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Abstract. This is a résumé of some recent results on the uniform
non-{7-ness of direct sums of Banach spaces. In particular we present
those for the ¢;- and ¢,-sums as well.

1. Introduction

Since it was introduced in [24], the 1-direct sum of Banach spaces have at-
tracted a good deal of attention ([5, 6, 7, 13, 14, 19, 20, 17, 16, etc.]; see also
[22, 23]). The aim of this note is to present a sequence of recent results on the uni-
form nonéf?-ness of direct sums of Banach spaces. Our starting point is Theorem:
1 below concerning the uniform non-squareness by the authors ([14]). To treat
the uniform non-£}-ness is much more complicated than expected. The results
presented here is almost taken from the recent paper of the present authors [16].

" Let ¥ be the family of all convex (continuous) functions ¢ on [0, 1] satisfying
Y0 =¢(1) =1 and max{l—-t,t} <yp(t)<1 (0<t<1). (1)

For any ¢ € ¥ define
(121 + [ (i) i (=) # ©0,0),
if (z,w) = (0,0).

1(z, )y =



Then || - | = || - ||y is an absolute normalized norm on C? (that is, ||(z,w)| =
{11, Jwill and [|(1,0)f} = [|(0,1)|| = 1) and satisfies

) =11 -t (0<t<T). (3)

Conversely for any absolute normalized norm || - || on C? define a convex function
Y€ Wby (3). Then || = | - .

The £,-norms || - ||, are such examples and for all absolute normalized norms
| - I| on C? we have

F-lleo < -1F< 11 1l (4)

([2]). By (3) the convex functions corresponding to the £,-norms are given by

’l,b,,(t) =

{(1—t)yP+tP}/P if 1 <p< oo,
{ (5)

max{l — ¢,t} if p = o0.

Let X and Y be Banach spaces and let ¢ € ¥. The t-direct sum X &, Y of
X and Y is the direct sum X @ Y equipped with the norm

1, Ylly = 1]l Tyl e, (6)

where the (-, )ly term in the right hand side is the absolute normalized norm on
C2 corresponding to the convex function v ([24, 13]; see [21] for several examples).
This extends the notion of the {,-sum X ¢, Y.

A Banach space X is said to be uniformnly non-€3 (cf. [1, 18]) provided there
exists € (0 < € < 1) such that for any zy, -+, z, € Sx, the unit sphere of X, there
exists an n-tuple of signs # = (6;) for which

n
> 6,z
j=1

We may take z,, -, z, from the unit ball Bx of X in the definition. In case of
n =2 X is called uniformly non-square ([12]; cf. [1, 18]).

As is well known ([3, 11]), if X is uniformly non-€%, then X is uniformly non-
£+ for every n € N.

<n(l-ce). (7

2. Uniform non-/7-ness of X @, Y, ¢ # 1, ¥

The following result by the authors [14] is our starting point.
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Theorem 1 (Kato-Saito-Tamura [14]). Let X and Y be Banach spaces and
Y € U. Then the following are equivalent.

(i) X @y Y is uniformly non-square.

(i) X and Y are uniformly non-square and ¥ # V1, Yeo.

To treat the uniform non-/7-ness is much more complicated than expected.
Indeed we need to prepare several lemmas, though we skip to mention them.

Theorem 2. Let X andY be Banach spaces and let ) € W, # 9, Y. Then
the following are equivalent.

(i) X ® Y is uniformly non-£3.

(ii)) X and Y are uniformly non-£}.

Theorem 2 does not answer the following question: Let X and Y be uniformly

non-{}. Is it possible for X &, Y to be uniformly non-£} with ¢ = 9, or ¢ = 9,7

The next theorem will give an answer.

Theorem 3. Let X and Y be Banach spaces and let 9p € V. Assume that
neither X nor'Y s uniformly non-€3~1. Then the following are equivalent.

(i) X @y Y s uniformly non-£}.

(i) X and Y are uniformly non-€} and ¢ # Y1, Yoo

Theorem 3 includes Theorem 1 as the case n = 2.

Remark 1. In Theorem 3 we can not remove the condition that neither X
nor Y is uniformly non-£7"" ([16, Section 6)).

3. The ¢;- and ¢, -sums

Theorem 4. Let X and Y be Banach spaces. The following are equivalent.

(1) X &1 Y is uniformly non-0¢.

(ii) There ezist positive integers ny and ny with ny +ny = n— 1 such that X is
uniformly non-€P**! and Y is uniformly nonfl'l‘“l.

According to Theorem 1 the uniform non-squareness of X and Y is not inherited
to the /;-sum X @, Y, whereas we have the following result as the case n = 3 of
Theorem 4. ‘
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Theorem 5. Let X and Y be Banach spaces. Then the following are equiva-
lent.

(1) X @1 Y s uniformly non-63.
(ii) X and Y are uniformly non-square.

For the {,-sum we obtain the following.

Theorem 6. Let X3,...,X,, be uniformly non-square Banach spaces. Then
(X1@ @& Xp)oo s uniformly non-£7 if and only if m < 271,

According to Theorem 5 the ¢;-sum X @Y is uniformly non-£3 if and only if X
and Y are uniformly non-square. On the other hand for the £,-sum, by Theorem
6, if X andY are uniformly non-square, then X &Y is uniformly non-£3, whereas
the converse is not true ([16, Remark 5.5]). Instead we obtain the following result
which is interesting in contrast with the £;-sum case.

Theorem 7. Let X, Y and Z be Banach spaccs. Then the following are
equivalent.

(i) (XBY & Z)w is uniformly non-£3.
(i) X, Y and Z are uniformly non-square.
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