Uniform non- ℓ_1^n -ness of direct sums of Banach spaces

九州工業大学・工学部 加藤幹雄 (Mikio Kato)
Department of Mathematics, Kyushu Institute of Technology
e-mail: katom@tobata.isc.kyutech.ac.jp

新潟大学・理学部 斎藤吉助 (Kichi-Suke Saito)
Department of Mathematics, Faculty of Science, Niigata University
e-mail: saito@math.sc.niigata-u.ac.jp

千葉大学大学院・人文社会科学研究科 田村高幸 (Takayuki Tamura) Graduate School of Humanities and Social Sciences, Chiba University e-mail: tamura@le.chiba-u.ac.jp

Abstract. This is a résumé of some recent results on the uniform non- ℓ_1^n -ness of direct sums of Banach spaces. In particular we present those for the ℓ_1 - and ℓ_{∞} -sums as well.

1. Introduction

Since it was introduced in [24], the ψ -direct sum of Banach spaces have attracted a good deal of attention ([5, 6, 7, 13, 14, 19, 20, 17, 16, etc.]; see also [22, 23]). The aim of this note is to present a sequence of recent results on the uniform non- ℓ_1^n -ness of direct sums of Banach spaces. Our starting point is Theorem 1 below concerning the uniform non-squareness by the authors ([14]). To treat the uniform non- ℓ_1^n -ness is much more complicated than expected. The results presented here is almost taken from the recent paper of the present authors [16].

Let Ψ be the family of all convex (continuous) functions ψ on [0,1] satisfying

$$\psi(0) = \psi(1) = 1 \text{ and } \max\{1 - t, t\} \le \psi(t) \le 1 \quad (0 \le t \le 1). \tag{1}$$

For any $\psi \in \Psi$ define

$$\|(z,w)\|_{\psi} = \begin{cases} (|z| + |w|)\psi\left(\frac{|w|}{|z| + |w|}\right) & \text{if } (z,w) \neq (0,0), \\ 0 & \text{if } (z,w) = (0,0). \end{cases}$$
 (2)

Then $\|\cdot\| = \|\cdot\|_{\psi}$ is an absolute normalized norm on \mathbb{C}^2 (that is, $\|(z,w)\| = \|(|z|,|w|)\|$ and $\|(1,0)\| = \|(0,1)\| = 1$) and satisfies

$$\psi(t) = \|(1 - t, t)\| \quad (0 \le t \le 1). \tag{3}$$

Conversely for any absolute normalized norm $\|\cdot\|$ on \mathbb{C}^2 define a convex function $\psi \in \Psi$ by (3). Then $\|\cdot\| = \|\cdot\|_{\psi}$.

The ℓ_p -norms $\|\cdot\|_p$ are such examples and for all absolute normalized norms $\|\cdot\|$ on \mathbb{C}^2 we have

$$\|\cdot\|_{\infty} \le \|\cdot\| \le \|\cdot\|_1 \tag{4}$$

([2]). By (3) the convex functions corresponding to the ℓ_p -norms are given by

$$\psi_p(t) := \begin{cases} \{(1-t)^p + t^p\}^{1/p} & \text{if } 1 \le p < \infty, \\ \max\{1-t, t\} & \text{if } p = \infty. \end{cases}$$
 (5)

Let X and Y be Banach spaces and let $\psi \in \Psi$. The ψ -direct sum $X \oplus_{\psi} Y$ of X and Y is the direct sum $X \oplus Y$ equipped with the norm

$$||(x, y)||_{\psi} = ||(||x||, ||y||)||_{\psi}, \tag{6}$$

where the $\|(\cdot, \cdot)\|_{\psi}$ term in the right hand side is the absolute normalized norm on \mathbb{C}^2 corresponding to the convex function ψ ([24, 13]; see [21] for several examples). This extends the notion of the ℓ_p -sum $X \oplus_p Y$.

A Banach space X is said to be uniformly non- ℓ_1^n (cf. [1, 18]) provided there exists ϵ (0 < ϵ < 1) such that for any $x_1, \dots, x_n \in S_X$, the unit sphere of X, there exists an n-tuple of signs $\theta = (\theta_i)$ for which

$$\left\| \sum_{j=1}^{n} \theta_{j} x_{j} \right\| \leq n(1 - \epsilon). \tag{7}$$

We may take x_1, \dots, x_n from the unit ball B_X of X in the definition. In case of n = 2 X is called *uniformly non-square* ([12]; cf. [1, 18]).

As is well known ([3, 11]), if X is uniformly non- ℓ_1^n , then X is uniformly non- ℓ_1^{n+1} for every $n \in \mathbb{N}$.

2. Uniform non- ℓ_1^n -ness of $X \oplus_{\psi} Y$, $\psi \neq \psi_1, \psi_{\infty}$

The following result by the authors [14] is our starting point.

Theorem 1 (Kato-Saito-Tamura [14]). Let X and Y be Banach spaces and $\psi \in \Psi$. Then the following are equivalent.

- (i) $X \oplus_{\psi} Y$ is uniformly non-square.
- (ii) X and Y are uniformly non-square and $\psi \neq \psi_1, \psi_{\infty}$.

To treat the uniform non- ℓ_1^n -ness is much more complicated than expected. Indeed we need to prepare several lemmas, though we skip to mention them.

Theorem 2. Let X and Y be Banach spaces and let $\psi \in \Psi, \psi \neq \psi_1, \psi_{\infty}$. Then the following are equivalent.

- (i) $X \oplus_{\psi} Y$ is uniformly non- ℓ_1^n .
- (ii) X and Y are uniformly non- ℓ_1^n .

Theorem 2 does not answer the following question: Let X and Y be uniformly non- ℓ_1^n . Is it possible for $X \oplus_{\psi} Y$ to be uniformly non- ℓ_1^n with $\psi = \psi_1$ or $\psi = \psi_{\infty}$? The next theorem will give an answer.

Theorem 3. Let X and Y be Banach spaces and let $\psi \in \Psi$. Assume that neither X nor Y is uniformly non- ℓ_1^{n-1} . Then the following are equivalent.

- (i) $X \oplus_{\psi} Y$ is uniformly non- ℓ_1^n .
- (ii) X and Y are uniformly non- ℓ_1^n and $\psi \neq \psi_1, \psi_{\infty}$.

Theorem 3 includes Theorem 1 as the case n=2.

Remark 1. In Theorem 3 we can not remove the condition that neither X nor Y is uniformly non- ℓ_1^{n-1} ([16, Section 6]).

3. The ℓ_1 - and ℓ_{∞} -sums

Theorem 4. Let X and Y be Banach spaces. The following are equivalent.

- (i) $X \oplus_1 Y$ is uniformly non- ℓ_1^n .
- (ii) There exist positive integers n_1 and n_2 with $n_1 + n_2 = n 1$ such that X is uniformly non- $\ell_1^{n_1+1}$ and Y is uniformly non- $\ell_1^{n_2+1}$.

According to Theorem 1 the uniform non-squareness of X and Y is not inherited to the ℓ_1 -sum $X \oplus_1 Y$, whereas we have the following result as the case n=3 of Theorem 4.

Theorem 5. Let X and Y be Banach spaces. Then the following are equivalent.

- (i) $X \oplus_1 Y$ is uniformly non- ℓ_1^3 .
- (ii) X and Y are uniformly non-square.

For the ℓ_{∞} -sum we obtain the following.

Theorem 6. Let X_1, \ldots, X_m be uniformly non-square Banach spaces. Then $(X_1 \oplus \cdots \oplus X_m)_{\infty}$ is uniformly non- ℓ_1^n if and only if $m < 2^{n-1}$.

According to Theorem 5 the ℓ_1 -sum $X \oplus_1 Y$ is uniformly non- ℓ_1^3 if and only if X and Y are uniformly non-square. On the other hand for the ℓ_{∞} -sum, by Theorem 6, if X and Y are uniformly non-square, then $X \oplus_{\infty} Y$ is uniformly non- ℓ_1^3 , whereas the converse is not true ([16, Remark 5.5]). Instead we obtain the following result which is interesting in contrast with the ℓ_1 -sum case.

Theorem 7. Let X, Y and Z be Banach spaces. Then the following are equivalent.

- (i) $(X \oplus Y \oplus Z)_{\infty}$ is uniformly non- ℓ_1^3 .
- (ii) X, Y and Z are uniformly non-square.

References

- [1] B. Beauzamy, Introduction to Banach Spaces and their Geometry, 2nd ed., North-Holland, 1985.
- [2] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, 1973.
- [3] D. R. Brown, B-convexity in Banach spaces, Doctoral dissertation, Ohaio State University, 1970.
- [4] M. Denker and H. Hudzik, Uniformly non- $l_n^{(1)}$ Musielak-Orlicz sequence spaces, Proc. Indian Acad. Sci. Math. Sci. **101** (1991), 71–86
- [5] S. Dhompongsa, A. Kaewkhao and S. Saejung, Uniform smoothness and U-convexity of ψ -direct sums, J. Nonlinear Convex Anal. 6 (2005), 327–338.
- [6] S. Dhompongsa, A. Kaewcharoen and A. Kaewkhao, Fixed point property of direct sums, Nonlinear Anal., to appear.
- [7] P. N. Dowling, On convexity properties of ψ -direct sums of Banach spaces, J. Math. Anal. Appl. 288 (2003), 540–543.

- [8] P. N. Dowling and B. Turett, Complex strict convexity of absolute norms on \mathbb{C}^n and direct sums of Banach spaces, to appear in J. Math. Anal. Appl.
- [9] D. P. Giesy, On a convexity condition in normed linear spaces. Trans. Amer. Math. Soc. 125 (1966), 114–146.
- [10] D. P. Giesy and R. C. James, Uniformly non- $l_n^{(1)}$ and B-convex spaces, Studia Math. 48 (1973), 61–69.
- [11] H. Hudzik, Uniformly non- $l_n^{(1)}$ Orlicz spaces with Luxemburg norm, Studia Math. 81 (1985), 271–284.
- [12] C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
- [13] M. Kato, K.-S. Saito and T. Tamura, On ψ -direct sums of Banach spaces and convexity, J. Aust. Math. Soc. **75** (2003), 413–422.
- [14] M. Kato, K.-S. Saito and T. Tamura, Uniform non-squareness of ψ -direct sums of Banach spaces $X \oplus_{\psi} Y$, Math. Inequal. Appl. 7 (2004), 429–437.
- [15] M. Kato, K.-S. Saito and T. Tamura, Sharp triangle inequality and its reverse in Banach spaces, to appear in Math. Inequal. Appl.
- [16] M. Kato, K.-S. Saito and T. Tamura, Uniform non- ℓ_1^n -ness of ψ -direct sums of Banach spaces $X \oplus_{\psi} Y$, submitted.
- [17] M. Kato and T. Tamura, Weak nearly uniform smoothness and worth property of ψ -direct sums of Banach spaces $X \oplus_{\psi} Y$, Comment. Math. Prace Mat. **46** (2006), 113-129.
- [18] R. E. Megginson, An Introduction to Banach Space Theory, Springer, 1998.
- [19] K. Mitani, K.-S. Saito and T. Suzuki, Smoothness of absolute norms on \mathbb{C}^n , J. Convex Anal. 10 (2003), 89–107.
- [20] K. Mitani, S. Oshiro and K.-S. Saito, Smoothness of ψ -direct sums of Banach spaces, Math. Inequal. Appl. 8 (2005), 147–157.
- [21] K.-S. Saito and M. Kato, Uniform convexity of ψ -direct sums of Banach spaces, J. Math. Anal. Appl. **277** (2003), 1–11
- [22] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^2 , J. Math. Anal. Appl. **244** (2000), 515-532.
- [23] K.-S. Saito, M. Kato and Y. Takahashi, On absolute norms on \mathbb{C}^n , J. Math. Anal. Appl. **252** (2000), 879–905.
- [24] Y. Takahashi, M. Kato and K.-S. Saito, Strict convexity of absolute norms on \mathbb{C}^2 and direct sums of Banach spaces, J. Inequal. Appl. 7 (2002), 179–186.