r e^{2 \pi i t} z$. Then $\left\|\varphi_{t}\right\|_{\infty}<1$ for all t. Since every $\varphi_{t}(\mathbb{D})$ is a compact subset of $\mathbb{D}, d_{\rho}\left(\varphi_{s}, \varphi_{t}\right) \rightarrow 0$ as $s \rightarrow t$. Thus $\left\{C_{\varphi_{t}}\right\}_{t \in[0,1]}$ is a closed continuous curve in $\mathcal{C}\left(H^{\infty}\right)$. By the Cauchy's Formula, we have that $I_{\varphi_{t}}=C_{\varphi}$.

We remark that the condition $\|\varphi\|_{\infty}<1$ induces that C_{φ} is not an extreme point of $U_{\mathcal{L}(A)}$. From (ii) of Example 2.3, we have that, for $f \in A$ and $p \in \mathbb{D}$,

$$
C_{\varphi} f(p)=\int_{0}^{\frac{1}{2}} f\left(\varphi(p)+r p e^{2 \pi i t}\right) d t+\int_{\frac{1}{2}}^{1} f\left(\varphi(p)+r p e^{2 \pi i t}\right) d t
$$

Let $\sigma_{t}(z)=\varphi(z)+r e^{\pi i t} z$ and $\tau_{t}(z)=\varphi(z)-r e^{\pi i t} z$. By changing variables,

$$
\begin{equation*}
C_{\varphi}=\frac{1}{2} I_{\sigma_{t}}+\frac{1}{2} I_{\tau_{t}} \tag{4}
\end{equation*}
$$

Since $I_{\sigma_{t}} \neq I_{\tau_{t}}$, we can conclude that C_{φ} is not an extreme point. Then we have the following.
Proposition 2.4 If C_{φ} is compact on A, then C_{φ} is not an extreme point of $U_{\mathcal{L}(A)}$.
Here we state our main result.
Theorem 2.5 C_{φ} is an extreme point of $U_{\mathcal{L}(A)}$ if and only if C_{φ} is an isolated point of $\mathcal{C}(A)$.

We remark that the same proof of the "only if" part can be applied to $\mathcal{L}\left(H^{\infty}\right)$. We here present two problems.
Problem (i) Can Theorem 2.5 be applied to $\mathcal{L}\left(H^{\infty}\right)$?
(ii) Is there other extreme point of the closed unit ball of $\mathcal{L}(A)$?

References

[1] E. Berkson, Composition operators isolated in the uniform topology, Proc. Amer. Math. Soc. 81 (1981), 230-232.
[2] H. Chandra, Isolation amongst composition operators on the disc algebra, J. Indian Math. Soc.(N.S.) 67 (2000), 43-52.
[3] P. Gorkin and R. Mortini, Norms and essential norms of linear combinations of endomorphisms, Trans. Amer. Math. Soc. electrically published, 2004.
[4] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, N. J., 1962.
[5] T. Hosokawa, K. Izuchi and D. Zheng, Isolated points and essential components of composition operators on H^{∞}, Proc. Amer. Math. Soc. 130 (2001), 1765-1773
[6] B. MacCluer, S. Ohno and R. Zhao, Topological structure of the space of composition operators on H^{∞}, Integral Equation Operator Theory, 40 (2001), 481-494.
[7] J. Shapiro and C. Sundberg, Isolation amongst the composition operators, Pacific J. Math. 145 (1990), 117-152.

