
PROOF OF DOUBLE SHUFFLE RELATIONS FOR
-ADIC MULTIPLE ZETA VALUES
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ABSTRACT. We give a review of the proof of double shuffle rela-
tions for p–adic multiple zeta values in [BF]. Our techniques are a
development of a higher dimensional version of Deligne’s tangential
basepoint [D1] and a detection of local behavior of two (and one)
variable p–adic multiple polylogarithms around special divisors.

$0$ . INTRODUCTION

In this paper we will prove a set of formulas, known as double shuffle
relations, relating the p–adic multiple zeta values defined by the au-
thor in [F1]. These formulas are analogues of formulas for the usual
(complex) multiple zeta values. These have a very simple proof which
unfortunately does not translate directly to the p–adic world.

Recall that the (complex) multiple zeta value $\zeta(\mathrm{k})$ , where $\mathrm{k}$ stands
for the multi-index $\mathrm{k}=$ $(k_{1}, \ldots , k_{\mathrm{m}})$ , is defined by the formula

(0.1)
$\zeta(\mathrm{k})=\sum_{n_{\mathrm{t}}\in \mathrm{N}}\frac{1}{n_{1}^{k_{1}}\cdots n_{m}^{k_{m}}}0<n_{1}<\cdots<n_{m}$

,

The series is easily seen to be convergent assuming that $k_{m}>1$ .
Multiple zeta values satisfy two types of so called shuffle product

formulas, expressing a product of multiple zeta values as a linear com-
bination of other such values. The first type of formulas are called
series shuffle product formulas (sometimes called by harmonic product
formulas). The simplest example is the relation
(0.2) $\zeta(k_{1})\cdot\zeta(k_{2})=\zeta(k_{1}, k_{2})+\zeta(k_{2}, k_{1})+\zeta(k_{1}+k_{2})$ ,

which is easily obtained from the expression (0.1) by noting that the
left hand side is a summation over an infinite square of pairs $(n_{1}, n_{2})$

of the summand in (0.1), and that summing over the lower triangle
(respectively the upper triangle, respectively the diagonal) gives the
three terms on the right hand side. Every series shuffle product formula
has this type of proof.
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The second type of shuffle product formulas, known as iterated in-
tegral shuffle product formulas, is somewhat harder to establish and
follows from the description of multiple zeta values in terms of multiple
polylogarithms. More precisely. The one variable multiple polyloga-
rithm is defined by the formula

(0.3)
$\mathrm{L}\mathrm{i}_{\mathrm{k}}(z)=\sum_{n_{i}\in \mathrm{N}}\frac{z^{n_{m}}}{n_{1}^{k_{1}}\cdots n_{m}^{k_{m}}}0<n_{1}<\cdots<n_{m}$

,

near $z=0$. It can then be extended as a multi-valued function to
$\mathrm{P}^{1}(\mathrm{C})-\{0,1, \infty\}$ . We clearly have the relation $\lim_{zarrow 1}\mathrm{L}\mathrm{i}_{\mathrm{k}}(z)=\zeta(\mathrm{k})$ .

Multiple polylogarithms can be written using the theory of iterated
integrals due to Chen [Ch]. In other words, they satisfy a system
of unipotent differential equations. This gives an integral expression
for multiple polylogarithms. By substituting $z=1$ and splitting the
domain of integration in the right way we obtain the iterated integral
shuffle product formulas, a simple example of which is the formula
(0.4)

$\zeta(k_{1})\cdot\zeta(k_{2})=\sum_{i=0}^{k_{1}-1}\zeta(k_{1}-i, k_{2}+i)+\sum_{j=0}^{k_{2}-1}\zeta(k_{2}-j, k_{1}+j)$.

In [F1] the author defined the p–adic version of multiple zeta val-
ues and studied some of their properties. The defining formula (0.1)
can not be directly used padically because the defining series does not
converge. Instead, one must use an indirect approach based on the the-
ory of Coleman integration [Co, Be]. Coleman’s theory defines p-adic
analytic continuation for solutions of unipotent differential equations
“along Frobenius” Coleman used his theory initially to define p-adic
polylogarithms. In [F1] Coleman integration was used to define one
variable p–adic multiple polylogarithms. Taking the limit at 1 in the
right way one $\mathrm{o}\mathrm{b}\mathrm{t}\mathrm{a}_{\wedge}^{\mathrm{i}}\mathrm{n}\mathrm{s}$ the definition of p–adic multiple zeta values. It
is by no means trivial that the limit even exists or is independent of
choices, and this is the main result of [F1].

Given their definition, it is not surprising that for p–adic multiple zeta
values it is the iterated integral shuffle product formulas that are easier
to obtain p–adically. In [F1] the series shuffle product formulas were not
obtained. The purpose of this work is to prove (Theorem 3.1) these for-
mulas, and as a consequence the double shuffle relations (Corollary 3.2)
for p–adic multiple zeta values.
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To prove the main theorem it is necessary to use the theory of Cole-
man integration in several variables developed by the first named au-
thor in [Be]. The reason for this is quite simple-If one tries to replace
multiple zeta values by multiple polylogarithms in the proof of (0.2)
sketched above one easily establishes the formula
(0.5) $\mathrm{L}\mathrm{i}_{k_{1}}(z)\mathrm{L}\mathrm{i}_{k_{2}}(w)=\mathrm{L}\mathrm{i}_{k_{1},k_{2}}(z, w)+\mathrm{L}\mathrm{i}_{k_{2},k_{1}}(w, z)+\mathrm{L}\mathrm{i}_{k_{1}+k_{2}}(zw)$ ,

which is a two variable formula. It seems impossible to obtain a one
variable version of the same formula. The proof of the main theorem
thus consists roughly speaking of showing that (0.5) extends to Cole-
man functions of several variables and then taking the limit at $(1, 1)$ .

Since taking the limit turned out to be rather involved in [F1], we
opted for an alternative approach, which was motivated by a letter of
Deligne to the author [D2]. Deligne observes that taking the limit at
1 for the multiple polylogarithm can be interpreted as doing analytic
continuation from tangent vectors at $0$ and 1, using the theory of the
tangential basepoint at infinity introduced in [D1]. To analytically
continue (0.5) and obtain the series shuffle product formula we analyze
a more general notion of tangential basepoint sketched in $1\mathrm{o}\mathrm{c}$ . $\mathrm{c}\mathrm{i}\mathrm{t}$ . and
examine among other things its relation with Coleman integration.

To give a precise meaning of the limit value to $(1, 1)$ , we work over
the moduli space $\mathcal{M}_{0,5}$ of curves of $(0,5)$-type and the normal bundles
for the divisors at infinity $\overline{\mathcal{M}_{0,5}}-\mathcal{M}_{0,5}(\overline{\mathcal{M}_{0,5}}$ : a compactification of
$\mathcal{M}_{0,5})$ . Two variable p–adic multiple polylogarithms are introduced.
They are Coleman functions over $\mathcal{M}_{0,5}$ . Their analytic continuation to
the normal bundle will be discussed. In particular, we will relate the
behavior of the analytic continuation of two variable multiple polylog-
arithm to a normal bundle with one variable multiple polylogarithm
and then we get p–adic multiple zeta values as “special values” of two
variable multiple polylogarithms.

1. $\mathrm{C}\mathrm{o}\mathrm{L}\mathrm{E}\mathrm{M}\mathrm{A}\mathrm{N}’ \mathrm{S}p$-ADIC INTEGRATION AND TANGENTIAL BASEPOINTS

We recall some definitions and properties of Coleman functions and
tangential base points as developed in [Be],[B2] and [BF]. We fix a
branch of p–adic logarithm $\log$ : $\mathrm{Q}_{p}^{\mathrm{x}}arrow \mathrm{Q}_{p}$ with value $a\in \mathrm{Q}_{p}$ at $p$ for
the rest of this paper.

Let $X$ be a smooth variety over $K$ , a finite extension of $\mathrm{Q}_{p}$ . Let
$NC(X)$ denote the category of unipotent flat vector bundles on $X$ , i.e.
a vector bundle together with a flat connection on it such that it is
an iterative extension of trivial vector bundles together with a trivial
flat connection. This category is a neutral tannakian category (for the
basics see[DM] $)$ and any point $x\in X(K)$ defines a fiber functor $\omega_{x}$ from
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$NC(X)$ to the category $Vec_{K}$ of finite dimensional $K$-vector spaces
(cf. Dl]). In V, Vologodsky has constructed a canonical system (after
fixing a branch of $p$-adic logarithm) of isomorphism $a_{x,y}^{X}$ : $\omega_{x}arrow\omega_{y}$ for
any pair of points in $X(K)$ . The properties of these isomorphism are
summarized in $[\mathrm{B}2]\S 2$ . Following [B2], an abstract Coleman function
is a triple $(M, s, y)$ where $M\in NC(X),$ $s\in \mathrm{H}\mathrm{o}\mathrm{m}_{\mathcal{O}_{X}}(M, O_{X})$ and $y$ is
a collection of $y_{x}\in M_{x}$ for all $x\in X(L)$ for any finite extension $L$ of
$K$ , where $M_{x}$ is the fiber of $M$ over $x$ and is an $L$-vector space defined
by the fiber functor $\omega_{x}$ : $NC(X_{L})arrow Vec_{L}$ .

This data must satisfy:
$\bullet$ For any two points $x_{1},$ $x_{2}\in X(L)=X_{L}(L)$ we have $a_{x_{1},x_{2}}^{X_{L}}(y_{x_{1}})=$

$y_{x_{2}}$ .
$\bullet$ For any field homomorphism $\sigma$ : $Larrow L’$ that fixes $K$ and

$x\in X(L)$ we have: $\sigma(y_{x})=y_{\sigma(x)}$ .
There is a natural notion of morphism between the abstract Coleman
functions. The connected component of an abstract Coleman function
is called a Coleman function. A Coleman function is also interpreted
as a function on $X(\overline{K})$ by assigning to $x$ the value $s(y_{x})$ . This is indeed
a locally analytic function. We will use both approaches for Coleman
functions, i.e. the interpretation as a triple $(M, s, y)$ as above and the
interpretation as a locally analytic function, in this paper. The set of
Coleman functions on $X$ is a ring which we denote by Co1 $(X)$ . Here
$a\in \mathrm{Q}_{p}$ is the value of the chosen branch of the p–adic logarithm at $p$ .

Let $X$ be a smooth $O_{K}$-scheme and $D= \sum_{i\in I}D_{i}$ be a divisor with
relative normal crossings over $\mathcal{O}_{K}$ , with $D_{i}’ \mathrm{s}$ smooth and irreducible
over $\mathcal{O}_{K}$ . Let $J$ be a nonempty subset of $I$ . In [BF] a tangential
morphism ${\rm Res}_{D,J}$ : $NC((X-D)_{K})arrow NC(N_{J}^{00})$ was constructed.
Here $N_{J}^{00}$ is the normal bundle of $D_{J}= \bigcap_{j\in J}D_{j}$ minus the normal
bundles of $D_{J-\{j\}}$ for all $j\in J$ (the normal bundle $N_{\emptyset}$ is considered as
the zero section of of $N_{D_{J}}$ ), and then restricted to $D_{J}- \bigcup_{j\not\in J}(D_{j}\cap D_{J})$ .
The construction is given as follows (cf. $1\mathrm{o}\mathrm{c}$. $\mathrm{c}\mathrm{i}\mathrm{t}.$ \S 3): For each $j\in J$

consider the valuation $v_{j}$ on $K(X)$ associated with the divisor $D_{j}$ . Let
$\mathcal{O}_{X}(D^{-1})$ be the localization of $\mathcal{O}_{X}$ at $D$ . There exists a multi-filtration
$F_{J}$ on $O_{X}(D^{-1})$ , indexed by tuples $\chi=(\chi_{j}\in \mathrm{Z})_{j\in J}$ , such that $F_{J}^{\chi}$ is the
$\mathcal{O}_{X}$-module generated by { $f\in O_{X}(D^{-1}),$ $v_{j}(f)\geq\chi_{j}$ for all $j\in J$}.
It is easy to see that Spec$(Gr_{J}\mathcal{O}_{X}(D^{-1}))$ is precisely $N_{J}^{00}$ . Suppose
we have a connection V : $Marrow M\otimes_{\mathcal{O}_{X}}\Omega_{X}^{1}(\log D)$ with logarithmic
singularities along $D$ . We give $\Omega_{X}^{1}(D^{-1})=\Omega_{X}^{1}(\log D)\otimes \mathcal{O}_{X}(D^{-1})$

the induced filtrations from the filtration on $\mathcal{O}_{X}(D^{-1})$ . It is easy to
see that the differential $d$ preserves the filtration. Now $M(D^{-1})=$

$M\otimes \mathcal{O}_{X}(D^{-1})$ and $M\otimes\Omega_{X}^{1}(D^{-1})$ have the induced filtrations. It follows
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that the extended connection V : $M(D^{-1})arrow M\otimes\Omega_{X}^{1}(D^{-1})$ respects
the filtration. The connection ${\rm Res}_{D,J}(M)$ is the graded quotient of this
connection.

Let $\kappa$ be the residue field of $\mathcal{O}_{K}$ . It was shown in [BF] that if the
Robenius endomorphism of $(X, D)_{\kappa}$ locally lifts to an algebraic endo-
morphism of (X, $D$) then this morphism respect the action of the Frobe-
nius endomorphism. Indeed by [S], [CLS] the categories $NC(X-D)$
and $NC(N_{J}^{00})$ are isomorphic to the categories of the unipotent isocrys-
tals $NC^{\uparrow}((X-D)_{\kappa})\otimes K$ and $NC^{\uparrow}((N_{J}^{00})_{\kappa})\otimes K$ on the reductions
$(X-D)_{\kappa}$ and $(N_{J}^{00})_{\kappa}$ and therefore admit a natural action of the
Robenius endomorphism. Choose a point $\overline{t}\in(N_{J}^{00})_{\kappa}(\overline{\kappa})$ which is the
reduction of a point $t\in N_{J}^{00}(L)$ for some extension $L$ of $K$ . The point
$\overline{t}$ defines a fiber functor $\omega_{\overline{t}}$ from $NC^{\uparrow}((X-D)_{\kappa})$ to $Vec_{L}$ , which is
Frobenius invariant if we take a high power of the Frobenius. Then
following [Be] for any point $\tilde{x}\in(X-D)_{\kappa}(\overline{\kappa})$ , which is the reduction
of $x\in N_{J}^{00}(L)$ , we get a canonical Frobenius invariant isomorphism
$\overline{a}_{\overline{x},\overline{t}}$ : $\omega_{\overline{x}}arrow\omega_{\overline{t}}$. The above categorical equivalence gives an isomor-
phism $a_{x,t}$ : $\omega_{x}arrow\omega_{t}$ . Now for any $x’\in(X-D)(L)$ and $t’\in N_{J}^{00}(L)$

we define :
$a_{x’,t^{l}}=a_{x’,x}\circ a_{x,t}\circ a_{t,t’}$ .

This is independent of the choice of $x$ and $t$ . Using this we get a
way (developped in [BF] \S 4) to extend a certain type of Coleman
functions (which were called Coleman functions of ‘algebraic origin’
in $1\mathrm{o}\mathrm{c}$ . $\mathrm{c}\mathrm{i}\mathrm{t}.$ ) $(M, s, y)$ on $X-D$ to a Coleman function $(M’, s’, y’)$ on
$N_{J}^{00}$ as follows. Let $M\in NC(X-D)$ and $y$ be a compatible system
over $X-D$ as before. The morphism $s$ : $Marrow \mathcal{O}_{X}$ induces a mor-
phism $s_{D}$ : $M(D^{-1})arrow \mathcal{O}_{X}(D^{-1})$ which we assume to be compatible
with the filtration $F_{J}$ . Then the Coleman function $(M’, s’, y’)$ is de-
fined: $M’={\rm Res}_{D,j}(M)$ as described above and the morphism $s’$ is
$Gr(s_{D})$ : ${\rm Res}_{D,J}Marrow O_{N_{J}^{00}}$ . The section $y’$ will be a collection of $y_{t}’$

$(t\in N_{J}^{00}(L))$ with $y_{t}’=a_{x,t}(y_{x})$ for some $x\in(X-D)(L)$ .

2. THE ANALYTIC CONTINUATION

We introduce two (and one) variable p–adic multiple polylogarithms
and discuss their analytic continuation to the normal bundle of the
divisor $0$ the Deligne-Mumford compactification of the moduli space
$\mathcal{M}_{0,5}$ of genus $0$ curves with 5 distinct marked points.

The moduli space $\mathcal{M}_{0,5}=\{(P_{i})_{i=1}^{5}\in(\mathrm{P}^{1})^{5}|P_{i}\neq P_{j}(i\neq j)\}/PGL(2)$

is identified with $\{(x, y)\in \mathrm{A}^{2}\}\backslash \{x=0\}\cup\{y=0\}\cup\{x=1\}\cup\{y=$

$1\}\cup\{xy=1\}$ . This identification is given by sending $(x, y)$ to 5
marked points in $\mathrm{P}^{1}$ given by $(0, x, 1, \frac{1}{y}, \infty)$ . The symmetric group $S_{5}$
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acts on $\mathcal{M}_{0,5}$ by $\sigma(P_{i})=P_{\sigma^{-1}(i)}(1\leq i\leq 5)$ for $\sigma\in S_{5}$ . Especially for
$c=(1,3,5,2,4)\in S_{5}$ its action is described by $x \vdasharrow\frac{1}{1}-xy-R,$ $y\vdash\Rightarrow x$ .

The Deligne-Mumford compactification of $\mathcal{M}_{0,5}$ is denoted by $\overline{\mathcal{M}_{0,5}}$ .
This space classifies stable curves of $(0,5)$-type and the above $S_{5}$-action
extends to the action on $\overline{\mathcal{M}_{0,5}}$ . This space is the blow-up of $(\mathrm{P}^{1})^{2}(\supset$

$\mathcal{M}_{0,5})$ at $(x, y)=(1,1),$ $(0, \infty)$ and $(\infty, 0)$ . The complement $\overline{\mathcal{M}_{0,5}}-$

$\mathcal{M}_{0,5}$ is a divisor with 10 components: $\{x=0\},$ $\{y=0\},$ $\{x=1\},$ $\{y=$

$1\},$ $\{xy=1\},$ $\{x=\infty\},$ $\{y=\infty\}$ and 3 exceptional divisors obtained
by blowing up at $(x, y)=(1,1),$ $(\infty, 0)$ and $(0, \infty)$ . In particular
for our convenience we denote $\{y=0\},$ $\{x=1\}$ , the exceptional
divisor at $(1, 1)$ , $\{y=1\}$ and $\{x=0\}$ by $D_{1},$ $D_{2},$ $D_{3},$ $D_{4}$ and $D_{5}$

(or sometimes $D_{0}$) respectively. It is because $c^{i}(D_{0})=D_{i}$ . These five
divisors form a pentagon and we denote each vertex $D_{i}\cap D_{i-1}$ by $P_{i}$ .
Hence we have $c^{i}(P_{0})=P_{i}$ . The two dimensional affine space $U_{1}=$

$Spec\mathrm{Q}[x, y]$ gives an open affine subset of $\overline{\mathcal{M}_{0,5}}$ . The $S_{5}$-action gives
other open subsets $U_{i}=c^{i-1}(U_{1})=Spec\mathrm{Q}[z_{i}, w_{i}](1\leq i\leq 5)$ in $\overline{\mathcal{M}_{0,5}}$

where $(z_{1}, w_{1})=(x, y),$ $(z_{2}, w_{2})=(y, \frac{1-x}{1-xy}),$ $(z_{3}, w_{3})=( \frac{1-x}{1-xy}, 1-xy)$ ,
$(z_{4}, w_{4})=(1-xy, \frac{1-y}{1-xy})$ and $(z_{5}, w_{5})=( \frac{1-y}{1-xy}, x)$ .

For $\mathrm{a}=(a_{1}, \cdots, a_{k})\in \mathrm{Z}_{>0}^{k},$ $\mathrm{b}=(b_{1}, \cdots, b_{l})\in \mathrm{Z}_{>0}^{l}$ , and $x,$ $y\in \mathrm{Q}_{p}$

with $|x|_{p}<1$ and $|y|_{\mathrm{p}}<1$ we define two variable padic multiple
polylogarithm by

$\mathrm{L}\mathrm{i}_{\mathrm{a},\mathrm{b}}(x, y):=\sum_{0<m_{1}<.\cdot.\cdot.\cdot<m_{k}<n1<<n_{l}}\frac{x^{m_{k}}y^{n_{l}}}{m_{1}^{a_{1}}\cdots m_{k}^{a_{k}}n_{1}^{b_{1}}\cdots n_{l}^{b_{l}}}\in \mathrm{Q}_{p}[[x, y]]$

,

and for $\mathrm{c}=(c_{1}, \cdots, c_{h})\in \mathrm{Z}_{>0}^{h}$ one variable -adic multiple poly-
logarithm by

$\mathrm{L}\mathrm{i}_{\mathrm{c}}(y):=\sum_{0<m_{1}<\cdots<m_{h}}\frac{y^{m_{h}}}{m_{1}^{\mathrm{c}_{1}}\cdots m_{h^{h}}^{c}}\in \mathrm{Q}_{p}[[y]]\subset \mathrm{Q}_{p}[[x, y]]$ .

By the differential equations $[\mathrm{B}\mathrm{F}](5.2)\sim(5.4),$ $Li_{\mathrm{a},\mathrm{b}}(x, y),$ $Li_{\mathrm{c}}(xy)$ and
$Li_{\mathrm{c}}(y)$ are all iterated integrals of $\frac{dx}{x},$ $\frac{dx}{1-x}$ . $\Delta dy$ , $\overline{1}-\overline{y}dp$ and $\ovalbox{\tt\small REJECT} xd+dx\mathrm{i}-xy$

’ differ-
ential forms over $\mathcal{M}_{0,5}$ . Whence they are obtained from some triple
$(M, s, y)$ over $\mathcal{M}_{0,5}$ . We interpret them as Coleman functions over the
rigid triple $(\mathcal{M}_{0,5},\overline{\mathcal{M}_{0,5}})$ . This means that they are analytically contin-
ued to $\mathcal{M}_{0,5}(\mathrm{Q}_{p})$ as Coleman functions by the methods of analytically
continuation along Robenius in \S 1.

For a Coleman function $f$ over $\mathcal{M}_{0,5},$ $f^{(D_{i})}$ means the analytic con-
tinuation of $f$ to $N_{D_{l}}^{00},$ $(i\in \mathrm{Z}/5)$ . For $\mathrm{a}=(a_{1}, \cdots, a_{k})\in \mathrm{Z}_{>0}^{k}$ and $\mathrm{b}=$

$(b_{1}, \cdots, b_{l})\in \mathrm{Z}_{>0}^{l},$ $F_{\mathrm{a},\mathrm{b}}$ stands for the Coleman function $Li_{\mathrm{a},\mathrm{b}}(x, y)-$
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$Li_{\mathrm{a}\mathrm{b}}(xy)$ and for $\mathrm{c}=(c_{1}, \cdots, c_{h})\in \mathrm{Z}_{>0}^{h},$ $G_{\mathrm{c}}$ stands for the Coleman
function $Li_{\mathrm{c}}(xy)-Li_{\mathrm{c}}(y)$ over $\mathcal{M}_{0,5}$ .

Lemma 2.1. $F_{\mathrm{a},\mathrm{b}}^{(D_{1})}=0$ and $G_{\mathrm{c}}^{(D_{1})}=0$ for any index $\mathrm{a}_{f}\mathrm{b}$ and $\mathrm{c}$ .
Proof. The constant terms of $Li_{\mathrm{a},\mathrm{b}}(x, y),$ $Li_{\mathrm{c}}(xy)$ and $Li_{\mathrm{c}}(y)$ at the
origin $P_{5}$ are zero because there are no constant terms in their power
series expansions. We take their differentials and take their residues at
$y=0$ . It gives $0$ by induction because each term will be a multiple
polylogarithm witb one lower weight than the original one. Whence
$Li_{\mathrm{a},\mathrm{b}}(x, y),$ $Li_{\mathrm{c}}(xy)$ and $Li_{\mathrm{c}}(y)$ are identically zero. It gives our claim.

Lemma 2.2. $F_{\mathrm{a},\mathrm{b}}^{(D_{2})}\equiv 0$ if a is admissible 1 and $G_{\mathrm{c}}^{(D_{2})}\equiv 0$ for any
index $\mathrm{c}$ .
Proof. On the affine coordinate $(z_{2}, w_{2})$ for $U_{2}$ , the divisor $D_{2}$ is
defined by $w_{2}=0$ . We have $dx= \frac{w_{2}(1-w_{2})}{(z_{2}w_{2}-1)^{2}}dz_{2}+\frac{z_{2}-1}{(z_{2}w_{2}-1)^{2}}dw_{2}$ and $dy=$

$dz_{2}$ . By taking the residue of the differential equations $[\mathrm{B}\mathrm{F}](5.2)\sim(5.4)$ ,
we get that differentials of $F_{\mathrm{a}\mathrm{b}}^{(D_{2})}$ and $G_{\mathrm{c}}^{(D_{2})}$ with respect to $\overline{z}_{2}$ and $\overline{w}_{2}$

are zero by induction. Therefore they must be constant. By Lemma 2.1
their constant terms at $P_{1}$ is zero. So they are identically zero.

Lemma 2.3. $F_{\mathrm{a},\mathrm{b}}^{(D_{3})}=0$ if a and $\mathrm{b}$ are admissible and $G_{\mathrm{c}}^{(D_{3})}=0$ if $\mathrm{c}$

is admissible.

Proof. On the affine coordinate $(z_{3}, w_{3})$ for $U_{3}$ , the divisor $D_{3}$ is de-
fined by $w_{3}=0$ . We have $dx=-w_{3}dz_{3}-z_{3}dw_{3}$ and $dy= \frac{w_{3}(1-w_{3})}{(z_{3}w\epsilon-1)^{2}}dz_{3}+$

$\frac{z_{3}-1}{(z_{3}w_{3}-1)^{2}}dw_{3}$ . By taking the residue of the differential equations [BF] $(5.2)\sim(5.4)$ ,
we get to know that differentials of $F_{\mathrm{a},\mathrm{b}}^{(D_{3})}$ and $G_{\mathrm{c}}^{(D_{3})}$ with respect to $z_{3}^{-}$

and $\overline{w}_{3}$ are zero by induction. Therefore they must be constant. By
Lemma 2.2 their constant term at $P_{2}$ is zero. So they are identically
zero.

In [F1] it was shown that the limit (in a certain way) to $z=1$
of $\mathrm{L}\mathrm{i}_{k_{1},\cdots,k_{m}}(z)$ , which is a Coleman function over $\mathrm{P}^{1}\backslash \{0,1, \infty\}$ , exists
when $k_{m}>1$ ( $1\mathrm{o}\mathrm{c}$ . $\mathrm{c}\mathrm{i}\mathrm{t}$ . Theorem 2.18) and p–adic multiple zeta value
$\zeta_{p}(k_{1}, \cdots, k_{m})$ is defined to be this limit value ( $1\mathrm{o}\mathrm{c}$ . $\mathrm{c}\mathrm{i}\mathrm{t}$ . Definition 2.17),
but by using the terminologies in \S 1 we reformulate its definition as
follows.

Definition 2.4. For $k_{m}>1$ , the-adic multiple zeta value $\zeta_{p}(k_{1}, \cdots, k_{m})$

is the constant term of $\mathrm{L}\mathrm{i}_{k_{1},\cdots,k_{m}}(z)$ at $z=1$ .

1An index $\mathrm{a}=(a_{1}, \cdots, a_{k})(a_{i}\in \mathrm{N})$ is called admissible if $a_{k}>1$ .
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In the case for $k_{m}=1$ , the constant term of $\mathrm{L}\mathrm{i}_{k_{1},\cdots,k_{m}}(z)$ at $z=1$ is
actually equal to the (canonical) regularization $(-1)^{m}I_{p}(BA^{k_{m-1}1}-B\cdots A^{k_{1}-1}B)$

of p–adic multiple zeta values by $1\mathrm{o}\mathrm{c}$ . $\mathrm{c}\mathrm{i}\mathrm{t}$ . Theorem 2.22 (for this nota-
tion, see $1\mathrm{o}\mathrm{c}$ . $\mathrm{c}\mathrm{i}\mathrm{t}$ . Theorem 3.30).

The following is important to prove double shuffle relations for p-adic
multiple zeta values.

Proposition 2.5. (1) The analytic continuation $\mathrm{L}\mathrm{i}_{\mathrm{a},\mathrm{b}}^{(D_{3})}(x, y)$ is con-
stant and equal to $\zeta_{p}(\mathrm{a}, \mathrm{b})$ if a and $\mathrm{b}$ are admissible.

(2) The analytic continuation $\mathrm{L}\mathrm{i}_{\mathrm{c}}^{(D_{3})}(xy)$ and $\mathrm{L}\mathrm{i}_{\mathrm{c}}^{(D_{3})}(y)$ are constant
and take value $(_{\mathrm{p}}(\mathrm{c})$ if $\mathrm{c}$ is admissible.

Proof. By Lemma 2.3 it is enough to prove this for $Li_{\mathrm{c}}^{(D_{3})}(y)$ . By
the argument in Lemma 2.1 $Li_{\mathrm{c}}^{(D_{1})}(y)=0$ . By the computation in
Lemma 2.2 $Li_{\mathrm{c}}^{(D_{2})}(y)=Li_{\mathrm{c}}^{(D_{2})}(z_{2}^{-})$ . So the constant term of $Li_{\mathrm{c}}^{(D_{2})}(y)$

at $P_{2}$ is equal to the constant term of $Li_{\mathrm{c}}(\overline{z}_{2})$ at $\overline{z}_{2}=1$ , which is
$\zeta_{p}(\mathrm{c})$ . By the computation in Lemma 2.3 $Li_{\mathrm{c}}^{(D_{3})}(y)$ must be constant
if $c_{h}>1$ . Since this constant term must be the constant term of
$Li_{\mathrm{c}}^{(D_{2})}(y),$ $Li_{\mathrm{c}}^{(D_{3})}(y)\equiv\zeta_{p}(\mathrm{c})$ for $c_{h}>1$ .

By discussing on the opposite divisors $D_{5},$ $D_{4}$ and $D_{3}$ , we also obtain
the following.

Proposition 2.6. (1) The analytic continuation $\mathrm{L}\mathrm{i}_{\mathrm{a},\mathrm{b}}^{(D_{3})}(y, x)$ is con-
stant and equal to $\zeta_{p}(\mathrm{a}, \mathrm{b})$ if a and $\mathrm{b}$ are admissible.

(2) The analytic continuation $\mathrm{L}\mathrm{i}_{\mathrm{c}}^{(D_{3})}(xy)$ and $\mathrm{L}\mathrm{i}_{\mathrm{c}}^{(D_{3})}(x)$ are constant
and equal to $\zeta_{p}(\mathrm{c})$ if $\mathrm{c}$ is admissible.

3. THE DOUBLE SHUFFLE RELATIONS

In this section, we prove double shuffle relations for p–adic multi-
ple zeta values (Definition 2.4). Firstly we recall double shuffle re-
lations for complex multiple zeta values. Let a $=(a_{1}, \cdots, a_{k})$ and
$\mathrm{b}=(b_{1}, \cdots, b_{l})$ be admissible indices (i.e. $a_{k}>1$ and $b_{l}>1$ ). The se-
ries shuffle product formulas (called by harmonic product formulas
in [F1] and first shuffle relations in [G1] $)$ are relations

(3.1)
$\zeta(\mathrm{a})\cdot\zeta(\mathrm{b})=\sum_{\sigma\in Sh\leq(k,l)}\zeta(\sigma(\mathrm{a}, \mathrm{b}))$
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which is obtained by expanding the summation on the left hand side
into the summation which give multiple zeta values. Here

$Sh^{\leq}(k, l):= \bigcup_{N}\{\sigma:\{1, \cdots, k+l\}arrow\{1, \cdots, N\}|\sigma$ is onto,

$\sigma(1)<\cdots<\sigma(k),$ $\sigma(k+1)<\cdots<\sigma(k+l)\}$

and $\sigma(\mathrm{a}, \mathrm{b})=(c_{1}, \cdots, c_{N})$ where $N$ is the cardinality of the image of
$\sigma$ and

$c_{i}=$
One of the easiest example of (3.1) is (0.2).

On the other hand, multiple zeta values admit an iterated integral
expression (cf. [G1], [IKZ] see also [FO])

$\zeta(\mathrm{a})=\int_{0}^{1}0\frac{du}{u}\mathrm{o}\cdots\cdots 0\frac{du}{1-u}\frac{\frac{du}{u}\mathrm{o}\cdots 0\frac{du}{u}\mathrm{o}\frac{du}{1-u}}{a_{k}}$

Here for differential 1-forms $\omega_{1},$ $\omega_{2},$
$\ldots,$

$\omega_{n}(n\geq 1)$ on $\mathrm{C}$ an iterated
integral $\int_{0}^{1}\omega_{1}\circ\omega_{2}\circ\cdots\circ\omega_{n}$ is defined inductively as $\int_{0}^{1}\omega_{1}(t_{1})\int_{0}^{t_{1}}\omega_{2}0$

$\ldots\circ\omega_{n}$ . There are the well-known shuffle product formulas (for example
see $1\mathrm{o}\mathrm{c}$ . $\mathrm{c}\mathrm{i}\mathrm{t}.$ ) of iterated integration

$\int_{0}^{1}\omega_{1}\mathit{0}\cdots 0\omega_{k}\cdot\int_{0}^{1}\omega_{k+1}0\cdots 0\omega_{k+l}=\sum_{\tau\in Sh(k,l)}\int_{0}^{1}\omega_{\tau(1)}0\cdots 0\omega_{\tau(k+l)}$ ,

where $Sh(k, l)$ is the set of shuffles defined by

$Sh(k, l):=\{\tau:\{1, \cdots , k+l\}arrow\{1, \cdots, k+l\}|\tau$ is bijective,

$\tau(1)<\cdots<\tau(k),$ $\tau(k+1)<\cdots<\tau(k+l)\}$ .

They induce the iterated integral shuffle produce formulas (called
by shuffle product formulas simply in [F1] and second shuffle relations
in [G1] $)$ for multiple zeta values

(3.2)
$\zeta(\mathrm{a})\cdot\zeta(\mathrm{b})=\sum_{\tau\in Sh(N.N_{\mathrm{b}})},\zeta(I_{\tau(W_{\mathrm{a}},W_{\mathrm{b}})})$
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where $N_{\mathrm{a}}=a_{1}+\cdots+a_{k},$ $N_{\mathrm{b}}=b_{1}+\cdots+b_{l}$ . For $\mathrm{c}=(c_{1}, \cdots, c_{h})$ with
$h,$ $c_{1},$

$\ldots,$
$c_{h}\geq 1$ the symbol $W_{\mathrm{c}}$ means a word $A^{\mathrm{c}_{h}-1}BA^{c_{h-1}-1}B\cdots A^{\mathrm{c}_{1}-1}B$

and conversely for given such $W$ we denote its corresponding index
by $I_{W}$ . For words, $W=X_{1}\cdots X_{k}$ and $W’=X_{k+1}\cdots X_{k+l}$ with
$X_{i}\in\{A, B\}$ , and $\tau\in Sh(k, l)$ the symbol $\tau(W, W‘)$ stands for the
word $Z_{1}\cdots Z_{k+l}$ with $Z_{i}=X_{\tau^{-1}(i)}$ . One of the easiest example of (3.2)
is (0.4).

The double shuffle relations for multiple zeta values are linear
relations which are obtained by combining two shuffle relations (3.3),
i.e. series shuffle product formulas (3.1) and iterated integral shuffle
produce formulas (3.2)

(3.3)
$\sum_{\sigma\in Sh\backslash (k,\mathrm{I})}\zeta(\sigma(\mathrm{a}, \mathrm{b}))<=\sum_{\tau\in Sh(N.N_{\mathrm{b}})},\zeta(I_{\tau(W.,W_{\mathrm{b}})})$

.

The following is the easiest example of the double shuffle relations
obtained from (0.2) and (0.4):

$\zeta(k_{1}, k_{2})+\zeta(k_{2}, k_{1})+\zeta(k_{1}+k_{2})$

$= \sum_{i=0}^{k_{1}-1}\zeta(k_{1}-i, k_{2}+i)+\sum_{j=0}^{-1}k_{2}\zeta(k_{2}-j, k_{1}+j)$

for $k_{1},$ $k_{2}>1$ .

Theorem 3.1. $p$-adic multiple zeta values in convergent case ($i.e$ . for
admissible indices) satisfy the se’$\dot{\eta}es$ shuffle product formulas, $i.e$ .

(3.4) $\zeta_{p}(\mathrm{a})\cdot\zeta_{\mathrm{p}}(\mathrm{b})=$

$\sum_{<,\sigma\in Sh\backslash (k,l)}\zeta_{p}(\sigma(_{\backslash }\mathrm{a}, \mathrm{b}))$

for admissible indices a and $\mathrm{b}$ .

Proof. Put $\mathrm{a}=(a_{1}, \cdots, a_{k})$ and $\mathrm{b}=(b_{1}, \cdots, b_{l})$ . By the power series
expansion of $\mathrm{L}\mathrm{i}_{\mathrm{a},\mathrm{b}}(x, y)$ and $\mathrm{L}\mathrm{i}_{\mathrm{a}}(x)$ , we obtain the following formula

(3.5)
$\mathrm{L}\mathrm{i}_{\mathrm{a}}(x)\cdot \mathrm{L}\mathrm{i}_{\mathrm{b}}(y)=\sum_{\sigma\in Sh\leq(k,l)}\mathrm{L}\mathrm{i}_{\mathrm{a},\mathrm{b}}^{\sigma}(x, y)$

.

Here

$\mathrm{L}\mathrm{i}_{\mathrm{a},\mathrm{b}}^{\sigma}(x, y):=\sum_{(m_{1},\cdots,m_{k},n_{1},\cdot,n_{l})\in Z_{++}^{\sigma}}..\frac{x^{m_{k}}y^{n_{l}}}{m_{1}^{a_{1}}\cdots m_{k}^{a_{k}}n_{1}^{b_{1}}\cdots n_{l}^{b_{l}}}$

with
$Z_{++}^{\sigma}=$ { $(c_{1},$

$\cdots,$ $c_{k+l})\in \mathrm{Z}_{>0}^{k+l}|c_{i}<c_{j}$ if a $(i)<\sigma(j),$ $c_{i}=c_{j}$ if $\sigma(i)=\sigma(j)$ }.
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Then for each $\sigma\in Sh^{\leq}(k, l),$ $\mathrm{L}\mathrm{i}_{\mathrm{a},\mathrm{b}}^{\sigma}(x, y)$ can be written $\mathrm{L}\mathrm{i}_{\mathrm{a}’,\mathrm{b}’}(x, y)$ ,
$\mathrm{L}\mathrm{i}_{\mathrm{a}’,\mathrm{b}’}(y, x)$ or $\mathrm{L}\mathrm{i}_{\mathrm{a}’,\mathrm{b}’}(xy)$ for some indices a’ and $\mathrm{b}$‘. We note that, if
a and $\mathrm{b}$ are admissible, then these a’ and $\mathrm{b}’$ are also admissible. By
Proposition 2.5 and Proposition 2.6, we know that analytic continu-
ations $\mathrm{L}\mathrm{i}_{\mathrm{a},\mathrm{b}}^{(D_{3})}(x, y),$ $\mathrm{L}\mathrm{i}_{\mathrm{b},\mathrm{a}}^{(D_{3})}(y, x),$ $\mathrm{L}\mathrm{i}_{\mathrm{a},\mathrm{b}}^{(D_{3})}(xy),$ $\mathrm{L}\mathrm{i}_{\mathrm{a}}^{(D_{3})}(x)$ and $\mathrm{L}\mathrm{i}_{\mathrm{b}}^{(D_{3})}(y)$ are
all constant and take values $\zeta_{p}(\mathrm{a}, \mathrm{b}),$ $\zeta_{p}(\mathrm{b}, \mathrm{a}),$ $\zeta_{p}(\mathrm{a}, \mathrm{b}),$ $\zeta_{p}(\mathrm{a})$ and $\zeta_{p}(\mathrm{b})$

respectively when a and $\mathrm{b}$ are admissible. Therefore by taking an an-
alytic continuation along Frobenius of both hands sides of (3.5) into
$N_{D_{3}}^{00}(\mathrm{Q}_{p})$ , we obtain the series shuffle product formulas (3.4) for $\gamma \mathrm{a}\mathrm{d}\mathrm{i}\mathrm{c}$

multiple zeta value in convergent case. $\square$

By this thecrem we say for example
$\zeta_{p}(k_{1})\cdot\zeta_{p}(k_{2})=\zeta_{p}(k_{1}, k_{2})+\zeta_{p}(k_{2}, k_{1})+(_{p}(k_{1}+k_{2})$

for $k_{1},$ $k_{2}>1$ which is a p–adic analogue of (0.2).

Corollary 3.2. $p$ -adic multiple zeta values in convergent case satisfy
double shuffle relations. Namely

$\sigma\in sh\leq\sum_{(k,\iota)}\zeta_{p}(\sigma(\mathrm{a}, \mathrm{b}))=\sum_{\tau\in Sh(N.,N_{\mathrm{b}})}\zeta_{p}(I_{\tau(W.,W_{\mathrm{b}})})$
.

holds for $a_{k}>1$ and $b_{l}>1$ .

Proof. It was shown in [F1] Corollary 3.46 that p–adic multiple zeta
values satisfy iterated integral shuffle product formulas

(3.6)
$\zeta_{p}(\mathrm{a})\cdot\zeta_{p}(\mathrm{b})=\sum_{\tau\in Sh(N.,N_{\mathrm{b}})}\zeta_{p}(I_{\tau(W.,W_{\mathrm{b}})})$

.

By combining it with Theorem 3.1, we obtain double shuffle relations
for p–adic multiple zeta values.

Therefore we say for example

$\zeta_{p}(k_{1}, k_{2})+\zeta_{p}(k_{2}, k_{1})+\zeta_{p}(k_{1}+k_{2})$

$= \sum_{i=0}^{k_{1}-1}\zeta_{p}(k_{1}-i, k_{2}+i)+\sum_{j=0}^{-1}\zeta_{p}(k_{2}-j, k_{1}+j)k_{2}$

for $k_{1},$ $k_{2}>1$ which is a p–adic analogue of (0.4).

Remark 3.3. In complex case there are two regularizations of multiple
zeta values in divergent case, integral regularization and power series
regularization (see [IKZ], $[\mathrm{G}1]\S 2.9$ and \S 2.10). The first ones satisfy
iterated integral shuffle product formulas, the second ones satisfy se-
ries shuffle product formulas and these two regularizations are related
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by regularization relations. Actually these provide new type of rela-
tions among multiple zeta values. In the case of p–adic multiple zeta
values, $p$-adic analogue of integral regularization appear on coefficients
of p–adic Drinfel’d associator (see [F1]) and they satisfy iterated inte-
gral shuffle product formulas like (3.6). On the other hand, it is not
clear at all to say that p–adic analogue of power series regularization
satisfy series shuffle product formulas and regularization relation. It is
because that in the complex case the definition of this regularization
and the proof of their series shuffle product formulas and regularization
relation essentially based on the asymptotic behaviors of power series
summations of multiple zeta values (see [G1] Proposition 2.19) however
in the p–adic case our p–adic multiple zeta values do not have power
series sum expression like (0.1). Recently the validity of these type of
relations among p.adic multiple zeta values were achieved in [FJ] by
using several variable p–adic multiple polylogarithm and a stratifica-
tion of the stable compactification of the moduli $\mathcal{M}_{0,N+3}(N\geq 3)$ . By
combining results of [F2] we solved in [FJ] the problem [D3] posed by
Deligne in 2002 Arizona Winter School.
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