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APPROXIMATING SOLUTIONS OF NONLINEAR VARIATIONAL
INEQUALITY PROBLEMS

HIDEAKI IIDUKA AND WATARU TAKAHASHI

ABSTRACT. Let C be a nonempty closed convex subset of a Banach space E and let
A be an inverse-strongly-monotone operator of C into the dual space E* of E. In this
paper, we introduce the following iterative scheme for finding a solution of the variational
inequality problem for A: z; =z € C and
Tnt1 =Mo" (Jzn — AnAzy)

for every n = 1,2,..., where Il is the generalized projection from E onto C, J is the
duality mapping from E into E* and {\n} is a sequence of positive real numbers. Then
we obtain a weak convergence theorem (Theorem 3.1). Using this result, we consider
the problem of finding a minimizer of a convex function, the problem of finding a point
u € F satisfying 0 = Au and so on.

1. INTRODUCTION

Let E be a real Banach space with norm || - ||, let E* denote the dual of E and let (z, f)
denote the value of f € E* at © € E. Let C be a nonempty closed convex subset of E and
let A be a monotone operator of C into E*. Then we deal with the problem of finding

(1.1) a point u € C such that (v —u, Au) >0 for all v € C.

This problem is called the variational inequality problem; see [14] and [13]. The set of
solutions of the variational inequality problem is denoted by VI(C, A). An operator A of
C into E* is said to be inverse-strongly-monotone if there exists a positive real number o
such that
(z -y, Az — Ay) > of Az - Ay|?

for all z,y € C; see [6], [15] and [9]. For such a case, A is said to be a-inverse-strongly-
monotone.

For finding a zero point of an inverse-strongly-monotone operator of the Euclidean space
RY into itself, Gol’shtein and Tret’yakov (8] introduced the following scheme: z; =z € RN
and

(1.2) :Bn+1 =Ty — AnAxn

for every n = 1,2,..., where {\,} is a sequence in [0,2¢]. They proved that the sequence
{zn} generated by (1.2) converges to some element of A~10, where A~10 = {u € RN : Au =
0}.

In the case when A is an inverse-strongly-monotone operator of a closed convex subset C
of a Hilbert space H into H, one method of finding a point u € VI(C, A) is the projection
algorithm: z; =z € C and

(1.3) Znt1 = Po(zn — AMAzy)
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for every n = 1,2,..., where P is the metric projection of H onto C and {\,} is a
sequence of positive numbers. liduka, Takahashi and Toyoda [9] proved that the sequence
{zn} generated by (1.3) converges weakly to some element of VI(C, A).

In the case when the space is a Banach space E, Alber [1] proved the following strong
convergence theorem by the genelarized projection algorithm:

Theorem 1.1 (Alber [1]). Let C be a nonempty closed convez subset of a uniformly conver
and uniformly smooth Banach space E. Suppose an operator A of E into E* satisfies the
following conditions: ‘
(i) A is uniformly monotone, that is, (z — y, Ax — Ay) > ¢¥(||z —~ y||) for all z,y € E,
where Y(t) is a continuous strictly increasing function for all t > 0 with ¢¥(0) =0,
(i) VI(C,A) # 0,
(iii) A has @-arbitrary growth, that is, ||Ay|| < ¢(|ly — z||) for all y € E and {2} =
VI(C, A), where ¢(t) is a continuous nondecreasing function with ¢(0) > 0.
Define a sequence {xy} as follows: z1 =z € E and
Tni1 = HoJ N (Jzy — AnAzy)
foreveryn = 1,2, ..., where Il is the generalized projection from E onto C, J is the duality
mapping from E into E* a,nd {An} is a positive nonincreasing sequence which satisfies
liMy oo An = 0 and }: Xn = 00. Then the sequence {z,} converges strongly to a unique
element z of VI(C, A). :

On the other hand, for finding a zero point of a maximal monotone operator, by using
the prozimal point algorithm, Kamimura, Kohsaka and Takahashi [12] proved the following
weak convergence theorem:

Theorem 1.2 (Kamimura, Kohsaka and Takahashi [12]). Let E be a uniformly convez and
umforml'y smooth Banach space whose duality mapping J is weakly sequentially continuous.
Let A C E x E* be a mazimal monotone operator, let J. = (J +1A)~1J for allr > 0 and
let {z,} be a sequence defined as follows: z; =z € E and

Tntl = Jp,Tn
for every n =1,2,..., where {r,} C (0,00) satisfies imsup,_,o,Tn > 0. If A710 #£ 0, then

the sequence {x,} converges weakly to an element z of A=10. Further z = limp— o0 I 4-10(2n),

where T 4-1¢ is the generalized projection from E onto A~10.

In this paper, motivated by Alber [1], we introduce an iterative scheme for finding a
solution of the variational inequality problem for an operator A which satisfies the following
conditions in a 2-uniformly convex and umformly smooth Banach space E:

(1) A is inverse-strongly-monotone,

(2) VI(C, A) # 9,

(3) |Ay|l < ||Ay — Au|| for all y € C and u € VI(C, A).
Then we obtain a weak convergence theorem (Theorem 3.1). Further, using this result, we
consider the minimization problem (Theorem 3.3 and Corollary 3.5), the complementarity
problem (Theorem 3. 7), the problem of finding a point u € E satisfying 0 = Au (Theorem
3.4) and so on.

2. PRELIMINARIES

Let E be a real Banach space. When {z,} is a sequence in F, we denote strong con-
vergence of {z,} to z € E by =, — z and weak convergence by z, — z. A multi-
valued operator T : E — 2F" with domain D(T) = {# € E : Tz # 0} and range
R(T) = U{Tz € E : z € D(T)} is said to be monotone if (z; — 22,41 — y2) = 0 for
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each z; € D(T) and y; € Tx;, i = 1,2. A monotone operator T is said to be mazimal if
its graph G(T) = {(z,y) : y € Tz} is not properly contained in the graph of any other
monotone operator.

Let U = {z € E : |z|| = 1}. A Banach space E is said to be strictly convez if for any
z,yeU,

z # y implies “ Ty “

It is also said to be uniformly convez if for each € € (0, 2], there exists § > 0 such that for
any z,y € U, .

lz — y|| = € implies “x_—;—_y“ <1-6.

It is known that a uniformly convex Banach space is reflexive and strictly convex. And we
define a function ¢ : [0, 2] — [0, 1] called the modulus of convezity of E as follows:

o) = inf {1~ || 23| s 2,9 € B, ol = Il = L, e — vl 2 <}.

It is known that E' is uniformly convex if and only if §(¢) > 0 for all € € (0,2]). Let p be -

a fixed real number with p > 2. Then F is said to be p-uniformly convez if there exists a
constant ¢ > 0 such that §(e) > ce? for all € € [0,2]. For example, see [4] and [23] for more
details. We know the following fundamental characterization [4, 5] of p-uniformly convex
Banach spaces: :

Lemma 2.1 ([4, 5]). Let p be a real number with p > 2 and let E be a Banach space. Then
E is p-uniformly convex if and only if there exists a constant ¢ with 0 < ¢ < 1 such that

1
(2.1) 5z +ylP + llz - yllF) 2 [lzI” + ly[P
forallz,y € E.

The best constant 1/c in Lemma 2.1 is called the p-uniformly convezity constant of E;
see [4]. Putting z = (u + v)/2 and y = (u — v)/2 in (2.1), we readily conclude that, for all
u,v € E,

(2.2 Sl + i) > |

A Banach space FE is said to be smooth if the limit

llz + ty|| — ll=|l
(2.3) fim t

exists for all z,y € U. It is also said to be uniformly smooth if the limit (2.3) is attained
uniformly for z,y € U. One should note that no Banach space is p-uniformly convex for
1 < p < 2; see [23] for more details. It is well known that Hilbert and the Lebesgue L?
(1 < g £ 2) spaces are 2-uniformly convex and uniformly smooth. Let X be a Banach space
and let L9(X) = L4, X, p; X), 1 < g < 00, be the Lebesgue-Bochner space on an arbitrary
measure space (Q,X, ). Let 2 < p < oo and let 1 < ¢ < p. Then L9(X) is p-uniformly
convex if and only if X is p-uniformly convex; see [23]. For the weak convergence in the
Lebesgue spaces L? (p > 2), see Aoyama, liduka and Takahashi [10].

u+v”
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On the other hand, with each p > 1, the (generalized) duality mapping J, from E into

2E" is defined by ,
Jo(z) = {z* € B* : (z,2*) = |lz|l", [|=*]| = l|=[|P~"}

for all z € E. In particular, J = J; is called the normalized duality mapping. The duality
mapping J has the following properties:



e If E is smooth, then .J is single-valued;
e if E is strictly convex, then J is one-to-one and (z — y,z* — y*) > 0 holds for all

(z,z*), (y,¥") € J with z # y;
e if E is reflexive, then J is surjective;
e if F is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of E.
See [22] for more details. The duality mapping J from a smooth Banach space E into E*

is said to be weakly sequentially continuous if x, — =z implies that Jz, A Jz, where 2
implies the weak* convergence; see [7]. It is also known that

2.4) py - z,42) < |w]” = ll<|l?

for all z,y € E and j, € Jp(z). We know the followmg result [24], which characterizes a
p-uniformly convex Banach space.

Lemma 2.2 ([24]). Let p be a given real number with p > 2 and let E be a p-uniformly
convex Banach space. Then
&
2+ yll” 2 ll2[” + ply: J2) + 557 IWll®
for all z,y € E and j; € Jp(x), where Jp is the generalized duality mapping of E and 1/c
is the p-uniformly convezity constant of E.

Further we know the following result [5, 25], which characterizes a p-uniformly convex
Banach space.

Lemma 2.3 ([5, 25]). Let p be a given real number with p > 2 and let E be a p-uniformly
convez Banach space. Then, for allz,y € E, j; € Jp(a:) and ]y € Jp(y),

(x -y, Jz = .7y>—2p P lz —yll®,

where J, is the generalized duality mapping of E and 1/c is the p-uniformly convezity
constant of E.

Let E be a smooth Banach space. We know the following function studied in Alber (1],
Kamimura and Takahashi [11] and Reich [16]:

é(z,y) = || — 2z, Jy) + [lyl?
for all z,y € E. It is obvious from the definition of ¢ that (J|z|| — ||ly[)? < é(z,y) for
all z,y € E. The following lemma which was proved by Kamimura and Takahashi [11] is
important:

Lemma 2.4 ([11)). Let E be a uniformly convex and smooth Banach space and let {zn}
and {yn} be sequences in E. If {xn} or {yn} is bounded and limp_,oc $(Zn,yn) = 0, then
limp—oo 1Zn — Ynll = 0.

Let E be a reflexive, strictly convex and smooth Banach space and let C be a nonempty
closed convex subset of E. For each z € E, there corresponds a unique element zo € C
(denoted by II¢(z)) such that

é(mO) 33) = Iyrgg ¢(y) SL')
The mapping Il¢ is called the generalized projection from E onto C; see Alber [1]. If E is

a Hilbert space, then Il¢ is coincident with the metric projection from E onto C. We also
know the following lemmas [1]; see also [11]:
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Lemma 2.5 ([1]; see also [11]). Let E be a smooth Banach space, let C be a nonempty
closed convez subset of E, let x € E and let o € C. Then

- ¢(zo,7) = gleg¢(y,m)
if and only if
(y — o, Jzo — Jx) >0 for ally € C.

Lemma 2.6 ([1]; see also [11]). Let E be a reflexive, strictly convez and smooth Banach
space, let C be a nonempty closed convex subset of E and let z € E. Then

¢(y, e (2)) + ¢(Ilc(z), 7) < ¢(y, 2)
for ally e C.

Using Lemmas 2.4 and 2.6, we have the following lemma:

Lemma 2.7 ([10]). Let S be a nonempty closed convez subset of a uniformly conver and
smooth Banach space E. Let {z,} be a sequence in E. Suppose that, for allu € S,

(25) ¢(U, .’Bn+1) S ¢(’U,, .’L‘n)
for everyn = 1,2,.... Then {Ils(z,)} is a Cauchy sequence.

Let E be a reflexive, strictly convex and smooth Banach space and let J be the duality
mapping from E into E*. Then J—! is also single-valued, one-to-one and surjective, and it
is the duality mapping from E* into E. We make use of the following mapping V studied
in Alber [1]:

(2.6) V(g2 = |z|? - 2(z, z*) + ||=* ||

for all z € E and z* € E*. In other words, V(z,z*) = é(z,J }(z*)) for all z € E and
z* € E*. For each z € E, the mapping g defined by g(z*) = V(z,2*) for all z* € E* is a
continuous and' convex function from E* into (—oc,00). We know the following lemma [1]:

Lemma 2.8 ([1]). Let E be a reflezive, strictly convex and smooth Banach space and let
V be as in (2.6). Then

V(z,z*)+ 2(J'1(.7:*) —-z,y*) < V(z,z* +y")
for allz € E and x*,y* € E*.

An operator A of C into E* is said to be hemicontinuous if for all z,y € C, the mapping
f of [0,1] into E* defined by f(t) = A(tz+ (1 —t)y) is continuous with respect to the weak*
topology of E*. We denote by N¢(v) the normal cone for C at a point v € C, that is,

Ne(v) = {2* € B*: (v—y,z*) >0 for all y € C}.
We know the following theorem [17]:

Theorem 2.9 (Rockafellar [17]). Let C be a nonempty closed convez subset of a Banach
épace E and let A be a monotone and hemicontinuous operator of C into E*. LetT C ExXE*
be an operator defined as follows:

_ [ Av+N¢g(v), weC,
Tv_{@, vgC

Then T is mazimal monotone and T—10 = VI(C, A4).
We also know the following lemma. (Lemma 7.1.7 of [22]):
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Lemma 2.10 ([22]). Let C be a nonempty closed convexr subset of a Banach space E and
let A be a monotone and hemicontinuous operator of C into E*. Then

VI(C,A) = {u € C: {v—u,Av) 20 for allv € C}.

It is obvious from Lemma 2.10 that the set VI(C, A) is a closed convex subset of C.
Further, we know the following lemma (Theorem 7.1.8 of [22]):

Lemma 2.11 ([22]). Let C be a nonempty compact convex subset of a Banach space E and
let A be a monotone and hemicontinuous operator of C into E*. Then the set VI(C, A) 1s
nonempty.

3. WEAK CONVERGENCE THEOREMS

Let C be a nonempty closed convex subset of a Banach space E. If an operator A of C
into E* is a-inverse-strongly-monotone, then A is Lipschitz continuous, that is, ||Az—Ay|| <
(1/a)||lz — y|| for all z,y € C.

Now we can state the following weak convergence theorem for finding a solution of the
variational inequality for an inverse-strongly-monotone operator in a 2-uniformly convex
and uniformly smooth Banach space:

Theorem 3.1. Let E be a 2-uniformly convezr and uniformly smooth Banach space whose
 duality mapping J is weakly sequentially continuous and let C be a nonempty closed convez
subset of E. Let A be an operator of C into E* which satisfies the conditions (1), (2) and
(3). Suppose z1 =z € C and {z,} is given by

Tt = oI LIz, — AnAzs)

for every n = 1,2,..., where {\,} is a sequence of positive numbers. If {An} is chosen so
that A\, € [a,}] for some a,b with 0 < a < b < c2a/2, then the sequence {z,} converges

weakly to some element z of VI(C, A), where 1/c is the 2-uniformly convezity constant of
E. Further z = limn_,oo HVI(C,A) (wn)

Using Theorem 3.1, we consider some weak convergence theorems in a 2-unifomly convex
and uniformly smooth Banach space. We first study the problem of finding a minimizer of a
continuously Fréchet differentiable convex functional in a Banach space. Before considering

this problem, we state the following lemma which was proved by Baillon and Haddad (3]:

Lemma 3.2 ([3])). Let E be a Banach space, let f be a continuously Fréchet differentiable
convez functional on E and let V f be the gradient of f. If Vf is 1/a-Lipschitz continuous,
then Vf is a-inverse-strongly-monotone.

Now we can consider the problem of finding a minimizer of a continuously Fréchet dif-
ferentiable convex functional in a Banach space.

Theorem 3.3. Let E be a 2-uniformly convez and uniformly smooth Banach space whose
duality mapping J is weakly sequentially continuous and let C be a nonempty closed convex
subset of E. Let f be a functional on E which satisfies the following conditions:

(1) f is a continuously Fréchet dzﬁerentzable convez functional on E and Vf is 1/a-

Lipshitz continuous,
(2) S = argminyec f(y) = {z € C: f(2) = mingec f(y)} #,
B) IVFleWI < IIVFle) = Vic(w)ll for ally € C and u € 5.

Suppose 1 =z € C and {z,} is given by
Tns1 =Mo" (Jzn — AV flc(@n))
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for everyn = 1,2,..., where {\.} is a sequence of positive numbers. If {\n} is chosen so
that A, € [a,b] for some a,b with 0 < a < b < c®a/2, then the sequence {zn} converges
weakly to some element z of S, where 1/c is the 2-uniformly convezity constant of E.
Further z = limp o0 g (2 ).

We next consider the problem of finding a zero point of an inverse-strongly-monotone
operator of E into E*. In the case when C = E, the condition (3) of Theorem 3.1 holds.

Theorem 3.4. Let E be a 2-uniformly conver and uniformly smooth Banach space whose
duality mapping J is weakly sequentially continuous. Let A be an operator of E into E*
which satisfies the following conditions:

(1) A is a-inverse-strongly-monotone,
(2) A"10={uec E: Au=0}#0.

Suppose x1 = € E and {z,} is given by
Tpi1 = JH(JZn — AnAzy)

for every n = 1,2,..., where {\,} is a sequence of positive numbers. If {\n} is chosen so
that A, € [a,b] for some a,b with 0 < a < b < c?a/2, then the sequence {zn} converges
weakly to some element z of A=10, where 1/c is the 2-uniformly convezity constant of E.
Further z = limp o0 Ia-19(2n)-

Using Theorem 3.4, we can also consider the problem of finding a minimizer of a contin-
uously Fréchet differentiable convex functional in a Banach space.

Corollary 3.5. Let E be a 2-uniformly convez and uniformly smooth Banach space whose
duality mapping J is weakly sequentially continuous. Let f be a functional on E which
- satisfies the following cinditions:

(1) f is a continuously Fréchet differentiable convez functional on E and Vf is 1/a-
Lipshitz continuous,

(2) (V)7'0={z € E: f(z) = minyer f(y)} # 0.
Suppose 1 =z € E and {z,} is given by

Tyl = J—I(an - Aan(.’L'n,))

for every n = 1,2,..., where {\,} is a sequence of positive numbers. If {\,} is chosen so
that A, € [a,b] for some a,b with 0 < a < b < c?a/2, then the sequence {x,} converges
weakly to some element z of (Vf)~10, where 1/c is the 2-uniformly conve:mty constant of
E. Further z = hm.n_.oo H(vf) 10(3711.)

Further we consider the problem of finding a unique solution of the variational inequality
for a strongly monotone and Lipshitz continuous operator. An operator A of C into E* is
said to be strongly monotone if there exists a positive real number o such that

(@ -y, Az — Ay) 2 aflz - y||?

for all z,y € C. For such a case, A is said to be a-strongly monotone. Let C be a nonempty
closed convex subset of a Hilbert space H. One method of finding a point u € VI(C, A) is
the projection algorithm which starts with any z; = 2 € C and updates iteratively zn41
according to the formula (1.3). It is well known that if A is an o-strongly monotone and
B-Lipschitz continuous operator of C into H and {\,} C (0,2c/B?%), then the operator
Po(I — M\ A) is a contraction of C into itself. Hence, the Banach contraction principle
guarantees that the sequence generated by (1.3) converges strongly to the unique solution
of VI(C, A). Motivated by this result, we obtain the following:
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Theorem 3.6. Let E be a 2-uniformly convex and uniformly smooth Banach space whose
duality mapping J is weakly sequentially continuous and let C be a nonempty closed convex
subset of E. Let A be an operator of C into E* which satisfies the following conditions:
(1) - A is a-strongly monotone and [3-Lipschitz continuous,
(2) VI(C,A) #0,
(3) 1Ayl < ||Ay — Az|| for all y € C and {2z} = VI(C, A).
Suppose £1 =z € C and {z,} is given by

Tny1 = HoJ " (Jzn — AnAzy,)

for every n = 1,2,..., where {\,} is a sequence of positive numbers. If {An} is chosen so

that M, € [a,b] for some a,b with 0 < @ < b < c?a/(28%), then the sequence {x,} converges
weakly to a unique element z of VI(C, A), where 1/c is the 2-uniformly convexity constant
of E. '

Finally we consider the complementarity problem. Let K be a nonempty closed convex
cone in E, let A be an operator of K into E* and define its polar in E* to be the set

K*={y*€ E*:(z,y*) >0 for all z € K}.
Then an element u € K is called a solution of the complementarity problem for A if
Au € K* and (u, Au) =
- The set of solutions of the complementarity problem is denoted by C(K, A).

Theorem 3.7. Let E be a 2-uniformly convex and uniformly smooth Banach space whose
duality mapping J is weakly sequentially continuous and let K be a nonempty closed convez
cone in E. Let A be an operator of K into E* which satisfies the following conditions:

(1) A is a-inverse-strongly-monotone,
(2) C(K,A) #0,
(3) |4yl < || Ay — Aul| for ally € K and u € O(K, A).
Suppose 1 =z € K and {z,} is given by
Tp+l = HKJ—l(an - _AnAzn)

for every n = 1,2,..., where {\,} is a sequence of positive numbers. If {\,} is chosen so
that A\ € [a, b for some a,b with 0 < a < b < c?a/2, then the sequence {xn} converges
weakly to some element z of C(K, A), where 1/c is the 2-uniformly convexity constant of
E. Further z = lilmp o0 gk, 4)(Tn)-
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