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ABSTRACT. Let $C$ be a nonempty closed convex subset of a Banach space $E$ and let
$A$ be an inversestrongly-monotone operator of $C$ into the dual space $E$’ of $E$. In this
paper, we introduce the following iterative scheme for finding a solution of the variational
inequality problem for $A:x_{1}=x\in C$ and

$x_{n+1}=\Pi_{C}J^{-1}(Jx_{n}-\lambda_{n}Ax_{n})$

for every $n=1,2,$ $\ldots$ , where $\Pi_{O}$ is the generalized projection from $E$ onto $C,$ $J$ is the
duality mapping from $E$ into $E^{\mathrm{r}}$ and {An} is a sequence of positive real numbers. Then
we obtain a weak convergence theorem $(\mathrm{T}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{m}3.1)$. Using this result, we consider
the problem of finding a minimizer of a convex function, the problem of finding a point
$u\in E$ satisfying $0=Au$ and so on.

1. INTRODUCTION
Let $E$ be a real Banach space with norm $||\cdot||$ , let $E^{*}$ denote the dual of $E$ and let $\langle x, f\rangle$

denote the value of $f\in E^{*}$ at $x\in E$ . Let $C$ be a nonempty closed convex subset of $E$ and
let $A$ be a monotone operator of $C$ into $E^{*}$ . Then we deal with the problem of finding
(1.1) a point $u\in C$ such that $\langle v-\mathrm{u}, Au\rangle.\geq 0$ for all $v\in C$.
This problem is called the variational inequality problem; see [14] and [13]. The set of
solutions of the variational inequality problem is denoted by $\mathrm{V}\mathrm{I}(C, A)$ . An operator $A$ of
$C$ into $E^{*}$ is said to be inverse-stmngly-monotone if there exists a positive real number a
such that

$\langle x-y, Ax-Ay\rangle\geq\alpha||Ax-Ay||^{2}$

for all $x,$ $y\in C$ ; see [6], [15] and [9]. For such a case, $A$ is said to be $\alpha- \mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}$ -strongly-
monotone.

For finding a zero point of an inverse-strongly-monotone operator of the Euclidean space
$\mathbb{R}^{N}$ into itself, Gol $‘ \mathrm{s}\mathrm{h}\mathrm{t}\mathrm{e}\ln$ and $\mathrm{R}\mathrm{e}\mathrm{t}’ \mathrm{y}\mathrm{a}\mathrm{k}\mathrm{o}\mathrm{v}[8]$ introduced the following scheme: $x_{1}=x\in \mathrm{R}^{N}$

and

(Z.2) $x_{n+1}=x_{n}-\lambda_{n}Ax_{n}$

for every $n=1,2,$ $\ldots$ , where $\{\lambda_{n}\}$ is a sequence in $[0,2\alpha]$ . They proved that the sequence
$\{x_{n}\}$ generated by (1.2) converges to some element of $A^{-1}0$ , where $A^{-1}0=\{u\in \mathrm{R}^{N}$ : $Au=$
$0\}$ .

In the case when $A$ is an inverse-strongly-monotone operator of a closed convex subset $C$

of a Hilbert space $H$ into $H$ , one method of finding a point $u\in \mathrm{V}\mathrm{I}(C, A)$ is the projection
algorithm: $x_{1}=x\in C$ and

(1.3) $x_{n+1}=P_{C}(x_{n}-\lambda_{n}Ax_{n})$
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for every $n=1,2,$ $\ldots$ , where $P_{C}$ is the metric projection of $H$ onto $C$ and $\{\lambda_{n}\}$ is a
sequence of positive numbers. Iiduka, Takahashi and Toyoda [9] proved that the sequence
$\{x_{n}\}$ generated by (1.3) converges weakly to some element of $\mathrm{V}\mathrm{I}(C, A)$ .

In the case when the space is a Banach space $E$ , Alber [1] proved the following strong
convergence theorem by the genelarized projection algorithm:

Theorem 1.1 (Alber [1]). Let $C$ be a nonempty closed convex subset of a uniformly convex
and uniformly smooth Banach space E. Suppose an operator $A$ of $E$ into $E^{*}$ satisfies the
following conditions:

(i) $A$ is uniformly monotone, that is, $\langle x-y, Ax-Ay\rangle\geq\psi(||x-y||)$ for all $x,$ $y\in E$ ,
where $\psi(t)$ is a continuous strictly increasing function for all $t\geq 0$ utth $\psi(0)=0$,

(ii) $\mathrm{V}\mathrm{I}(C, A)\neq\emptyset$ ,
(iii) $A$ has $\phi$-arbitrary growth, that is, $||Ay||\leq\phi(||y-z||)$ for all $y\in E$ and $\{z\}=$

$\mathrm{V}\mathrm{I}(C, A)$ , where $\phi(t)$ is a continuous nondecreasing function with $\phi(0)\geq 0$ .
Define a sequence $\{x_{n}\}$ as follows: $x_{1}=x\in E$ and

$x_{n+1}=\Pi_{C}J^{-1}(Jx_{n}-\lambda_{n}Ax_{n})$

for every $n=1,2,$ $\ldots$ , where II$c$ is the generalized projection from $E$ onto $C,$ $J$ is the duality
mapping fivm $E$ into $E^{*}$ and $\{\lambda_{n}\}$ is a positive nonincreasing sequence which satisfies
$\lim_{narrow\infty}\lambda_{n}=0$ and $\sum_{n=1}^{\infty}\lambda_{n}=\infty$ . Then the sequence $\{x_{n}\}$ converges strvngly to a unique
dement $z$ of $\mathrm{V}\mathrm{I}(C,A)$ .

On the other hand, for finding a zero point of a maximal monotone operator, by using
the proximal point algorithm, Kamimura, Kohsaka and Takahashi [12] proved the following
weak convergence theorem:

Theorem 1.2 (Kamimura, Kohsaka and Takahashi [12]). Let $E$ be a uniformly convex and
uniformly smooth Banach space whose duality mapping $J$ is weakly sequentially continuous.
Let $A\subset E\mathrm{x}E^{*}$ be a maxzmal monotone operator, let $J_{f}=(J+rA)^{-1}J$ for all $r>0$ and
let $\{x_{n}\}$ be a sequence defined as follows: $x_{1}=x\in E$ and

$x_{n+1}=J_{\mathrm{r}_{n}}x_{n}$

for every $n=1,2,$ $\ldots$ , where $\{r_{n}\}\subset(0, \infty)$ satisfies $\lim\sup_{narrow\infty}r_{n}>0$. If $A^{-1}0\neq\emptyset$ , then
the sequence $\{x_{n}\}$ converges weakly to an element $zofA^{-1}0$ . $h \hslash herz=\lim_{narrow\infty}\Pi_{A^{-1}0}(x_{n})$ ,
where II$A^{-1}0$ is the generalized projection from $E$ onto $A^{-1}0$ .

In this paper, motivated by Alber [1], we introduce an iterative scheme for finding a
solution of the variational inequality problem for an operator $A$ which satisfies the following
conditions in a 2-uniformly convex and uniformly smooth Banach space $E$ :

(1) $A$ is $\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}8\mathrm{e}$-strongly-monotone,
(2) $\mathrm{V}\mathrm{I}(C, A)\neq\emptyset$ ,
(3) $||Ay||\leq||Ay-Au||$ for a\"u $y\in C$ and $u\in \mathrm{V}\mathrm{I}(C, A)$ .

Then we obtain a weak convergence theorem (Theorem 3.1). Further, using this result, we
consider the minimization problem (Theorem 3.3 and Corollary 3.5), the complementarity
problem (Theorem 3.7), the problem of finding a point $u\in E$ satisfying $0=Au$ (Theorem
3.4) and so on.

2. PRELIMINARIES

Let $E$ be a real Banach space. When $\{x_{n}\}$ is a sequence in $E$ , we denote strong con-
vergence of $\{x_{n}\}$ to $x\in E$ by $x_{n}arrow x$ and weak convergence by $x_{n}$ –x. A multi-
valued operator $T$ : $Earrow 2^{E^{\mathrm{r}}}$ with domain $\mathrm{D}(T)=\{z\in E : Tz\neq\emptyset\}$ and range
$\mathrm{R}(T)=\cup\{Tz\in E : z\in \mathrm{D}(T)\}$ is said to be monotone if $\langle x_{1}-x_{2}, y_{1}-y_{2}\rangle\geq 0$ for
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each $x_{i}\in \mathrm{D}(T)$ and $y_{i}\in Tx_{i},$ $i=1,2$ . A monotone operator $T$ is said to be maximal if
its graph $\mathrm{G}(T)=\{(x, y) : y\in Tx\}$ is not properly contained in the graph of any other
monotone operator.

Let $U=\{x\in E : ||x||=1\}$ . A Banach space $E$ is said to be strictly convex if for any
$x,$ $y\in U$ ,

$x\neq y$ implies $|| \frac{x+y}{2}||<1$ .
It is also said to be uniformly convex if for each $\epsilon\in(0,2]$ , there exists $\delta>0$ such that for
any $x,$ $y\in U$ ,

$||x-y||\geq\epsilon$ implies $|| \frac{x+y}{2}||\leq 1-\delta$.
It is known that a uniformly convex Banach space is reflexive and strictly convex. And we
define a function 6: $[0,2]arrow[0,1]$ called the modulus of convexity of $E$ as follows:

$\delta(\epsilon)=\inf\{1-||\frac{x+y}{2}||$ : $x,$ $y\in E,$ $||x||=||y||=1,$ $||x-y||\geq\epsilon\}’$ .
It is known that $E$ is uniformly convex if and only if $\delta(\epsilon)>0$ for all $\epsilon\in(0,2]$ . Let $p$ be
a fixed real number with $p\geq 2$ . Then $E$ is said to be $p$-unifornly convex if there exists a
constant $c>0$ such that $\delta(\epsilon)\geq c\epsilon^{p}$ for all $\epsilon\in[0,2]$ . For example, see [4] and [23] for more
details. We know the following fundamental characterization $[4, 5]$ of p–uniformly $\mathrm{c}\mathrm{o}\dot{\iota}\mathrm{l}\mathrm{v}\mathrm{e}\mathrm{x}$

Banach spaces:

Lemma 2.1 ([4, 5]). Let $p$ be a real number with $p\geq 2$ and let $E$ be a Banach space. Then
$E$ is $p$-uniformly convex if and only if there exists a constant $c$ with $0<c\leq 1$ such that

(2.1) $\frac{1}{2}(||x+y||^{\mathrm{p}}+||x-y||^{p})\geq||x||^{p}+c^{p}||y||^{p}$

for all $x,$ $y\in E$ .
The best constant $1/c$ in Lemma 2.1 is called the $p$-uniformly convexity constant of $E$;

see [4]. Putting $x=(u+v)/2$ and $y=(u-v)/2$ in (2.1), we readily conclude that, for all
$u,$ $v\in E$ ,

(2.2) $\frac{1}{2}(||u||^{p}+||v||^{p})\geq||\frac{u+v}{2}||^{p}+\mathrm{c}^{\mathrm{p}}||\frac{u-v}{2}||^{\mathrm{p}}$

A Banach space $E$ is said to be smooth if the limit

(2.3) $\lim_{tarrow 0}\frac{||x+ty||-||x||}{t}$

exists for all $x,$ $y\in U$ . It is also said to be uniformly smooth if the limit (2.3) is attained
uniformly for $x,$ $y\in U$ . One should note that no Banach space is p–uniformly convex for
$1<p<2$ ; see [23] for more details. It is well known that Hilbert and the Lebesgue $L^{q}$

( $1<q\leq 2\rangle$ spaces are 2-uniformly convex and uniformly smooth. Let $X$ be a Banach space
and let $L^{q}(X)=L^{q}(\Omega, \Sigma, \mu;X),$ $1\leq q\leq\infty$ , be the Lebesgue-Bochner space on an arbitrary
measure space $(\Omega, \Sigma, \mu)$ . Let $2\leq p<\infty$ and let $1<q\leq p$ . Then $L^{q}(X)$ is p-uniformly
convex if and only if $X$ is p–uniformly convex; see [23]. For the weak convergence in the
Lebesgue spaces $L^{\mathrm{p}}(p\geq 2)$ , see Aoyama, Iiduka and Takahashi [10].

On the other hand, with each $p>1$ , the (generalized) duality mapping $J_{p}$ from $E$ into
$2^{E}$ is defined by

$J_{p}(x)=\{x^{*}\in E^{*} : \langle x, x^{*}\rangle=||x||^{p}, ||x^{*}||=||x||^{p-1}\}$

for all $x\in E$ . In particular, $J=J_{2}$ is called the normalized duality mapping. The duality
mapping $J$ has the following properties:
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$\bullet$ If $E$ is smooth, then $J$ is single-valued;
$\bullet$ if $E$ is strictly convex, then $J$ is one-to-one and $\langle x-y, x^{*}-y^{*}\rangle>0$ holds for all

$(x, x^{*}),$ $(y, y^{*})\in J$ with $x\neq y$ ;
$\bullet$ if $E$ is reflexive, then $J$ is surjective;
$\bullet$ if $E$ is uniformly smooth, then $J$ is uniformly norm-to-norm continuous on each

bounded subset of $E$ .
See [22] for more details. The duality mapping $J$ from a smooth Banach space $E$ into $E^{*}$

is said to be weakly sequentially continuous if $x_{n}arrow x$ implies that $Jx_{n}\mathrm{A}*Jx,$ $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}arrow*$

implies the weak* convergence; see [7]. It is also known that

(2.4) $p\langle y-x_{J\acute{x}},\rangle\leq||y||^{p}-||x||^{p}$

for all $x,$ $y\in E$ and $j_{x}\in J_{p}(x)$ . We know the following result [24], which characterizes a
p.uniformly convex Banach space.

Lemma 2.2 ([24]). Let $p$ be a given real number with $p\geq 2$ and let $E$ be a p-uniformly
convex Banach space. Then

$||x+y||^{p} \geq||x||^{p}+p\langle y,j_{x}\rangle+\frac{c^{p}}{2^{\mathrm{p}-1}}||y||^{p}$

for all $x,$ $y\in E$ and $j_{x}\in J_{p}(x)$ , where $J_{p}$ is the generalized duality mapping of $E$ and $1/c$

is the $p$-uniformly convexity constant of $E$ .

FUrther we know the following result $[5, 25]$ , which characterizes a $p\cdot \mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{l}\mathrm{y}$ convex
Banach space.

Lemma 2.3 ([5, 25]). Let $p$ be a given real number wzth $p\geq 2$ and let $E$ be a $p- unifom\iota ly$

convex Banach space. Then, for all $x,$ $y\in E,$ $j_{x}\in J_{p}(x)$ and $j_{y}\in J_{p}(y)$ ,

$\langle x-y,j_{x}-j_{y}\rangle\geq\frac{c^{p}}{2^{p-2}p}||x-y||^{\mathrm{p}}$ ,

where $J_{p}$ is the generalized duality mapping of $E$ and $1/c$ is the $p$-uniformly convexity
constant of $E$ .

Let $E$ be a smooth Banach space. We know the following function studied in Alber [1],
Kamimura and Takahashi [11] and Reich [16]:

$\phi(x, y)=||x||^{2}-2\langle x, Jy\rangle+||y||^{2}$

for all $x,$ $y\in E$ . It is obvious from the definition of $\phi$ that $(||x||-||y||)^{2}\leq\phi(x, y)$ for
all $x,$ $y\in E$ . The following lemma which was proved by Kamimura and Takahashi [11] is
important:

Lemma 2.4 ([11]). Let $E$ be a uniformly convex and smooth Banach space and let $\{x_{n}\}$

and $\{y_{n}\}$ be sequences in E. If $\{x_{n}\}$ or $\{y_{n}\}$ is bounded and $\lim_{narrow\infty}\phi(x_{n}, y_{n})=0$, then
$\mathrm{h}\mathrm{m}_{narrow\infty}||x_{n}-y_{n}||=0$ .

Let $E$ be a reflexive, strictly convex and smooth Banach space and let $C$ be a nonempty
closed convex subset of $E$ . For $e$ach $x\in E$ , there corresponds a unique element $x_{0}\in C$

(denoted by $\Pi_{C}(x)$ ) such that

$\phi(x_{0},x)=\min_{y\in C}\phi(y,x)$ .

The mapping $\Pi_{C}$ is called the generalized projection from $E$ onto $C$ ; see Alber [1]. If $E$ is
a Hilbert space, then $\Pi_{C}$ in coincident with the metric projection from $E$ onto $C$ . We also
know the following lemmas [1]; see also [11]:
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Lemma 2.5 ([1]; see also [11]). Let $E$ be a smooth Banach space, let $C$ be a nonempty
closed convex subset of $E$ , let $x\in E$ and let $x_{0}\in C$ . Then

$\phi(x_{0}, x)=\min_{y\in C}\phi(y, x)$

if and only if
$\langle y-x_{0}, Jx_{0}-Jx\rangle\geq 0$ for all $y\in C$ .

Lemma 2.6 ([1]; see also [11]). Let $E$ be a reflexive, stnctly convex and smooth Banach
space, let $C$ be a nonempty closed convex subset of $E$ and let $x\in E.$ Then

$\phi(y, \Pi_{C}(x))+\phi(\Pi_{C}(x), x)\leq\phi(y, x)$

for all $y\in C$ .
Using Lemmas 2.4 and 2.6, we have the following lemma:

Lemma 2.7 ([10]). Let $S$ be a nonempty closed convex subset of a uniformly convex and
smooth Banach space E. Let $\{x_{n}\}$ be a sequence in E. Suppose that, for all $u\in S$ ,

(2.5) $\emptyset(u,x_{n+1})\leq\phi(u,x_{n})$

for every $n=1,2,$ $\ldots$ . Then $\{\Pi_{S}(x_{n})\}$ is a Cauchy sequence.

Let $E$ be a reflexive, strictly convex and smooth Banach space and let $J$ be the duality
mapping $\mathrm{h}\mathrm{o}\mathrm{m}E$ into $E^{*}$ . Then $J^{-1}$ is also single-valued, one-to-one and surjective, and it
is the duality mapping from $E^{*}$ into $E$ . We make use of the following mapping $V$ studied
in Alber [1]:

(2.6) $V(x,x^{*})=||x||^{2}-2\langle x,x^{*}\rangle+||x^{*}||^{2}$

for all $x\in E$ and $x^{*}\in E^{*}$ . In other words, $V(x, x”)$ $=\phi(x, J^{-1}(x^{*}))$ for all $x\in E$ and
$x^{*}\in E^{*}$ . For $e$ach $x\in E$ , the mapping $g$ defined by $g(x^{*})=V(x, x^{*})$ for all $x^{*}\in E^{*}$ is a
continuous and convex function ffom $E^{*}$ into $(-\infty, \infty)$ . We know the following lemma [1]:

Lemma 2.8 ([1]). Let $E$ be a reflenive, strictly convex and smooth Banach space and let
$V$ be as in (2.6). Then

$V(x,x^{*})+2\langle J^{-1}(x^{*})-x, y^{*}\rangle\leq V(x, x^{*}+y^{*})$

for all $x\in E$ and $x^{*},$ $y^{*}\in E^{*}$ .
An operator $A$ of $C$ into $E^{*}$ is said to be hemicontinuous if for all $x,$ $y\in C$ , the mapping

$f$ of $[0,1]$ into $E^{*}$ defined by $f(t)=A(tx+(1-t)y)$ is continuous with respect to the weak’
topology of $E^{*}$ . We denote by $\mathrm{N}_{C}(v)$ the normal cone for $C$ at a point $v\in C$ , that is,

$\mathrm{N}_{C}(v)=$ { $x^{*}\in E^{*}$ : $\langle v-y,$ $x^{*}\rangle\geq 0$ for all $y\in C$}.

We know the following theorem [17]:

Theorem 2.9 (Rockafellar [17]). Let $C$ be a nonempty closed convex subset of a Banach
space $E$ and let $A$ be a monotone and hemicontinuous operator $ofC$ into $E^{*}$ . $LetT\subset E\mathrm{x}E^{*}$

be an operator defined as follows:

$Tv=\{$ $Av+\mathrm{N}_{C}(v)\emptyset,$
’

$v\in Cv\not\in C’$.
Then $T$ is maximal monotone and $T^{-1}0=\mathrm{V}\mathrm{I}(C, A)$ .

We also know the following lemma (Lemma 7.1.7 of [22]):
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Lemma 2.10 ([22]). Let $C$ be a nonempty closed convex subset of a Banach space $E$ and
let $A$ be a monotone and hemicontinuous operator of $C$ into $E^{*}$ . Then

$\mathrm{V}\mathrm{I}(C, A)=$ { $u\in C:\langle v-u,$ $Av\rangle\geq 0$ for all $v\in C$}.

It is obvious from Lemma 2.10 that the set $\mathrm{V}\mathrm{I}(C, A)$ is a closed convex subset of $C$ .
Krther, we know the following lemma (Theorem 7.1.8 of [22]):

Lemma 2.11 ([22]). Let $C$ be a nonempty compact convex subset of a Banach space $E$ and
let $A$ be a monotone and hemicontinuous operator of $C$ into $E^{*}$ . Then the set $\mathrm{V}\mathrm{I}(C, A)$ is
nonempty.

3. WEAK CONVERGENCE THEOREMS

Let $C$ be a nonempty closed convex subset of a Banach space $E$ . If an operator $A$ of $C$

into $E^{*}$ is $\alpha-\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}$-strongly-monotone, then $A$ is Lipschitz continuous, that is, $||Ax-Ay||\leq$

$(1/\alpha)||x-y||$ for all $x,$ $y\in C$ .
Now we can state the following weak convergence theorem for finding a solution of the

variational inequality for an inverse-strongly-monotone operator in a 2-uniformly convex
and uniformly smooth Banach space:

Theorem 3.1. Let $E$ be a 2-uniformly convex and uniformly smooth Banach space whose
duality mapping $J$ is weakly sequentially continuous and let $C$ be a nonempty closed convex
subset of E. Let $A$ be an operator of $C$ into $E^{*}$ which satisfies the conditions (1), (2) and
(3). Suppose $x_{1}=x\in C$ and $\{x_{n}\}$ is given by

$x_{n+1}=\Pi_{C}J^{-1}(Jx_{n}-\lambda_{n}Ax_{n})$

for every $n=1,2,$ $\ldots$ , where $\{\lambda_{n}\}$ is a sequence of positive numbers. If $\{\lambda_{n}\}$ is chosen so
that $\mathrm{A}_{n}\in[a, b]$ for some a, $b$ with $0<a<b<c^{2}\alpha/2$ , then the sequence $\{x_{n}\}$ converges
weakIy to some dement $z$ of $\mathrm{V}\mathrm{I}(C, A)$ , where $1/c$ is the 2-uniformly conveznty constant of
E. $h \hslash herz=\lim_{narrow\infty}\Pi_{\mathrm{V}\mathrm{I}(C,A)}(x_{n})$ .

Using Theorem 3.1, we consider some weak convergence theorems in a 2-unifomly convex
and uniformly smooth Banach space. We first study the problem of finding a minimizer of a
continuously Fr\’echet differentiable convex functional in a Banach space. Before considering
this problem, we state the following lemma which was proved by Baillon and Haddad [3]:

Lemma 3.2 ([3]). Let $E$ be a Banach space, let $f$ be a continuously $F\dagger\cdot\acute{e}chet$ differentiable
convex.fimctional on $E$ and let $\nabla f$ be the gradient of $f$ . If $\nabla f$ is $1/\alpha$ -Lipschitz continuous,
ihen $\nabla f$ is $\alpha-inverse$-strongly-monotone.

Now we can consider the problem of finding a minimizer of a continuously IFlr\’echet dif-
ferentiable convex functional in a Banach space.

Theorem 3.3. Let $E$ be a 2-uniformly convex and uniformly smooth Banach space whose
duality mapping $J$ is weakly sequentially continuous and let $C$ be a nonempty closed convex
subset of E. Let $f$ be a functional on $E$ which satisfies the following conditions:

(1) $f$ is a continuously $fi\vdash\acute{e}chet$ differentiable convex functional on $E$ and $\nabla f$ is $1/\alpha-$

Lipshitz continuous,
(2) $S= \arg\min_{y\in C}f(y)=\{z\in C:f(z)=\min_{y\in c}f(y)\}\neq\emptyset$ ,
(3) $||\nabla f|c(y)||\leq||\nabla f|c(y)-\nabla f|c(u)||$ for all $y\in C$ and $u\in S$ .

Suppose $x_{1}=x\in C$ and $\{x_{n}\}$ is given by
$x_{n+1}=\Pi_{C}J^{-1}(Jx_{n}-\lambda_{n}\nabla f|c(x_{n}))$
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for every $n=1,2,$ $\ldots$ , where $\{\lambda_{n}\}$ is a sequence of positive numbers. If $\{\lambda_{n}\}$ is chosen so
that $\lambda_{n}\in[a, b]$ for some a, $b$ with $0<a<b<c^{2}\alpha/2$ , then the sequence $\{x_{n}\}$ converges
weakly to some element $z$ of $S$ , where $1/c$ is the 2-uniformly convevzty constant of $E$ .
Further $z= \lim_{narrow\infty}\square s(x_{n})$ .

We next consider the problem of finding a zero point of an inversestrongly-monotone
operator of $E$ into $E^{*}$ . In the case when $C=E$, the condition (3) of Theorem 3.1 holds.

Theorem 3.4. Let $E$ be a 2-uniformly convex and uniformly smooth Banach space whose
duality mapping $J$ is weakly sequentially continuous. Let $A$ be an operator of $E$ into $E$“

which satisfies the following conditions:
(1) $A$ is $\alpha- inverse$-strongly-monotone,
(2) $A^{-1}0=\{u\in E: Au=0\}\neq\emptyset$ .

Suppose $x_{1}=x\in E$ and $\{x_{n}\}$ is given by

$x_{n+1}=J^{-1}(Jx_{n}-\lambda_{n}Ax_{n})$

for every $n=1,2,$ $\ldots$ , where $\{\lambda_{n}\}$ is a sequence of positive numbers. If $\{\lambda_{n}\}$ is chosen so
that $\lambda_{n}\in[a, b]$ for some a, $b$ with $0<a<b<c^{2}\alpha/2$ , then the sequence $\{x_{n}\}$ converges
weakly to some element $z$ of $A^{-1}0$ , where $1/c$ is the 2-uniformly convexity constant of $E$ .
$R \iota rtherz=\lim_{narrow\infty}\Pi_{A^{-1}0}(x_{n})$ .

Using Theorem 3.4, we can also consider the problem of finding a minimizer of a contin-
uously Fr\’echet differentiable convex functional in a Banach space.

Corollary 3.5. Let $E$ be a 2-uniformly convex and uniformly smooth Banach space whose
duality mapping $J$ is weakly sequentially continuous. Let $f$ be a functional on $E$ which
satisfies the following cinditions:

(1) $f$ is a continuously $fi\succ\acute{e}chet$ differentiable convex functiond on $E$ and $\nabla f$ is $1/\alpha-$

Lipshitz continuous,
(2) $( \nabla f)^{-1}0=\{z\in E : f(z)=\min_{y\in E}f(y)\}\neq\emptyset$.

Suppose $x_{1}=x\in E$ and $\{x_{n}\}$ is given by

$x_{n+1}=J^{-1}(Jx_{n}-\lambda_{n}\nabla f(x_{n}))$

for every $n=1,2,$ $\ldots$ , where $\{\lambda_{n}\}$ is a sequence of positive numbers. If $\{\lambda_{n}\}$ is chosen so
that $\lambda_{n}\in[a, b]$ for some a, $b$ with $0<a<b<c^{2}\alpha/2$ , then the sequence $\{x_{n}\}conve\eta es$

weakly to some element $z$ of $(\nabla f)^{-1}0$ , where $1/c$ is the 2-uniformly convexity constant of
E. Fierther $z= \lim_{narrow\infty}\Pi_{(\nabla f)0(x_{n})}-1$ .

Further we consider the problem of finding a unique solution of the variational inequality
for a strongly monotone and Lipshitz continuous operator. An operator $A$ of $C$ into $E^{*}$ is
said to be strongly monotone if there exists a positive real number a such that

$\langle x-y,Ax-Ay\rangle\geq\alpha||x-y||^{2}$

for all $x,$ $y\in C$ . For such a case, $A$ is said to be a-strongly monotone. Let $C$ be a nonempty
closed convex subset of a Hilbert space $H$ . One method of finding a point $u\in \mathrm{V}\mathrm{I}(C, A)$ is
the projection algorithm which starts with any $x_{1}=x\in C$ and updates iteratively $x_{n+1}$

according to the formula (1.3). It is well known that if $A$ is an $\alpha$-strongly monotone and
$\beta$-Lipschitz continuous operator of $C$ into $H$ and $\{\lambda_{n}\}\subset(0,2\alpha/\beta^{2})$ , then the operator
$P_{C}(I-\lambda_{n}A)$ is a contraction of $C$ into itself. Hence, the Banach contraction principle
guarantees that the sequence generated by (1.3) converges strongly to the unique solution
of $\mathrm{V}\mathrm{I}(C, A)$ . Motivated by this result, we obtain the following:
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Theorem 3.6. Let $E$ be a 2-uniformly convex and uniformly smooth Banach space whose
duality mapping $J$ is weakly sequentially continuous and let $C$ be a nonempty closed convex
subset of E. Let $A$ be an operator of $C$ into $E^{*}$ which satisfies the following conditions:

(1) $A$ is a-strongly monotone and $\beta$-Lipschitz continuous,
(2) $\mathrm{V}\mathrm{I}(C, A)\neq\emptyset$ ,
(3) $||Ay||\leq||Ay-Az||$ for all $y\in C$ and $\{z\}=\mathrm{V}\mathrm{I}(C, A)$ .

Suppose $x_{1}=x\in C$ and $\{x_{n}\}$ is given by
$x_{n+1}=\Pi_{C}J^{-1}(Jx_{n}-\lambda_{n}Ax_{n})$

for every $n=1,2,$ $\ldots$ , where $\{\lambda_{n}\}$ is a sequence of positive numbers. If $\{\lambda_{n}\}$ is chosen so
that $\lambda_{n}\in[a, b]$ for some a, $b$ with $0<a<b<c^{2}\alpha/(2\beta^{2})$ , then the sequence $\{x_{n}\}$ converges
weakly to a unique element $z$ of $\mathrm{V}\mathrm{I}(C, A)$ , where $1/c$ is the 2-uniformly convexity constant
of $E$ .

Finally we consider the complementarity problem. Let $K$ be a nonempty closed convex
cone in $E$ , let $A$ be an operator of $K$ into $E^{*}$ and define its polar in $E^{*}$ to be the set

$K^{*}=$ { $y^{*}\in E^{*}:$ $\langle x,$ $y^{*}\rangle\geq 0$ for all $x\in K$ }.
Then an element $u\in K$ is called a solution of the complementarity problem for $A$ if

$Au\in K^{*}$ and $\langle u, Au\rangle=0$ .
The set of solutions of the complementarity problem is denoted by $\mathrm{C}(K, A)$ .
Theorem 3.7. Let $E$ be a 2-uniformly convex and uniformly smooth Banach space whose
duality mapping $J$ is weakly sequentially continuous and let $K$ be a nonempty dosed convex
cone in E. Let $A$ be an operator of $K$ into $E^{*}$ which satisfies the following conditions:

(1) $A$ is a-inverse-strongly-monotone,
(2) $\mathrm{C}(K, A)\neq\emptyset$,
(3) $||Ay||\leq||Ay-Au||$ for all $y\in K$ and $u\in \mathrm{C}(K, A)$ .

Suppose $x_{1}=x\in K$ and $\{x_{n}\}$ is given by
$x_{n+1}=\Pi_{K}J^{-1}(Jx_{n}-\lambda_{n}Ax_{n})$

for every $n=1,2,$ $\ldots$ , where $\{\lambda_{n}\}$ is a sequence of positive numbers. If $\{\lambda_{n}\}$ is chosen so
that $\lambda_{n}\in[a, b]$ for some a, $b$ with $0<a<b<c^{2}a/2$ , then the sequence $\{x_{n}\}$ converges
weakly to some element $z$ of $\mathrm{C}(K, A)_{f}$ where $1/c$ is the 2-uniformly convexity constant of
E. thrther $z= \lim_{narrow\infty}\mathrm{I}\mathrm{I}_{\mathrm{C}(K,A)}(x_{n})$ .
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