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Abstract

This is a brief comment on the consistency between Schwinger-Dyson $(\mathrm{S}\mathrm{D})$ equa-
tion and Bethe-Salpeter $(\mathrm{B}\mathrm{S})$ equation. Some of the pathological phenomena in the
approximate BS equations may be avoided if the propagators used there are the solu-
tions of the SD equation which is given in a consistent order of approximation with that
for the Bethe-Salpeter equation. A systematic method is given which gives consistent
approximations to SD and BS equations such that the solution to them satisfies the
Ward-Takahashi identities.
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\S 1. Introduction

It is well-known that the approximate Bethe-Salpeter $(\mathrm{B}\mathrm{S})$ equations have several patho-
logical boundstate solutions, such as negative metric states, tachyons and so on, in particular
when the coupling constant becomes strong. 1) However, such pathology occurs, for instance,

for the simple BS equation in ladder approximation in which the free propagators are used
independently of the coupling strength. Here I would like to emphasize the importance of
mutual consistency of the approximate BS equation and Schwinger-Dyson $(\mathrm{S}\mathrm{D})$ equation.
The BS equation is the equation determining the boundstates and contains the propaga-
tors of the constituents. The constituent propagators are determined by the SD equation.
If the coupling constant becomes larger, not only the BS equation but also the SD equa-
tion changes. Therefore the simple ladder BS equation with free constituent propagators is
clearly inconsistent. The propagators used in the approximate BS equation should be those
determined by the approximate SD equation. The approximations of BS and SD equations
should be consistent with each other. I suspect that many pathological phenomena may be
avoided if this consistency between the BS and SD equations are satisfied.

Well-known example is the ladder approximation both for the BS and SD equations in
QED. Maskawa and Nakajima 2) proved that those two equations in the ladder approximation
is consistent with the chiral symmetry. Namely the vertex function determined by the
ladder BS equation satisfies the chiral Ward identity with the propagator determined by the
ladder SD equation. Even if the coupling constant is stronger than the critical coupling, the
BS equation has no tachyon states and the lowest boundstate is the massless pion. They
suspected that there might be no approximations beyond the ladder one that satisfy the
mutual consistency between BS and SD equations concerning the chiral symmetry.

I will discuss this kind of consistency between the BS and SD equations very systemat-
ically in the QCD-like theory. Despite the suspicion of Maskawa and Nakajima, there exist
many (actually, infinite number of) other approximations beyond ladder one satisfying such
mutual consistency concerning the flavor symmetries. I will show some explicit examples.

This is a talk dedicated to Prof. Noboru Nakanishi who made many important contribu-
tions to the researches of the Bethe-Salpeter equations. This talk is based on my old work
in collaboration with Masako Bando and Masayasu Harada. 3)

\S 2. Formulation of SD and BS equations

I will now present a systematic way obtaining such a consistent pair of approximate SD
and BS equations.
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2.1. Effective action

Let us consider QCD system in the presence of external background gauge fields $A_{\mu}$

coupling to the flavor charges which are orthogonal to the color degrees of freedom:

$\mathcal{L}_{\mathrm{Q}\mathrm{C}\mathrm{D}}(A)=-\frac{1}{4}F_{\mu\nu}^{\alpha}F^{a\mu\nu}+\overline{\psi}i\gamma^{\mu}(\partial_{\mu}-ig_{\ell}T^{a}G_{\mu}^{\alpha}-iA_{\mu})$ th, $(2\cdot 1)$

where we have assumed vector coupling $\mathcal{L}_{\mathrm{i}\mathrm{n}\mathrm{t}}=\overline{\psi}\gamma^{\mu}A_{\mu}\psi$ for the external flavor gauge field

$A_{\mu}(x)\equiv A_{\mu}^{a}(x)\lambda^{a}$ , $(2\cdot 2)$

just for notational simplicity. The axial vector case can be obtained simply by replacement
$\gamma^{\mu}arrow\gamma^{\mu}\gamma_{6}$ . Note that the external gauge fields are added purely as a convenient devise to
derive consistent equations and will be eventually set equal to zero.

The generating functional $W$ of the Green functions with $\mathrm{b}\mathrm{i}$-local source function $J(x, y)$

is defined by

$\exp iW[J, A]\equiv\int D\psi D\overline{\psi}DG_{\mu}\exp i[\int d^{4}x\mathcal{L}_{\mathrm{Q}\mathrm{C}\mathrm{D}}(A)+\int d^{4}xd^{4}yJ(x,y)\psi(x)\overline{\psi}(y)]$ . $(2\cdot 3)$

The effective action $\Gamma[S_{\mathrm{F}}, A]$ for the quark propagator $S_{\mathrm{F}}(x,y)$ in the presence of the external
flavor gauge field $A_{\mu}$ is defined by performing the Legendre transformation of $W[J, A]$ as

$\Gamma[S_{\mathrm{F}}, A]=W[J, A]-\int d^{4}xd^{4}yS_{\mathrm{F}}(x, y)J(x, y)$ $(2\cdot 4)$

where
$S_{\mathrm{F}}(x, y) \equiv\frac{\delta W[J,A]}{\delta J(x,y)}=\langle \mathrm{T}\psi(x)\overline{\psi}(y)\rangle$ . $(2\cdot 5)$

As usual in the Legendre transformation, the dual relation to this equation holds:

$-J(x, y)= \frac{\delta\Gamma[S_{\mathrm{F}},A]}{\delta S_{\mathrm{F}}(x,y)}$ $(2\cdot 6)$

In particular, whcxen $J=0$ , this gives the SD equation determining the fermion propagator
$S_{\mathrm{F}}(x, y)$ in the presence of the external flavor gauge field $A_{\mu}$ .

$\frac{\delta\Gamma[S_{\mathrm{F}},A]}{\delta S_{\mathrm{F}}(x,y)}=0$ . $(2\cdot 7)$

$\Gamma[S_{\mathrm{F}}, A]$ defined here is the effective action introduced by Dominicis and Martin4) and
Cornwall, Jackiw and Tomboulis. 5) They have given the formula

$\Gamma[S_{\mathrm{F}}, A]=i\mathrm{T}\mathrm{r}\mathrm{L}\mathrm{n}S_{\mathrm{F}}-\mathrm{R}(ips_{\mathrm{F}})+i^{-1}\mathcal{K}_{2\mathrm{P}\mathrm{I}}[S_{\mathrm{F}}]$ , $(2\cdot 8)$
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where the external gauge field $A_{\mu}$ is present only at the covariant derivative $D_{\mu}=\partial_{\mu}-A_{\mu}$ .
$\mathcal{K}_{2\mathrm{P}\mathrm{I}}$ stands for the two particle irreducible (w.r.t. fermion-line) diagram contributions: in
the present QCD-like theory, we can expand the $\mathcal{K}_{2\mathrm{P}\mathrm{I}}$ into power series of the gauge coupling
$\alpha_{s}=g_{s}^{2}/4\pi$ ,

$\mathcal{K}_{2\mathrm{P}\mathrm{I}}=\mathcal{K}_{2\mathrm{P}\mathrm{I}}^{(1\rangle}+\mathcal{K}_{2\mathrm{P}\mathrm{I}}^{(2)}+\cdots$

and $\mathcal{K}_{2\mathrm{P}\mathrm{I}}^{(1)}$ and $\mathcal{K}_{2\mathrm{P}\mathrm{I}}^{(2)}$ are diagrammatically given by Fig. 1. More explicitly the first term $\mathcal{K}_{2\mathrm{P}\mathrm{I}}^{(1)}$

$l\mathrm{b})\kappa_{\sim-}^{(2)}$.

is given by

$\mathcal{K}_{2\mathrm{P}\mathrm{I}}^{(1)}=-\frac{g_{\epsilon}^{2}}{2}\int d^{4}xd^{4}y$ tr $(S_{\mathrm{F}}(x, y)i\gamma_{\mu}T^{\alpha}S_{\mathrm{F}}(y, x)i\gamma_{\nu}T^{\alpha})D^{\mu\nu}(x-y)$ ,

where $T^{\alpha}(\alpha=1, \cdots, N_{\mathrm{c}}^{2}-1)$ are color matrices in the quark representation and $D_{\mu\nu}$ is tree
level gluon propagator given by

$D^{\mu\nu}(x)= \int\frac{d^{4}p}{i(2\pi)^{4}}e^{-ipx}(g^{\mu\nu}-\frac{p^{\mu}p^{\nu}}{p^{2}})(\frac{1}{p^{2}}-\frac{1}{p^{2}-\Lambda^{2}})$ $(\Lambdaarrow\infty)$ ,

where we have included an ultraviolet cutoff $\Lambda$ for definiteness. If we use the running
coupling constant as was done in the improved ladder approximation by $\mathrm{H}\mathrm{i}\mathrm{g}\mathrm{a}\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{j}\mathrm{i}\mathrm{m}\mathrm{a}^{6)}$ and
Miransky,7) the coupling constant $g_{\delta}$ should be replaced by the running coupling function
$g_{s}(p^{2})$ with gluon momentum $p_{\mu}$ in the argument. 8)

2.2. $SD$ equation

The SD equation $(2\cdot 7)$ gives

$iS_{\mathrm{F}}^{-1}=i \beta-i^{-1}\frac{\delta \mathcal{K}_{2\mathrm{P}\mathrm{I}}}{\delta S_{\mathrm{F}}}$ $(2\cdot 9)$

If we take only the lowest order term in $\mathcal{K}_{2\mathrm{P}\mathrm{I}},$
$\mathcal{K}_{2\mathrm{P}\mathrm{I}}^{(1)}$ , then this SD equation reduces to

$iS_{\mathrm{F}}^{-1}=i\beta+4+i^{-1}K*S_{\mathrm{F}}$ , $(2\cdot 10)$
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with $K*S_{\mathrm{F}}$ defined by

$K*S_{\mathrm{F}}\equiv g_{s}^{2}(i\gamma_{\mu}T^{\alpha})S_{\mathrm{F}}(y, x)(i\gamma_{\nu}T^{\alpha})D^{\mu\nu}(x-y)$ . $(2\cdot 11)$

diagrammatically, this reads

$iS_{\mathrm{F}}^{-1}$ $=$ $ii$ $+$ $A$

Fig. 2. Schwinger Dyson equation derived from the ettective action $j^{}$ using $\mathcal{K}_{2\mathrm{P}\mathrm{I}}=\mathcal{K}_{2\mathrm{P}\mathrm{I}}^{(1)}$.

Equation $(2\cdot 9)$ is the SD equation determining a solution $S_{\mathrm{F}}=S_{\mathrm{F}}[A]$ for the fermion
propagator, on an arbitrary external background gauge field $A_{\mu}$ . The solution $S_{\mathrm{F}}[A]$ is
expanded into a power series in the external gauge field $A_{\mu}$ :

$S_{\mathrm{F}}[A]=S_{\mathrm{F}}+iA_{\mu}^{a}G_{3}^{a\mu}+ \frac{i^{2}}{2}A_{\mu}^{a}A_{\nu}^{b}G_{4}^{a\mu,b\nu}+\frac{i^{3}}{3}A_{\mu}^{a}A_{\nu}^{b}A_{\rho}^{c}G_{5}^{a\mu,b\nu,c\rho}+\cdots$ , $(2\cdot 12)$

where $a,$ $b$ and $c$ denote the flavor indices. Here and henceforth the space-time coordinates
and the integrations are suppressed, i.e., $A_{\mu}^{a}G_{3}^{a\mu} \equiv\int d^{4}zA_{\mu}^{a}(z)G_{3}^{a\mu}(x,y;z)$ , etc.. The function
$G_{n+2}^{a_{1}\mu_{1\prime}a_{n}\mu_{n}}’\ldots(x, y;z_{1}, \cdots, z_{n})$ defines a fermion 2-point function with $n$ vector vertices inserted
(see Fig. 3):

$G_{3}^{a\mu}(x, y;z) \equiv\frac{1}{i}\frac{\delta S_{\mathrm{F}}(x,y;A)}{\delta A_{\mu}^{a}(z)}|_{A=0}=\langle 0|\mathrm{T}j^{a\mu}(z)\psi(x)\overline{\psi}(y)|0\rangle$ ,

$G_{4}^{a\mu,b\nu}(x, y;z, w) \equiv\frac{1}{i^{2}}\frac{\delta S_{\mathrm{F}}(x,y;A)}{\delta A_{\mu}^{a}(z)\delta A_{\nu}^{b}(w)}|_{A=0}=\langle 0|\mathrm{T}j^{a\mu}(z)j^{b\nu}(w)\psi(x)\overline{\psi}(y)|0\rangle,$ $(2\cdot 13)$

and so on. This is because $\delta/\delta A_{\mu}^{a}$ yields an insertion of the vector current operator $j^{a\mu}=$

$\overline{\psi}\gamma^{\mu}\lambda^{a}\psi$ to which the external gauge boson $A_{\mu}^{a}$ couples. Hereafter in this section, we suppress
the flavor indices to denote $G_{n+2}^{a_{1}\mu_{1},\cdots,a_{n}\mu_{n}}$ simply as $G_{n+2}^{\mu_{1}\cdots\mu_{\hslash}}$ , and write only $\gamma^{\mu}$ in place of $\gamma^{\mu}\lambda^{a}$

as vertex factors in the figures, accordingly.

2.3. $BS$ equations for the vertices

Therefore the SD equation $(2\cdot 9)$ for $S_{\mathrm{F}}[A]$ in fact gives not only the SD equation for the
propagator $S_{\mathrm{F}}=S_{\mathrm{F}}[A=0]$ but also the Bethe-Salpeter $(\mathrm{B}\mathrm{S})$ equations for the $n+2$-point
Green functions $G_{n+2}^{\mu_{1}\cdots\mu_{n}}$ . That is, the functional differentiation w.r.t. $A_{\mu}$ (and then setting
$A=0)$ of the SD eq. $(2\cdot 9)$ successively generates the BS equations for the $G_{n+2}^{\mu_{1}\cdots\mu_{n}}$ functions.
It is convenient to define the following vertex function by amputating the fermion legv:

$\Gamma_{n+2}^{\mu_{1}\cdot\cdot\mu_{\hslash}}\equiv S_{\mathrm{F}}^{-1}G_{n+2^{\mu_{n}}}^{\mu_{1}}\ldots S_{\mathrm{F}}^{-1}$.
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a) b)

Fig. 3. Graphical representations of a) $G_{3}^{\mu}$ and b) $G_{4}^{\mu\nu}$ defined in Eq. $(2\cdot 13)$ where wavy line
represents the external gauge field.

To show what is going on as explicitly as possible, from here on in this section, we confine
ourselves to the simplest case using the lowest order kernel $(\mathcal{K}_{2\mathrm{P}\mathrm{I}}=\mathcal{K}_{2\mathrm{P}\mathrm{I}}^{(1)})$ .

First differentiation $\delta/\delta A_{\mu}|_{A=0}$ of Eq. $(2\cdot 10)$ gives (see Fig. 4)

$\Gamma_{3}^{\mu}=\gamma^{\mu}+\overline{K}*\Gamma_{3}^{\mu}$ , $(2\cdot 14)$

where $\tilde{K}*\Gamma_{3}^{\mu}\equiv K*(S_{\mathrm{F}}\Gamma_{3}^{\mu}S_{\mathrm{F}})=K*G_{3}^{\mu}$ is defined in the same way as in $\mathrm{E}\mathrm{q}.(2\cdot 11)$ .

$=$ $+$

Fig. 4. BS equation for 1’3.

Second differentiation $\delta^{2}/\delta A_{\mu}A_{\nu}|_{A=0}$ of Eq. $(2\cdot 10)$ gives (see Fig. 5)

$\Gamma_{4}^{\mu\nu}-\Gamma_{3}^{\nu}S_{\mathrm{F}}\Gamma_{3}^{\mu}-\Gamma_{3}^{\mu}S_{\mathrm{F}}\Gamma_{3}^{\nu}=\tilde{K}*\Gamma_{4}^{\mu\nu}$ $(2\cdot 15)$

$=$ $($ $+(\mu-\mathrm{v}))$

Fig. 5. BS equation for $\Gamma_{4}$ .

\S 3. External Gauge Invariance

By our assumption that the flavor freedom is orthogonal to the color, the flavor matrices
$\lambda^{a}$ commute with the color matrices $T^{\alpha}$ . Then we have the following lemma.
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Lemma: For any approximation for $\mathcal{K}_{2\mathrm{P}\mathrm{I}}$ by an arbitrary subset of diagrams contributing to
$\mathcal{K}_{2\mathrm{P}\mathrm{I}}$ , the effective action Eq. $(\mathit{2}\cdot \mathit{8})$ is (extemal) gauge inva$r\dot{\tau}ant$:

$\Gamma[S_{\mathrm{F}}, A]=\Gamma[S_{\mathrm{F}}^{U}, A^{U}]$ , $(3\cdot 1)$

where the gauge transformation with $U(x)=\exp(i\theta^{a}(x)\lambda^{a})$ is given explicitly by

$A_{\mu} arrow A_{\mu}^{U}=UA_{\mu}U^{-1}+\frac{1}{i}\partial_{\mu}U\cdot U^{-1}$ ,

$S_{\mathrm{F}}(x, y)arrow S_{\mathrm{F}}^{U}(x, y)=U(x)S_{\mathrm{F}}(x, y)U^{-1}(y)$ . $(3\cdot 2)$

The proof is easy as written in Ref.3) in detail, and each term in Eq. $(2\cdot 8)$ is separately
gauge-invariant. In particular, each diagram contributing to $\mathcal{K}_{2\mathrm{P}\mathrm{I}}$ is also separately invariant.
Indeed, in any diagram, all the fermion lines are connected. Although they are separated
by the interaction vertex factor $g_{\mathit{8}}\gamma^{\mu}T^{\alpha}$ at each vertex, the gauge transformation matrices
$U(x)$ and $U^{-1}(x)$ which appear from the two propagators of both sides of the vertex point $x$

cancel each other since $U$ acts only in the the flavor space and is commutative with the color
matrix $T^{\alpha}$ at the vertex. This also explains the reason why the argument of the running
coupling function must be the momentum of the gluon, since otherwise the vertex becomes
non-local for the fermion lines. 8)

Thus the gauge invariance of $\Gamma[S_{\mathrm{F}}, A]$ holds at any order of approximation for $\mathcal{K}_{2\mathrm{P}\mathrm{I}}$ .

\S 4. Ward-Takahashi identity

We now show that the external gauge invariance of the effective action implies that the
vertex functions determined by those BS equations satisfy the Ward-Takahashi identities.

It immediately follows from the external gauge invariance relation $(3\cdot 1)$ that the solution
of the SD equation $(2\cdot 7)$ on the gauge transformed background $A_{\mu}^{U}$ is given by the gauge
transformation $US_{\mathrm{F}}[A]U^{-1}$ of the solution $S_{\mathrm{F}}[A]$ on the original background $A_{\mu}$ : that is,

$S_{\mathrm{F}}[A^{U}]=US_{\mathrm{F}}[A]U^{-1}$ $(4\cdot 1)$

Substituting the expansion $(2\cdot 12)$ into both sides of Eq. $(4\cdot 1)$ , we have

LHS $=S_{\mathrm{F}}+iA_{\mu}^{U}G_{3}^{\mu}+ \frac{i^{2}}{2}A_{\mu}^{U}A_{\nu}^{U}G_{4}^{\mu\nu}+\cdots$ ,

RHS $=US_{\mathrm{F}}U^{-1}+iA_{\mu}UG_{3}^{\mu}U^{-1}+ \frac{i^{2}}{2}A_{\mu}A_{\nu}UG_{4}^{\mu\nu}U^{-1}+\cdots$ $(4\cdot 2)$

Considering, in particular, an infinitesimal gauge transformation $U=1+i\theta(\theta=\theta^{a}\lambda^{a})$ and
$A_{\mu}^{U}=A_{\mu}+D_{\mu}\theta$ , and equating the same power terms in $A_{\mu}$ on both sides, we find

$-i\partial_{\mu}^{z}G_{3}^{a\mu}(x,y;z)=i\delta^{4}(z-x)\lambda^{a}S_{\mathrm{F}}(x-y)-i\delta^{4}(z-y)S_{\mathrm{F}}(x-y)\lambda^{a}$ , $(4\cdot 3)$
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and so on. These are just the Ward-Takahashi identities required by the external gauge
invariance. Thus this proves that the fermion propagator $S_{\mathrm{F}}$ and the vertices $\Gamma_{n+2}^{\mu_{1}\cdots\mu_{n}}$ deter-
mined by our SD and BS equations satisfy the Ward-Takahashi identities giving relations
among them; namely, our appronimations for the $SD$ and $BS$ equations are mutually consis-
tent and gauge invariant.

We emphasize again that the WT identities are satisfied if we use SD and BS equations
in the same order of approximation, that is, if they are both derived from the same effective
action $\mathcal{K}_{2\mathrm{P}\mathrm{I}}$ , irrespectively of the order of the approximation for it.

If we take the the lowest order approximation with $\mathcal{K}_{2\mathrm{P}\mathrm{I}}=\mathcal{K}_{2\mathrm{P}\mathrm{I}}^{(1)}$ , we have the ladder SD
equation in Fig. 2 with $A_{\mu}=0$ and the ladder BS equation for the 3-point vertex $\Gamma_{3}^{\mu}$ in
Fig. 4. This gauge invariance for $\Gamma_{3}^{a\mu}$ in the simplest ladder approximation has been known
for a long time to Maskawa and Nakajima. 2) $*$ )

If we take $\mathcal{K}_{2\mathrm{P}\mathrm{I}}=\mathcal{K}_{2\mathrm{P}\mathrm{I}}^{(1)}+\mathcal{K}_{\mathit{2}\mathrm{P}\mathrm{I}}^{(2a)}$, then the SD equation for $S_{\mathrm{F}}$ is changed into the form
given in Fig. 6 (with $A_{\mu}=0$ ) and the BS equation for $\Gamma_{3}^{a\mu}$ into the form shown in Fig. 7.
Note that the Fig. 7 can be obtained by acting the differentiation $\delta/\delta A_{\mu}|_{A=0}$ on the Fig. 6
with $A_{\mu}\neq 0$ . These equations are much more complicated than the simple ladder ones,
nevertheless they satisfy the gauge invariance. Important is the mutual consistency of the
approximations between the SD equation and BS equations.

$iS_{\mathrm{F}}^{-1}[A]$

$=$ $+$

Although we have shown only the inhomogeneous BS equations for the vertices, the
homogeneous BS equations are of course obtained by picking up the pole part $\mathrm{h}\mathrm{o}\mathrm{m}$ them so

$*)$ A refinement of the proof and the generalization to the running coupling case was given by Kugo and
Mitchard. 8)
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that the homogeneous BS equations are given by simply dropping the inhomogeneous term
from the inhomogeneous BS equations.
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