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The Tamagawa Number Conjecture of Bloch-Kato
for Dirichlet Motives at the prime 2
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This survey article is oriented to introducing the Tamagawa number conjecture along the line of the
author’s talk in Kyoto 2005, December, with special emphasis on the cohomological side.

1t is commonly believed that the Tamagawa Number Conjecture and the Iwasawa Main Conjecture
in the sense of Kato are incarnations of the same mathematical content, though the author only explains
the Tamagawa number conjecture side in this article. Note that the conjecture exposed in this article is
non-equivariant i.e. original one by Bloch-Kato, and the one generalized by Fontaine-Perrin-Riou.

The author wants to appologize that he gave the talk under too much assumption on the subject, so
he prepared this article for the beginners on the conjecture. When writing this article, he learned a lot
from the beautiful survey article due to O. Venjakob [V]. The author thanks K. Nakamura for pointing
out many mistakes in the previous version of this article.

1 Notations and Definitions.
1.1 Notaitions.

In this paper, E/Q is a coefficient number field of motives, and put O := OF, the integer ring of E. For &
rational prime p, let us denote Op := O ®2z Z,, and for a rational place v, Ey := E ®q Q.. Let us denote
Gr = Gal(F/F) for a field F. We denote by ¢ the complex conjugation, in Gq. Frobenii are chosen to
be geometric, and denote them by Fr, for a finite place v. In this paper, the reciprocity isomorphism is
fixed as follows :
rec : Gal(Q(¢n)/Q) ~ (Z/NZ)*; Frp — p mod N.

If an Op[[Gql}-module M has a Gal(C/R)-action, M+ always means HO(R, M) = {m € M| em =m]},
and it does not mean 132M. These two are in general different if 2 is not invertible in Op. For an E-
motif M over rational numbers Q, we will abbreviate the statement of the Tamagawa number conjecture
for the motif W, by TNCys. If we consider a continuous Ep-linear Gg-module My, fix a finite closed
subset of Spec Z, which includes the ramified primes of M,. Fix such one S. Then, we can regard the
Galois module M, as the étale sheaf on Spec Q. Let us denote the open immersion of generic point by
j:SpecQ < SpecZ(1/Sp]. Then, we denote in the bounded derived category of Ep-modules,

RI(Z{1/Sp], M,) := RT'(Spec Z[1/Sp], j» My),
RT(Z[1/Sp), M) := Cone| R['(Z[1/Sp], M) == €D RI(Qy, My) |.

v|Spoo
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For the Op-coefficient case, we also define it in the same way. That is, for Op-lattice T, of M, we also

define the compact supported cohomology functor RI';(Z[1/8p], T,,) in the derived category of Op-modules
bounded below, by

R ((Z[1/Sp], Tp) := Cone| RT'(SpecZ[1/Sp], T) = P RI(Qy, Tp) |-

v|Spoo

Note that for the case p = 2, we have the different definition from the Milne’s one of RI';, because
we need to compute H*(R,T}), i = 1,2. And by this consideration, this complex RI'((Z[1/Sp], T,) is
bounded both. We consider the determinant functor of Knudsen-Mumford up to sign (cf. [K][Section
2.1]). Finally, the K-groups are always Quillen’s ones.

1.2 Motives.

‘We present the definitions enough to formulate TNC for the case of pure (Chow) motives. Readers can
assume the motives always to be pure, which are explained below. See [FP] for the mixed case.

Definition 1.1 (Pure Chow Motives, cf [Schl]). Let Vi be the categories of projective schemes, smooth
over a field k. For a scheme X, we denote by 2*(X), the group generated by irreducible codimension
i cycles on X. For a morphism ¢ : X — Y in Vj with irreducible Y, we denote I'y, € Z9™X(X x Y),
the graph of Y. (If Y is not irreducible, then consider it componentwise.) Let us define CH'(X) :=
Z%(X)/ ~ror. Here, for Zy,2Z; € Z(X), Z; ~rat 2, if and only if there is a rational function f € k(X),
such that div(f) = [Z1]—[Z2]. On the group CH*(X), we can define the product structure by intersection
theory, and pull-backs and push-forwards by maps in V. Then, for pure d-dimensional X, we define
the group of r-th algebraic correspondences, Corr"(X,Y) := CH™9(X x Y). The category of Chow
motives My, is defined to be a pseudo-abelian category (i.e. exact category, which is closed under taking
images and kernels of projectors) with tensor structures, as follows. Objects are the triplets (X, p, m) for
X € Vi, p =p? € Corr®(X, X),m € Z. Morphisms are defined by

Hom, ((X,p,m), (Y,q,n)) = g Corr" ™(X,Y)p.

We also denote h*(X)(m) := (X,p:i,m), for p; is the Kiinneth projector for i-th cohomology. The Tate
object Q(r) is defined to be (Speck, id,r). This definition is compatible with the tensor structure. We
use the term E-motif, we consider these motives by extending correspondences from Q to E.

Remark 1.2. If we do not assume the standard conjecture of Grothendieck, we can not prove the
existence of projectors p;, satisfying (X, p;,0) = h*(X), which gives i-th cohomologies of X with pure
dimension d, for Weil cohomologies via realization functors, for i # 0,1,2d—1. But we can define without
any conjecture, h!(X) for any curve X over k.

We will define realizations only for pure motives. Readers can also find realization functors from the
Voevodsky’s category DMgm, (k), for any subfield k of C in [Hu.

Definition 1.8 (Realizations). Let M = h*(X)(j) be a pure motif over Q, with coefficients in E. We
define the Belti realization Mg, de Rham realization Myg, and £-adic realization Mg of M, to be the
cohomology groups

Hiing(X(C),Q(5)) ®¢ B, Hir(X/Q) ®q E, Hix(X xq @ Qu(4)) @ E-

These are E-vector apace, E-vector space, E,-module respectively, which are given by additional struc-
tures; the action of complex conjugation, the Hodge filtration, the Galois action of Go. And they are
compared by comparison maps.

Example 1.4 (Realizations of Dirichlet Motives). For the case of a Dirichlet motif, we can define them as
follows. The readers who do not like motivic treatment can consider the following system of realizations
plus the motivic cohomology, as the definition of a Dirichlet motif.
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o p-adic étale realization : _
Mp(x)(r) = py-1 [H%(Spec Q({n) ®g Q, Qp(r)) @ El-

o Betti realization :
Mp(x)(r) = py-1[{HS(SpecQ(¢{Nn) ®q C,Q(r)) 8 E], where E(r) = E-(2mi)".

o de Rham realization : ,
Mar(x)(r) := py-1 H3z(Spec Q(¢{n)/Q) ®q E, with Hodge filtlation shifted by r.

Definition 1.5 (Motivic Cohomologies). Let us consider a pure Q-motif M = h*(X)(5) over k. For this
motif, we define the rational motivic cohomology, by the following :

0 o\ _ [Homam, (M, Q) j=0, o JKaiia(X)§) 25-i#1,
Hju(X,Q(35)) = {0 lse, Hi,(X,Q()) = {CI;O(X)hom-.-:O 9 —i=1

We also abbreviate HY,(M) = H%,(X,Q(j)), and H},(M) = H},(X,Q(j)). These groups are known
to be extentions in the motivic derived category DM, (k) of Hanamura, Levine, and Voevodsky. We
further need the finite motivic cohomology. If there is a regular model X of X, which is proper over Z,

let us define )
H}(M) = H}(X,Q(j)) = Imege(K2j—i—1(¥)e"”) — Kaj—i1(X)q)-

Here, we denote by K,,(ae)g' ) the eigenspace for Adams operations ), for any k > 1. This group is not
yet interpreted as the extentions in the motivic category. For the definition without taking the model,
see [Sch2) using alterration. These groups are conjecturally finite dimensional.

Example 1.8 (The case of Dirichlet Motives). Let F = Q((x)X*™* and consider the E-motif M (x)(r)
over Q. We assume that Q(x) in contained in E. Then, we have

E r=0,x=1,
0 else,

Py-1{K2r-1(OF) ®E], r21,
0, else.

HY(M(x)(r)) = { HHM)(r) = {

The case for which the finite dimensionality is known is only for Spec OF, that is the miraculous result
of A. Borel ([Bu]). Note that for this case, we have Ky;_;(Spec OF)\¥) = Ky;_1(Spec O). See the proof
in [W][Thoerem 47], where the proof reduces to the computation in the étale cohomology, done by Soulé.

Definition 1.7 (L-function of motives). Let M be an E-motif over Q. We consider the function

L(M,5) = ][ Po(,8)7.

Here, v runs over rational primes, and we put P,(M, s) = detq,[1 - Fr, v"IM}"], where I, is an inertia
subgroup at v # £ This is conjecturally independent of the choice of ¢, which is proved at the good
reduction prime v. We call this function L-function of M, or Hasse-Weil L-function of M.

2 Statements of TNC and the Main Theorem.
2.1 Motivating Examples - Special Values Side -

The Tamagawa number conjecture of Bloch-Kato is & vast generalization of the class number formula
of Dirichlet, the Birch-Swinnerton-Dyer conjecture, and astonishingly, the Iwasawa theory. But without
difficult definitions, the idea and philosophy of the conjecture can be understood already in these formulas.
(And recall that Iwasawa Main Conjecture is also reduced to the class number formula.) So, let us see
the motivating cases first, before stating the general TNC. The difficulties for p = 2 can also be seen
below.



Example 2.1 (The Class Number Formula). The simplest case of TNC is the case of Dedekind zeta
function, that is, E = Q, M = h%(Spec F). By definition, we have

L(M, s) = [] detq,[1 — Fr, p~*|H*(Spec F 8 Q Q2)] ™
b4

= Hdetoz[l ~Frp p~%|H®(Spec OF|1/p] ®z Q. Q)"
)

The Euler factor is interpreted via Shapiro’s Lemma,

detg, (1 — Frpp~*|H(Spec OF(1/p] ®z Q, Q¢)]
=[] deto.[1 - FroN(v)~*|H®(SpecZ(1/p] ®2 Z, OF ®z Q)] = JIa-nNw)™.

vlp vlp

Here, N, is the cardinarity of the residue field of v. So, we have ¢r(s) = L(M, s). For r € Z, we define
Cr(r) = P_r*r(x) 8™ (p(s), Tr := orders of zeroes of (r at s =T.

In the case r = 0 or 1, we have the classical class number formula :

hrRp
wp

* —_ _ _ _ 2’"‘(27r)"’hpRp
¢p(1) = lim(s 1)¢r(s 1)—————-—W )

(5(0) = lim s+ ¢r(s) = -

Here, we adopt the conventions hr, Rp,wr,dr respectively to be the class number, the Dirichlet regu-
lator, the number of the roots of unity, and the absolute value of the discriminant of F. For simplicity,
consider the case of 8 = 0 and the p-part of this formula, modulo the irrational part. Then, we have by
[Mi][Chepter 2, Proposition 2.1} and using the Kummer sequence, we have

HY,(Spec Op[1/p], Zp(1)) = 0, H, (Spec Or[1/p], Zp(1))tors = lwrlp, HE(Spec Or(1/p], 2¢(1)) = |hl5-

So, we are able to see that the value (3(0)/ Ry has the p-adic interpretation via p-adic Euler characteristic
up to sign. For the case p =2, it is easy to imagine that 2" -power makes complecated in this formula to
see exactly the effect of the 2-adic part of cohomology. This consideration above is highly generalized to
the Cohomological Lichtenbaum Conjucture. See Theorem 2.16.

Example 2.2 (BSD). Let A be an abelian variety over Q. In this case, we consider M = h(A)(1).
Then, we have the conjectural formula for the special value of L(M,s) = L(A,s+1), by

* _ ,Q+RA|AV(Q)toMI'|A(Q)iON|
L*(M,0) = 7 —A—A=rs I;[Q(A)-

Here, r = rank A(Q), R4 = regulator of A(Q)/A(Q)tors, and QY is the Néron period, and cy(M ) is
Temagawa factor. The Tate-Shafarevich group III(4/Q) is conjectured to be a finite group. In Appendix,
we will see these values are interpreted via motivic cohomology groups, i.e. motivic meaning of these
values and prove that this formula and TNC for the motif M is equivalent. Note that also in this
conjectural formula, the power of the prime 2 appears, and 2 is also distinguished in this case.

If we take the irrational parts above two examples (i.e. regulators and periods) into account , it seems
natural to expect the following exact sequence.

Conjecture 2.3 (The Period-Regulator sequence). For a Q-motif M over Q, let an be the map, which
is induced by taking the c-fized part of the Hodge's comparison morphism Mp ®q C =~ Mar ®qC,

a: M} ®R — Mag ®q R/ Fil° Mar ®gR.

11
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Then, we have the following ezact sequence of finite dimensional R-vector spaces,

0 — HY(M)g < ker(an) == (HH(M*(1))p)*
2y H}(M)g - coker(an) 5 (HY(M*(1)r)" — 0.

Here, r =7, clag = cl, b = hys is colled (Beilinson) regulator map, cycle map, and hezght pairing. (—)*
1s the dual of those maps.

2.2 Preliminaries for TNC.

In the followings, we assume the motives are defined over Q, with coefficients in E. We need more
preliminaries for our result. These are important objects in the cohomological side. Let V be an E,-
linear continuous Gq-representation. We regard V as Gq,-module via Gg, — Go.

Definition 2.4 (Local Finite Cohomologies). We define the finite cohomology of Bloch-Kato by
H}(Qp, V) = ker(H*(Qp, V) = H(Qp, V ® Beris).

Here, we used the p-adic period ring of Fontaine, which is the p-adic period ring of good reduction varieties
(see [Co][p512]). Also, we define the subcomplex RT';(Qy, V') of RT(Qp, V), which sits in degree 0 and 1
(cf. Section 3.2), defined by
RE(Qp, V) = [Deria(V) “=28" Dori (V) @ Dar(V))-
This complex has the following cohomologies (cf. Section 3.2)
HO(RT(Qp,V)) = H(Qp, V), H (RT4(Qp, V) = H}(Qp, V).

For £ 5 p, we define R[';(Q¢, V) by the complex RI'#(Qy, V) = [Vt "= '=B¢ yIt), We put RT /;(Qy, V) :=
Cone| RT'4(Q,, V) — RI'(Qy, V) ] for all v. These are objects in the derived category of Q,-vector spaces.

Definition 2.5 (Global Finite Cohomologies, cf. [FP}[CHAPITRE II, p643). Let V' be an Ep-linear
continuous Gg-representation. We define & complex RT'y(Z{1/Sp], V) by the mapping fiber

RT';(Z(1/Sp), V) := Cone[ RT'(SpecZ{1/Sp}, V) » D RT/4(SpecQs, V) |[-1].
vESPpo

Using the octahedral axiom in the derived category (see [H][p21, (TR4)]) to the destinguished triangle
RT'((Z[1/Sp), V) = RT(Z{1/Sp}, V) = Byecspoo RT(Qv, V), and to the defining tiriangle above, we have
the following distinguished triangle,

RT((Z[1/Sp), Vp(r)) = RT4(Z[1/Sp], Vp(r)) = €D RT#(Qy, V(7)) @ RT(R, V(7). (#)
vESp

This cohomological complex RI'#(Z[1/S5p], V) is conjecturally closely related to the integral motivic
cohomology in the previous section, as follows.

Conjecture 2.6 (“Finite Cohomologies have Motivic Origin”). In the terminology above, we should have
the isomorphisms (cycle map and p-adic regulator )

HY(M) ®q Q, — HY(Z[1/Sp], My), H}(M)8qQp — H}(Z[1/Spl, Mp).



Proposition 2.7. Assume Conjecture 2.6 holds. Then, these maps induce the isomorphism
detg, RT'5(Z[1/Sp], Mp) ~ Ls(M) ® L§(M"(1)) ® Qp.

Here, we defined L;(M) = detg H}(M) ® detz' H}(M).

The proposition above tells us that H}(M)’s should behave like some kind of Euler chatacteristics of

M. The only example, for which Conjecture 2.6 is known until now, is the case M = h%(Spec Or)(r) by
the miraculous result of A. Borel.

In the followings, we always assume the finite dimensionality of H}(M },¢ = 0,1,2,3. Upon this
conjecture, we can define the following E-vector space, which plays the key role to formulate TNC.

Definition 2.8 (Fundamental Line). For an E-motif M over Q, let us define an E-vector space,
Af(M) = Lg(M)® Ls(M*(1)) ® detgMur/Fil°’ Map ® detz' M5.

Proposition 2.9 (6w ). For a Q-motif M, we have an identification 6oo: Af(M) ®g R ~ R, by taking
the R-determinant of the exact sequence in Conjecture 2.3. For the case of E-motif, tensor E over Q.

For the space Af(M), the following E,-module is associated, under Conjecture 2.6 and finite dimen-
sionality of H}(M)’s.

Definition 2.10 (Euler-Poncaré line). Define Agp(Mp) := detz RI(Z[1/Sp], M,), for p-adic realization
M,. Also for any Go-equivariant O,-lattice T, of M, we put the Euler Poincaré line, which is the O,-
lattice of Agp(T), by App(Ty) := detopRFc(Z[I/Sp],Tp).

Claim. This is independent of the choice of Ty, i.e. well-defined.

Proof. Let T, T,’, be two choices. By cosidering intersection of these two lattices, the claim is reduced to
showing : For a finite p-primary Go-module T, we have the equality [, |H#(Z[1/Sp],T)|""" = 1. To
prove this claim, it suffices to compute

IT, |1H*(2(1/5p], T)| 2"
Hq,veSpao [H9(Qy, T)| -1
But from the local and global Tate’s Euler characteristic formula ([Mi}{Theorem 2.8, Theorem 5.1]), we
can compute the numerator |T+|/|T}, and the inverse of the denominator, |T|-|HY(R, T)|/|T*|-|H*(R, T)|.

Here, H*(R,T) is Tate’s modified cohomology. Because T is finite, |H? (R, T)| = |H2(R,T)|. So every-
thing is canceled and we have the claim. a

Proposition 2.11. There is an isomorphism 8, : Aj(M) ®q Qp ~ App(Mp).
Proof. Use Proposition 2.7, and the distinguished triangle (). a

Finally, we can state our conjecture. The conjecture is stated by the behavior of the zeta element.

Definition 2.12 (Zeta elements of Motives). For an E-motif M, define §(M) € Ay(M) which goes
L*(M)~1 via the map .. We call it the zeta element of M.

Conjecture 2.13 (Bloch-Kato, Tamagawa Number Conjecture (=TNC)). Let M be an E-motif over Q,
fir a Gg-equivariant Op-lattice T, of M. Then, we have the followings.
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(1) (Beilinson-Deligne conjecture) 8(M) is in Ag(M), which is apriori only in As(M)®qR.
(2) (Bloch-Kato conjecture) 6,(6(M) ® 1q,) = App(Tp).

Theorem 2.14 (Main Theorem, Burns-Flach, Flach, Itakura). Let M be a Dirichlet motif with Tate
twists over Q. Then, TNCys holds also for p= 2.

Remark 2.15. If p # 2, this is deduced from the results of Burns-Greither, and Huber-Kings for M (x)(r),
which is the refined version of TNC (called ETNC). For p = 2, this is also proved recently by Flach [FI]
and Burns-Flach [BF], independently by the author [I] with slightly different method. The author needs
to remark that their result is even stronger than Theorem 2.14. The difficulty for the prime 2 is due to
the fact : Prime number 2 is the king of prime numbers, &s is said by Prof. H. Hida with his humour.

We have a striking consequence for the special values of the Dedekind zeta functions for an abelian
extention of Q. This is my original motivation for the problem.

Corollary 2.18 (Cohomological Lichtenbaum Conjecture). Let the cese E = Q, and F is an abelian
extension of Q. Put M = h%(F)(1 - k), k > 2. Then, TNC) implies the following formula :

ezl

1) = ? |HL(Op[1/p], Zp(k ’

F(l-k)== |f}é:(8F[1/P]»zp(k))1
s lHéle(oFll/plvzp(k))tonI

Remark 2.17. For the case k is even and p = 2, this is the result of Wiles via Main Conjecture, and
totally real F is the one of Kolster, via Bloch-Kato-Milnor conjecture. Other cases are new. In the survey
of Flach, this is announced for all abelian F'. But it seems to be false, because it relies on the argument
of Huber-Kings, which fails for p = 2.

for k even, F' any field,

x Rg(F), for k odd, F totally imaginary field.

3 Key Ingredients

Proof goes on along the “bootstrapping process using functional equation” by Huber-Kings. We will
introduce the key ingredient to go on the process, which is named “compatibility of the conjecture with
functional equation”. Assume in this section, M = M(x)(r) with r 2 2 for simplicity. But concerning the
matter of this section, we do not need any conjecture for the finite dimensionality of the cohomologies.

3.1 Definitions.

Definition 8.1 (e-line). Define the 1-dimensional E-vector space Ajoc(M) = detzMyr ®p dety' Mp.
We will call this space e-line of M. Eesily to guess, Ajoc(M) and Ag(M), As(M *(1)) are related by the
following Poincare duality 72, which is defined by
0FP: Ap(M) ® AH(M*(1)) ~ detgMar/ Fil® Mg ® det3* Mg/ Fil ™ Mjg ® detz' M} ® det Mp(1)*
o~ detgl Mp ® detgMyp ~ Aloc(M)' ‘

For all rational places v, let us introduce an identification 8¢, which are analogues of those for 6,.
We define the identification 61%°: Ajp.(M) ®Q R = Eqo, induced by the +-part of Hodge’s comparison
map Mp ®q C =~ Mar ®q C. For the p-adic realizations, we define

_ d . _ -
Bie: Atoc(M) ® Qp = dets, Mar 8 Qp ® detg, My o det RT(Qp, M) ® det, My,

to be the composite map of base change of determinants and the map 7, explained below. We call the
last E,-module Agp(M,) = detz, RT(Qp, Mp) ® detE: M,, the functional equation line of M at p. (This
is only my terminology, so maybe readers should not use this term as if everyone knew it.)

14
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Definition 3.2 (e-element). Let us put the element in Ayc(M)®qR, which satisfies gloc(e) = T:0L.0)

We call it e-element of M. In other words, € = 870 (6(M) ® 6*(M*(1)).
Now, we introduce the compatibility with functional equation of TNC, which is the key ingredient to
prove the whole case of TNC via bootstrapping process.

Theorem 3.3 (Huber-Kings [HK|, Burns-Flach [BF], Itakura [I]). Let M = M(x)(r) be a Dirhchlet
motif, and fix a Go-eguivariant Oy-lattice T, of M. Then, we have the followings.
(1) € is in Dyoe(M), which is apriori only in Ac(M) ®q R.

(2) 65°(e ® lg,) = X" DApp(Ty).

(8) The right hand side of (2) = Agp(Tp) ® App(Ty (1)).
Corollary 3.4. Suppose Theorem 3.3 holds for Dirhchlet motif M = M(x)(r). Then it is equivalent to
the both of TNCps and TNCpy-(3).

Proof. Consider the following diagram,

5(M) ® 5(M*(1)) € Ag(M) 85 AY(M*(1) ®Qp ——2s Bioc(M)®Qp 3 €
0 (M)8 | 05" (" (1) |
Arp(My) ®0, App(M; (1)) 8z, Qs 2 Are(Ty(r)) 8z, Qp.

First, we have by Theorem 3.3 (2), £ € Aue(M(x)(r)) goes to 2"V A gp(Ty(x)(r)). On the other hand
in the line below, we have the lattices A gp(Tp(x)(r)) ® App(Tp(x~*)(r = 1)) and 2XCVArg(Tp(x)(T)).
And Theorem 3.3 (3) shows these are equal. So, we have 5(M) goes to a generator of A ep(Tp) whenever
6(M*(1)) goes to a generator of Agp(T;(1)). 0

3.2 On the map 7.

We need to remark that, not only for the case of Dirichlet motives, we have the identification (*), for all
pure motives of proper smooth varieties, via the great results of G. Faltings and T. Tsuji. In the p-adic
world, there is an exact sequence of p-adic period rings

00— Qp — Beris (Lﬂr) Beris © BdR/ Fil° Bar — 0.

Here, ¢ is the arithmetic Frobenius on B, and pr is the composition of the natural maps Beri, <
Bar — Bar/ Fil° Byg. For the definition of these p-adic period rings and exactness of this sequence, see
[Co}[ITI Proposition 3.1). The author wants to remark that this sequence is the p-adic analogue of the
exponential sequence in the classical topology. It is reasonable to call the boundary map of this sequence,

€Xpy: DdR(Mp)/FiIODdR(Mp) —_— H} (Qp,Mp).
If M, is a de Rham representation, this is an isomorphism. So, if we consider the derived functor of
(- ®q, Mp)Se», we have an identification of et RT'#(Qp, Mp) to the determinent
exp
detg, [0 — H*(Qp, Mp) = Deris(Mp) = Deris(Mp) & Dar(M,)/Dir(Mp) — H}(Qp, M) = 0].

For the case r > 2, we have H}(Qp, My) = H'(Qp, My) (every extension of Q, by Qp(r) is cristalline for
r > 2) and Fil®Mug, = 0. So RT'4(Qp, M;) ~ RT(Qy, My). Therefore, we have the identification

np: det 5 RT(Qp, M) = det RT(Qpy Mp) = detg: Mar,p-
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4 Outline of the Proof.

Because we need a lot of pages, we will o.nly see in this section, how Theorem 3.3 (3) is proved, and give
some comments on the whole proof of TNC for Dirichlet motives.

Definition 4.1 (Basis’ of realizations). Suppose we are given a Dirichlet character x with conductor N.
Let us fix an embbeding 7o: Q(¢n) < C, which maps to {x — exp(27/N). Let us denote a basis 4., of
Te(h®(Q(¢N)) = OHem(Q)O) | the “delta function at 70”. We define tg(X) = py-10r, which is a basis
of Tp(x). We define & basis tar(x) = px-1{n of Tur(x) = px-1{O ®z Z[(n]], by taking (¥ ® 1zi¢y] as &
basis of Tar(h?(Q(¢N))) = O @ Z[(n).

Proposition 4.2 (Explicit description of e-elemant). Let N,r > 1 be a natural number, X is a Dirhchlet
character with conductor N. We put § = &, = 0 if x satisfies x(~1) = (~1)" and x is non-trivial, and
put 1 if x(~1) = (~1)"*. We put & = 0 for the case x is trivial. We denote 7(x) = Y ¢ x(0)¢%, the
Gauss sum of x. Then we have the following.

*f0,~—1 1 T~ 1\
(1) From the functional equation of L-function of x, we have E-%T(X’—}F)—Q = ZX('I)-Tg;) ({2“;2; .

(2) € € Aue(M(x)(r)) is given by & = 2X1D.N""1(r ~ 1)ltar(x) ® ta(r - &)~ in Arc(M (x)(r)).

Proof. (1) is easy computation. Note that 2X(-1) is from the differenciation by s of sin(m(s — §)/2). This
formula is also valid for the case x is trivial. (2) is from explicit computation of :2° via tyg,t5.

From this proposition, Conject;ure 3.3 (3) is reduced to showing ([HK][Proposition 1.2.5]),

eptan() ©12,) = L XN DT e cimr(e, ). (9)

Proposntion 4.3. (cf. [HK][Corollary B. 2.7] for p # 2.) Let the Galois group of Z}-extension I' =
Gal(Q(u2=)/Q), and put T, = Gal(Q(uze)/Quzn)), Gn = /Ty, The Iwasawa algebra A = lim 02[Gy)

is not regular. Put intermidiate fields k, = Qz(un2n), Kn = Q(unian) @ Q2 = [Tka, Ga.lom groups
A = Gal(Q(un)/Q), H = Gal(ko/Qz). We identify Gal(Koo/Q) = A x T', Gal(koo/Qz) ~ H x I'. Then,
we have the flollowing isomorphism

det g, RT(Qa(kan ), Ta(x)(r)) = detg, Homr, xa (Ox, (L], T2 (x)(r)).-
This isomorphism is rationally induced by an isomorphism
Byt Hl(Qz(ﬂzn),Vz(X)(T)) — Homr, xa (Ko[[T']], Va(x)(r)).
By Propos1t10n 4.3, seeing the image of tar(x) by exp, is reduced to doing the image of tar(x) by

8y © exp, in Homr, x a (O[T, Va(x)( r)). Let us choose a Zo[A]-generator n+ of Ok,, and we fix an
isomorphism evaluation at CN: noted ev(C NeY

Homr, xa(Oko[[T]], V2 (x)(r)) = Va(x)(r).
Lemma 4.4. (cf. [HK, Lemma B 3.1] ) There is an equality in Va(x)(r) :

el (o €522) an ) = Fpron 2 Ty )
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Proof. From the choice of E N, We have Zz[A]EN, ~ Ok, . Furthermore, this choice induces

Hompm xA(OKo [[FH, E2 (7‘)) o Hom(OKo {Gm], Ez (r))
~ Hom(Z3[G, x A), Ea(r)).

Then, the following diagram commutes :

85 0expy

Vir() ®0Q =% Homrwa (O[T Va(0(®) 224 v300(r)
Km ==, Homr,, (O[], ®, Va(x)(r)) —— Exa(r).

Here, the vertical maps are inclusions into the x-part summand. So, if we put e € A x G the gen-
erator corresponding to ev({xn+), we have ¢/(t2(x)(r))(g) = px-19(g). Here, & is a standard generator,

satisfying 6(g) = ;2(1') Z : : Then, the commutativity in the right square leads L(tg(x)(r))(prm) =
d(t2(x)(r))e) = ;-(lmtz(r). Hence if we see in the whole square, we have for a € Var(X),

t2(x)(r)

wytal(r)

It suffices to compute sk, 0exp,, and it is done in [HK, Lemma B.3.1], using the Kato’s explicit reciprocity
law unless m = 0 (unramified case). They do not prove it in this case, because [BK, Claim 4.8] needs the
Fontaine-Messing theory and it fails in the case p = 2. By means of a slightly different argument from
that in [HK, p460}, it suffices to check that the target of the map sk, o exp; : Ko,2 — Hom(Kp, Ex(r))
is the same as the following map :

(850 €xpg)(@) Cn) = (85, © €xP3) () (pxCr)

1 1y —
Ty~ W“Ko/oe (z-(1= 27" Fro)(1 - 27 Frg ) () ® ta(r)).
Here, K is the product of ky. The deduction of the lemma from this claim, is as follows. Let us put
Z = py—1{N,y = (n in this formula. Then, we have

(TZITﬁTTKo/Qg(de(CN)(l —x(2)277)(1 = X" @2 ) Py ()t

= (1 = X(2)2~T)N t (T)
r= DI - X2 D@

The ;P—(letz (r) cancels out in the above formula, and we can prove the Jemma. So, it is reduced to proving
the claim. But we need to omit it for the shortage of pages. O

Proposition 4.5. The equality (¢) holds. Hence, Theorem 3.3 (3) holds.

Proof. What we have to see is that

o P DN -y 2)rY
o (1-x(2)2)
So, it suffices to show ev(ZNr)(sxe') = (N")"tz(x)(r) is & generator of T3(x)(r). If we compare t3(x)(r)

with the standard generator 6 in the last lemma, sye’ differs by (N')" times a generator. Because
(2, N') = 1, we have the claim. ]

exp, ta(X)- 02 = detg,RT(Q2, To(X)(r))-
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The proof of TNC for Dirichlet motives goes on using Theorem 3.3 and Iwasawa Main Conjecture.
But there is not enough pages to give a whole proof, so we introduce its summary as follows.

TNCa(x)(r) r<0|r=0,x2)#1|=1|r=1,x2)#1|=1|7r>1
(D =F 1 ® 3 [0 0O 2 0O
xX(-)=C)" | @ @ & @ CHECX
TNCummy | — @ o 0 D —

Here, ()’ is deduced from (D via Corollary 3.4, for all i =1,2,3,4.

Remark 4.6. @ is deduced from non-critical case of Main Conjecture via Euler system argument. And
@" is deduced from critical case of Main Conjecture.

5 Appendix.

In this section, we will see the BSD conjecture for an abelian variety A over Q and the TNC for M =
h(AV)(1) is equivalent following [V]. (A" is the dual abelian variety of A.) For simplicity, assume p is
an odd prime. And we always assume that III(A/Q) is finite. T}, is the Tate module Hy (AVq,Zp), which
is a Gg-stable lattice of Mp.

Lemma 5.1. For M = h*(4Y)(1) and any £, we have the following cohomology groups.
(0) (Motivic) HY(M) = H}(M*(1)) = 0, H}(M) = A¥(Q), H}(M*(1)) = Homz(4(Q), Q).
(1) (Local) HY(QsTy) = 0, H}(Qr, Tp) = A¥(Qe)"?, HY(Qe, Ty) = 0,i # 0, 1.

(2) (Global) For i # {0,1,2,3}, H}(Z[1/Sp],Tp) = 0. For remaining i’s, HY%Z[1/Sp),T,) = 0,

H}(Z[l/Sp],Tp) ~ AV(Q)z,, H?(Z[l/Sp],Tp) ~ Homz(A(Q)sors, Qn/Zp). Hf(Z[l/Sp],T,) is de-
scribed by the following exact sequcnce,

0 — II(A/Q)[p] — H?(Z[l/Sp],Tp) - Homz(A(Q),Z,) — 0.
Proof. (0) is by definition. (1) is the result of Fontaine. (2) is implied from (1). (|

By Lemma 5.1 (0) and by definition, we have the fundamendal line of M as follows;
As(M) = det ™ AY(Q)q ® det Homz(A(Q), Q) ® det™" Hy1(4"(C),Q)* @ det Lie AY.

For further argument, we need to fix a Z-basis of AY(Q), {PY,...,P)}. If we take a standard choice
of the dual basis, we have the Z-basis of Homz(A(Q),Z),{P,...,Ps}. Similarly, choose a Z-basis of
Tg = Hy(AY(C),Z)* and Lieg AY := Homz( /2, Z) by {m,...,7a+}, and {w1,...,wg+} respectively.
Here, B/Z is the Néron model of A/Q. Then, we define a lattice of A #(M), generated by

bo(M) = detzTav ®z detzT3 ®z det7 T3 ®z detz Liezg A".

By definition, ﬂj,RA is the determinant of the maps aps,h respectively. So, if we assume the full
Birch-Swinnerton-Dyer conjecture, we have

“(rf =1 = 9T |I(A/Q)| -1
L*(M,0)! =2 Q}-RA-lAV(Q)m.l-lA(Q)m..lI:IC'(M)

e [LI(A/Q)] _
=? IA"(Q)m,I-;A(Q),mll;Ict(M) 800 (80(M) ® 1R).




So, let us put & := 2~ "|II(A/Q)||AY (Q)sors| | A(Q)sors| ~* [T, ce(M) 8. This is the zeta element up
to sign and modulo the BSD conjecture. For the second claim part of TNC, let us see the image of § (M)
by 6,. Recall that the map 6, is the composition of the following maps

As(M) ®q Q, = detz 'RT4(Q, M,) ®q, detzM;" ®q, detz' Lieg, A
o> AE‘P(Mp)- -

If we use Lemma 5.1, we have

det;:TAv ®2Zp =~ det;:AV (Q)z, ®z, detz, A (Q)p—tors
= IAV(Q)l;l'detZ,IH}(Z[l/SP]'Tp),

detz, T4 ®z Zy, = detz, Hom(A(Q), Z,)
= detz, H(Z[1/5p), Tp) ®z, detz 1II(A/Q)
=~ |LI(A/Q)lp-H}(2[1/Sp), Ty).
By Lemma 5.1 again, H}(Z[1/Sp), Tp,) ~ Homz(A(Q)tors; Qp/Zyp). So, it follows

|II(A/Q)lp
IAV (Q)tora Ip'lA(Q)tors lp

Next, we see the last two terms det;:T,;* ,detz, Liez, AV. Also if we use Lemma 5.1 (3), then we have
detz, RI'(Qp, Tp) = det;:H}(Q,,, T,). For p # 2, we have deti':IRI‘(IR, Tp) ~ T,}. Now, we obtain

det;lTAv ®z Z, ®z, det Tg ®zZp ~ -detz, RI'f(Z[1/Sp], Tp).
p P Z, P f P

6,(6 ® 1g,) = 27" [ lco (M)|;* -detz, RT+(Z[1/Sp], Ty) ®z, Q) detz RT1(Qu, Ty)-

vEPoo
Assume now £ # p. Denoting H}(Q¢,T,) = H 1(Qym, Tp), we have
detz, R £(Qe, Tp) = detz, [0 — T/ =% Tt — H}(Q,, T;) — H' U, Tp) 0% — 0] ~ Z,.

Put ¢;(M,) = |H? (Ig,Tp)fo?,f, », Which is trivial for good £. For the case £ = p, cp(Mp) = 1p+(¥p)q.. Here,
we used the identification n,: det;:RI‘ 1(Qp. T3) ® det:ip1 Liez, AV ~ Z,. Therefore, we have

6,(8 ®1Q,,)z2"”1—[%—ccf%%—%-detzpkrf(Z[l/Sp],Tp) 8z, (D detz’RT;(Qy,Ty)

~ 2" dety, RT((Z[1/Sp), Tp) = 27" App(Ty).

vESpoo

In [V][p14, 15], Venjakob proved |cu(Mp)| = |ey(M)lp, ie. cy(Mp) equals to the p-primary part of the
usual definition by the Néron model %B. Finally, we have the desired equality, which is the claim of TNC
(2) for M : 6p(6 ® 12,) = App(Tp) mod Zy.
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