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On the zeta function for the space of binary cubic
forms and distributions of discriminants of cubic ring
extensions
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1 Introduction

The aim of this note is to give a brief introduction on applications of Sato-Shintani’s
zeta functions (so called the zeta functions of prehomogeneous vector spaces) to alge-
braic number theory along the line with the author’s preprints [T'06a, T06b], which is a
generalization of Shintani’s papers [Sh72, Sh75]. For simplicity we mainly consider the
situation of [T06a). We state some of the main results of [T06b] in Section 3.

We start with the main results of this note. Let k be a number field and O the ring
of integers of k. Let Mg and Mc respectively the set of real places and complex places
of k. Further let My, = Mr L M. We put r; = #Mg, 1o = #Mc and n = [k : Q).
We denote by A, hi and (x(s) the absolute discriminant, the class number and the
Dedekind zeta function of k, respectively.

To classify cubic extensions of k via the splitting type at places of M, we introduce
the following notation. Let ko, = k ®g R. We fix a separable cubic ks-algebra Lo, =
[Tocon, Lv, where L, € {R*,R x C} if v € Mg and L, = C? if v € M. Let

. F is a cubic extension of k, F ®g R & L,
P(Looy ) = ## {(R’ F) l R is an order of F containing O, and N(Ag/o) = n. }

Here Ag/o is the relative discriminant of R/O (which is an integral ideal of O) and
N(Ago) is its ideal norm. We count pairs (R, F)) up to isomorphism. We put i(Le) =
#{v € Mg | L, = R3}. The following is a main result of [T06a).

Theorem 1.1 For anye > 0,

> Lo, ) = 3i(L°c’;+er + 3i(L:)/2 X35 +O(XFFY) (X = 00),
n<X ’

where we put

%, = (Rosur Gu(5)) - 58D By = (Resmr G(s)) - S otL/3) (F(l/s)a)".

. 2r1+'l‘2+1’ 5 . 2r1+r2Allc/2 27r
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Remark 1.2 The case k = Q is essentially known by Shintani [Sh75]. In the formula
above, X5/8-term is relevant when n = 1,2.

We explain one more theorem we consider in this note. We call a finite O-algebra
a cubic algebra if it is projective of rank 3 as an O-module. We denote by C(O) the
set of isomorphism classes of cubic algebras of O. For a fractional ideal a of k, we put
C(0,a) = {R e C(O) | A*R = a}. It is known that C(O, a) depends only on the ideal
class of a and that C(O) = [l,ccix) C(O,a) (we use the same symbol a to denote its
ideal class.) In general for a projective O-module M of rank m, the class of the ideal
isomorphic to A™ M is called the Steinitz class of M. It is known that finite generated
projective modules over a Dedekind domain are classified by the rank and the Steinitz
class. For this fact, see Milnor’s book [M71].

We count the number of C(O, a) for each a. More precisely, for each Lo, we count the
set C(O,a, L) = {R€C(0,a) | R®z R = L}. An interesting phenomenon we prove
in the case k is a quadratic field is that, the Steinitz class is not uniformly distributed in
the X%6-term if Cl(k) contains a non-trivial 3-torsion element. Let #(Aut (R)) be the
cardinality of the automorphisms of R as an O-algebra and hg’) the number of 3-torsions
of Cl(k) (which is a power of 3.)

Theorem 1.3 For any € > 0,

Y 1 1 % BAD e .,
_— = (] 4 ——— )_X+T(Cl)——-———X +O( ad )
# ( 1(Loo )+T (Lo)/2 2
REC(OaLoo) (Aut (R)) 3i(Leo)+r2’ b 3/, X
N(Ag/0)SX

as X — o0o. Here for a € Cl(k), we put 7(a) = 1 if there exists b € CI(k) such that
a = b3 and 7(a) = 0 otherwise.

Our approach to prove the theorems above are the use of the zeta function theory of
prehomogeneous vector spaces founded by Sato-Shintani [SS74]. In proving density the-
orems, this is an alternative approach to using reduction theory. These two approaches
are both useful and have different strength. One advantage of zeta function theory
is that we can obtain a sharp error term estimate because our zeta function satisfies
the functional equation. For the reduction theory approach, see [DH71] or [B05], for
example.

2 The space of binary cubic forms and the zeta func-
tion of Sato-Shintani

We first prove Theorem 1.3 and after that Theorem 1.1. We first sketch the proof of
Theorem 1.3 and next of Theorem 1.1. Theorem 1.3 is proved by studying the space of
binary cubic forms (GL,, Sym®Aff?) both algebraically and analytically. The ideal class
group Cl(k) naturally arises from both parts.

Let G be the general linear group of rank 2 and V the space of binary cubic forms;

G:= GLZ,
V= {z(u,v) = au® + bu*v + cuv® + dv® | a,b,c,d € Aft}.
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We define the action of G on V by

(9 2)(we) = gz o)

The twist by det(g)‘ is to make the representation faithful. For T = z(u,v) = aud +
buv + cuv? + dv® € V, let P(z) be the discriminant;

P(z) := b*c® — dac® — 4b°d + 18abed — 27a’d>.
Then we have P(g- z) = (det g)>P(z).

2.1 Parameterizations of cubic algebras (algebraic part)

We consider a group theoretical parameterization of C(O, a), which is a natural gener-
alization of Delone-Faddeev’s correspondence [DF64] over Z.

Definition 2.1 We put

Vk)DV,:=a000a ' @a™?
= {a® + buv + cw? +dv® la€a,beO,ceat dea?),

X
,G(k)DG,,::(f_)l g) :.,{(p q)|pe(')qea,rea‘l,se(')ps—qreox}

r s
Then Gq - V3 C V.
Remark 2.2 We can regard V; as the space of cubic maps from O®a to a = /\2(0®a).

Proposition 2.3 (1) There exists the canonical bijection between C(O, a) and G,\Va
making the following diagram commutative.

Ga\Vu —C(0,a)
lP 1 discriminant

((")")z\u‘2 _xd) {integral ideals of O}.

Here, the right vertical arrow is to take the discriminant, and the low horizontal
arrow is given by multiplying a®>. Moreover, this diagram is functorial with respect
to the ring homomorphism of Dedekind domains. :

(2) For each R € C(O,a), we denote by zr the corresponding element in Go\Va. Then
Aut (R) = Stab(Ga;zr) i= {7 € Ga | 7+ Tr = Zr}.

Construction of the map For each R € C(O, a), the binary cubic form
zr: R/O — N(R/O),  §r—AE

can be regarded an element of G,\V;, since R € C(O, a) implies R/O = O @ a. This
map R — g gives the desired bijection. For the proof see [T06a, Proposition 3.6].
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2.2 Zeta function (analytic part)

The representation (G,V) is an example of what is called the prehomogeneous vector
space and for such a representation, M. Sato and Shintani [SS74] associated a zeta
function. This zeta function is a Dirichlet series satisfying certain functional equation.
We recall the adelic version of the zeta function for (G, V). Let V' = {z € V | P(z) # 0}.
Let A be the adele ring of k. We denote by AV (A)) the space of Schwartz-Bruhat
functions on V(A). Let Cl(k)* be the set of characters of Cl(k). Via the canonical

surjection A% /k* — A*/kXk*O* & Cl(k), we regard elements of Cl(k)* as characters
on A*/k.

Definition 2.4 For ® € #AV,), s € C, w € Cl(k), we define

Z(®,s,w) :=/ w(det g)| det g|3° Z ®(g-z)d
G(A)/G(k) zeV' (k)

and call it the global zeta function.

We consider the meaning of this function. As usual, let O = Z®z0 where Z = 1,2,

and Af = o ®o k. Recall that we put ko, = k ®g R. For our purpose, we assume the
following.

Assumption 2.5 We assume ® € AV (A)) to be of the form & = $o @ Py, where Py is

the characteristic function on V(@) C V(As¢), and ® is an arbitrary Schwartz-Bruhat
function on V (keo).

For a fractional ideal a, we use the same symbol a to denote the corresponding finite
idele, which is well defined up to O*-multiple. That is, a € AX(C A") is characterized

by @ = kN a®. It is known that the double coset space G(keo)G (O)\G(A)/G(k) is
represented by Cl(k). More precisely, we have

= ] G(kx)G(O) ( )G(k).

aeCl(k)

According to this decomposition, we define the partial zeta integral by

Z4(®,5) := |detgl3 > ®(g-z)dg.

./G(km)a(é)((l, IOV 2V (k)

Then since w(det(G(keo)G(O)G(K))) = w(kXO*k*) = 1, we have

Z(@,sw)= Y w(6)Z(®,s).

aeCl(k)

Definition 2.6 (1) Let To, be the set of all possible separable cubic algebras Loo of the
form Tl,em. Lo Then set of orbits G(keo)\V'(keo) corresponds bijectively to Too.
We denote by Vi, C V'(ke) the G(koo)-orbit corresponding to L. (This should



not be confused to the set of Ly rational points of V.) We deﬁne the local zeta
function at My, by

21 (oo, 8) = / 1P (9002) 1% B (o0 - )00
G(kso)

where x is an arbitrary element of Vi . Here the invariant measure dgo on G(koo)
is chosen so that dg = dgsdg., where dgs is the invariant measure on G(As) giving
the volume of G(O) one.

(2) We define

(#Aut (R))!

ELotis) = D SRRy

ReC(0,a,Loo)

Proposition 2.7 We have

@ 8) Z ZLOO 1S )é(Loo,a '3)

Loo €70

Let G(D)e = (39)7'G(D)(39) and ®q(z) = (([1, z). Then since ®, is G(O)a-
invariant, | det(G(O).G(k))|a = 1 and |a|a = N(a)~?, we have

Zu(®,5) = N(a)2 / ) et goel® S Ba(geo - 2)dgooder.
Glkoo)G(0a)/G(k)NG (koo )G(O)a zeV' (k)
We can easily see that, as a subset of V (k) or G(keo),
V)N (39 V(0) =V,
G(k)N(§3)7G(0) (§3) = G..
Hence
28,0 =N@™ [ [dotgult Y Olgw 2w [ da
Glkoo)/Ga z€VanV' (k) G(O)a

Since G(A¢) is unimodular, fG(@), dgr = fG(@) dg: = 1. Now by the usual unfolding
method we have

Stab(Gg; z)) ™!
w3 s ¥ G

Looc€To 2€Ga\(VaNVi)

Now the proposition follows from Proposition 2.3.
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2.3 Analytic properties of the zeta function and Tauberian the-
orem

Let {a,} be a positive sequence. We put

AX) = Z Qn, a(s) = Zann_s.

n<X n>1

Then Tauberian theorem states that, from analytic properties of a(s) as a complex
function, we can obtain some informations on the asymptotic behavior of A(X) as X —
oo. If a(s) is the Dirichlet series £(Lyo, a; 8) in Definition 2.6 then A(X) is nothing but
the left hand side of Theorem 1.3. Hence we can reduce the proof of Theorem 1.3 to
the analysis of Z(®, s,w). Since V is a vector space, we can use the Fourier analysis to
study the zeta functin. The analytic properties of Z(®, s,w) was studied extensively by
Shintani [Sh72] when k = Q with the trivial character and later generalized by Wright
[Wr85] using adelic language. For w € Cl(k)*, let §(w) = 1 if w is trivial and §(w) =0
otherwise.

Theorem 2.8 (Shintani [Sh72], Wright [Wr85]) The zeta function Z(®,s,w) can

be continued holomorphically to the entire C except for possible simple poles at s =
0,1/6,5/6,1. We have

Res,—; Z(®, s,w) = 6(w)E.(®),  Rese—s/s Z(®, s,w) = 6(w®)Ty(®)
for appropriate invariant distributions ., Ly. Also it satisfies the functional equation
Z(®,s,w) = Z(®,1 — s,w™?)
where ® is an appropriate Fourier transform of ®.

For the definitions of ¥,, ¥, and 5, see [Wr85]. From this theorem, combined with
archimedean local theory, we know the functional equation and residue formula of

£(Loo, 0; 8).

Corollary 2.9 (Datskovsky-Wright [DW86]) The Dirichlet series £(Lo,;8) can
be continued holomorphically to the whole complez plane except for a simple pole at
s =1 and a possible simple pole at s = 5/6. The residues are (1+37(L=)""2), /hy and
7(a)(5/6)B; 3~ (Lee)/ 2(h§c3) /hy), respectively. Also it satisfies functional equation of the
form

£(Leo, @31 — 8) = (F(S)ZI‘(S + %)F(S —~ %))n Y R, e ™ )E\(s),
A

where A is a finite set, Py(x,y) are polynomials in x,y with degrees do not ezceed 2n,
and €,(s) are certain Dirichlet series with the absolute convergence domains Re(s) > 1.

Now Theorem 1.3 follows from Sato-Shintani’s Tauberian theorem [SS74] which is a
modification of Landau’s Tauberian theorem [L15].
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2.4 Contributions from “reducible” algebras

The step from Theorem 1.3 to Theorem 1.1 is to separate the “reducible” algebras i.e.,
R € O with R® k not fields. Let us define

GDB:= {(: S)}, VO W = {v(bu® + cuv + dv?) | b,c,d € Aff}.
Then (B, W) is also a prehomogeneous vector space. Shintani [Sh75] showed in the
case k = Q that the representation (B, W) parameterizes the reducible algebras. We
see in [T06a, Section 3| that it is true for a general number field. We briefly recall the
argument. Let a, ¢ be non-zero fractional ideals of k.

Definition 2.10 We put

_Jf(t 0 x —1,-2
B(k)DBa,c—{<u p)lt,peo JueEa e },

W(k) D Wae={y |y € c,gp € a7 e ™, g € a2},

Then W, is B, c-invariant.

Let V' = {z € V, | R, ® k is not a field} where we denote by R, € C(O,a) the
element corresponding to z € V,. We fix a.

Proposition 2.11 For each c, there exists the canonical map Yo Ba\Wa — Gg\Vr®
which preserve the value of P up to (O*)%-multiple. Moreover,

I Bee\Wae — Ga\Vi™
ceCl(k)

is “almost bijective”.

For the precise meaning of “almost bijective”, see [T06a, Proposition 3.12]. We give the
construction of 1,,. We fix ¢,8 € k such that ga~! + sO = ¢. Then, ¢q € ac, s € ¢,
and also there exist p € ¢~ 1,7 € a~ ¢! such that ps — gr € O*. We can choose such
elements because O is a Dedekind domain. We put g, = (27) € G(k). We define
Yot Woe — V::da Y Ga,y-

We see by computation that g LGagac N B(k) = B,.. This shows that the map Ja,c
induces a well defined map Yac: Ba\Wa, — Ga\Vre. It turns out that this map does
not depend on the choice of gq .

Hence the same analytic process yields the asymptotic formula of reducible algebras.
The global theory for (B, W) was done by Shintani [Sh75)] and the author [T06a, Section
4] gave an adelic version of Shintani’s treatment. By subtracting this from the formula
of Theorem 1.3, we have Theorem 1.1. For details, see [T06a).
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3 Splitting conditions at non-archimedean places

In Theorems 1.1, 1.3 we classify C(©) via the splitting type at infinite places. Recently
the author [T06b] consider the same problem under imposing finite number of splitting
conditions at non-archimedean places. We state some of its main results here.

Let k be a general number field. We put n = [k : Q]. For a place v of & let k, be the
completion of k at v. Let T be a finite set of places. Take a separable cubic algebra L,
of k, for each v € T and let Lt = (L,)yer the T-tuple. We let

ird . F = R®p k is a cubic field extension of k, and
€O, Lr)™ = {RGC(O) l F®pk,2L,forallveT.

We define

,'91rd( ) — Z #(Aut (R))—l

ReC(O,Lr)ir N(Brso)’
hLT(X) = #{R S C(O, LT)ird | N(AR/o) < X}
Theorem 3.1 There exist constants Ay, and B, described explicitly such that;

(1) ¥ (s) has meromorphic continuation to the whole complez plane which is holomor-

phzc for Re(s) > 1/2 except for simple poles at s = 1 and 5/6 with residues AL, and
B, respectively, and

(2) for any e > 0,
hip(X) = AL, X + (5/6)71B,, X5/6 + O(X&HY) (X — o0).

Note that the X*6-term in the formula is relevant only when n = 1,2. We give the
formulae of ;. and B,.. We denote by M; the set of all finite places. For v € M,
let g, be the order of the residue field of k,. We put 0r, = #(Aut k,-aigebra(Lv)). For a
non-archimedean local field K with the order of residue field g, we define its local zeta
function by (x(s) = (1 — ¢~*)"1. The cubic algebra L, is in general a product of local
fields. We define ¢z, (s) as the product of the zeta functions of those fields. The relative
discriminant Ay, x, is also defined as the product of relative discriminants of those local
fields. We denote by Ay, its norm. We put io(Lr) = #{v € Mg | L, = R*}. We give
the value in case of T D M.,. The general case is easily obtained from this by taking a
suitable summation.

Theorem 3.2 When T D Mo, the constants Ar,. and By, are given by

A, = Rese-1 Ck(s H av(L )s

o1 +T2+131m (LT)+7'2
veTNM;

_ Resy=1 G(s) - e(1/3) 3r(1/3)*\"
Lr = 6Allc/2(\/—3_)r2—im(LT) ( o ) H Bu(Lw),

veTNM;



where

au(Ly) = (1-¢;1-¢? 65181 (L, (2)

a0 -g o ¢ @
_0-a@"-gh i G(1/3)(5/3)
Bulle) = Ry Ty AR ), (1073)

Let v € M. We see by computation that ) ; a,(L,) = Y., Bu(Ly) = 1 where
L, runs through all the separable cubic algebras of k,. Hence a,(L,) and 3,(L,) give
the proportion of the contributions of cubic algebras with local splitting type L,. The
computation of a,(L,) is reduced to the determination of certain orbital volume in a
v-adic vector space. The meaning of 3,(L,) is more subtle and the computation requires
a careful local theory.

4 Quartic case

Let V = (Sym2Aff®)* ® Aff? be the space of pairs of ternary quadratic forms. The group
G = GL3 x GLj naturally acts on V as a linear representation. It is known that there
exist a non-zero relative invariant polynomial P in V and V' := {z € V | P(z) # 0} is
a single orbit over algebraically closed fields. For any field k, Wright and Yukie [WY92]
showed that the set of non-degenerate rational orbits G(k)\V’(k) corresponds bijectively
to the set of separable quartic algebras of k. Hence we can regard this representation
as the quartic analogy of the space of binary cubic forms, thus it is naturally to carry
out the similar program to find the density theorems of distributions of discriminants of
quartic algebras or analytic properties of the Dirichlet series counting quartic algebras.

As for the algebraic part, Bhargava [B04] recently discovered that the set of integral
orbits G(Z)\V (Z) corresponds bijectively to the set {(R, S)} where R is a quartic ring
and S is a cubic resolvent ring of R over Z. (For the notion “resolvent ring” due
to Bhargava, see [B04].) This correspondence has a direct generalization to over a
Dedekind domain as we did for the cubic case in Proposition 2.3. The proof will be
appear in elsewhere. Also there are three pairs (P;, W;) parameterizing the “reducible”
algebras, where P, are parabolic subgroups and W; their invariant subspaces.

For the analytic part, the global theory of the quartic case was achieved by Yukie
[Y93] with large amount of technical computations. The remaining important problem
is the global theory for those (P;, W;). We hope this to carry out in the future.

Acknowledgment. I would like to heartily thank for Professor T. Ikeda for giving me
the opportunity of a presentation in this workshop.
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