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1. Introduction

In the study of bridge deterioration, it is important not only to consider structural
evaluations and traffic load but also environmental factors such as climate and frequency
of earthquakes. However, such studies require extensive data sets and methods for handling
them. In the United States, the National Bridge Inventory Database (NBI) contains data
on over 600,000 bridges for a span of 33 years. In the past few years, there has been a
growing interest in the study of data mining methods for efficiently using NBI database with
Geographic Information System (GIS) database to analyze and predict bridge deterioration
[1]. The safety of bridges in Japan is also crucial for the national trafic network. Japan

has more than 1,000 islands which form a long chain-like island arc surrounded by the
Pacific Ocean and the Sea of Japan. In Japan, there exist extensive database that contains
detailed historical data on over 672,000 bridges. Moreover, environmental factors have
great impact to bridges. To utilize the extensive bridge database combined with very large
geographic data sets, we have to develop efficient surface fitting methods.

Geographic datasets are often made at irregularly spaced points and have measurement
errors. To analyze the irregularly spaced noisy data, many interpolation methods and least-
squares smooth fitting methods have been developed. Our aim is to efficiently use very
large data sets. In this paper, we study finite element discretization with a preconditioned
Newton method to find an approximation of a smooth function which minimizes a sum
of data residuals and the second derivative in $H^{2}(\Omega)$ under some constraints on data.
The discretization results a large scale constrained quadratic program which involves large
sparse matrices. We show the quadratic program has a unique solution and propose a
preconditioned Newton method to find the solution.

Aomori Prefecture is located on the northernmost tip of Hunshu Island, Japan. It
is bordered by the Sea of Japan(west), the Pacific Ocean(east), and the Tsugaru Chan-
nel(north). There are 1646 bridges in Aomori Region, in which 734 bridges are managed
by Aomori Prefecture. See Figure 1. Environmental factors have significant impact to
these bridges. We use the proposed method to form surfaces over Aomori Region by geo
graphic databases, such that every bridge became associated with snowfall value, rainfall
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value, earthquake magnitude, etc. Using these expanded data sets, we can investigate the
relation between environmental factors and bridge deterioration by data mining methods
[1].

2. Finite element surface fltting

Let St $\subset \mathbb{R}^{2}$ be a convex bounded domain. The given data are measurement points $\mathrm{x}_{i}=$

$(x_{1,1}, x_{1,2})\in\Omega$ and corresponding real values $y_{i},$ $i=1,2,$ $\ldots n$ . In a cartesian coordinate
system, the $x:,1$ and $x_{i,2}$ coordinates reflect the longitude and latitude, while the real
value $y_{i}$ may reflect rainfall value or earthquake magnitude at point $\mathrm{x}_{i}$ . We assume that
$\mathrm{x}_{\dot{*}},$ $i=1,2,$ $\ldots,$

$n$ are not collinear (i.e., they do not all lie on a line in $\Omega$). Let $S=\{\sim,i=$

$1,2,$
$\ldots,$

$n\}$ be the set of all measurement points, and $S_{0}\subset S$ be a subset of $S$ .
We consider the following minimization problem,

$\min$ $\frac{1}{n}\sum_{1=1}^{n}(f(\sim)-y_{i})^{2}+\alpha|f|_{H^{2}(\Omega)}^{2}$

(1)
$\mathrm{s}.\mathrm{t}$ . $f(*)\geq\tilde{y}:$ , $\sim\in S_{0}$

over all functions $f$ in the Sobolev space $H^{2}(\Omega)$ . Here $\tilde{y}$: are input data related to $y_{i}$ and
a is a fixed positive parameter. The minimizer of (1) not only depends on the given data
$\ ,y_{*}$ and $\tilde{y}_{1}$ , but also on the parameter a. An appropriate choice of $\alpha$ depends on the size
of the data.

In the case where $S_{0}$ is empty, the minimizer of (1) is called a thin plate spline. It
has been shown by Duchon[6] that there exists a unique thin plate spline in $H^{2}(\Omega)$ , when
$\Omega=\mathbb{R}^{2}$ . Moreover, numerical methods for finding approximate thin plate splines using
simple finite element spaces in $H^{2}(\Omega)$ have been studied. However, there are some technical
problems to use standard thin plate splines for applications that have large data sets. To
deal with large data sets, Christen, Roberts, Hegland and Altas $[5, 7]$ proposed a method to
find a finite element thin plate spline in $H^{1}(\Omega)$ . In their method, only first order derivatives
occur, so that simple finite element spaces in $H^{1}(\Omega)$ can be used to discretize the problem.

In many applications, some constraints on data are required. For instance, at measure-
ment points, snowfall values can not be negative or less than certain values. Furthermore,
in some case, we do not know the exact values at some measurement points. Only upper
or lower bounds of these values are available. Hence it is necessary to study the case where
$S_{0}$ is nonempty. In this paper, we generalize the finite element approximation technique
for the thin plate spline in [7] and define a discretization problem of (1). We introduce new
vector variable $\mathrm{u}=(u_{1},u_{2})$ which represents the gradient of the function $f$ in (1), that is,

$\nabla f=\mathrm{u}$. (2)
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Moreover, we generalize the normalization condition

$\sum_{\dot{*}=1}^{n}(f(\sim)-y_{i})=0$

for the case $S_{0}=\emptyset$ to

$\sum_{\mathrm{X}:\not\in s_{0}}(f(\mathrm{x}_{i})-y_{*}.)=0,$

$f(x_{i})-\tilde{y}_{i}\geq 0,$ $\mathrm{x}_{i}\in S_{0}$ . (3)

Suppose that $S_{0}=\{\mathrm{x}_{n-t+1}, \ldots,\mathrm{x}_{n}\}$ , where $r\geq 0$ ( $r=0$ means $So=\emptyset$).
Now we consider an associated function $\mathrm{u}\in H^{2}(\Omega)$ satisfies

$f(\mathrm{x})=u(\mathrm{x})+\mu$ and $\sum_{:=1}^{n-f}u(\ )=0$

where $\mu$ is a constant. From (3) we have $\mu=\frac{1}{\hslash-f}\sum_{i=1}^{n-\mathrm{r}}y_{i}$ . This leads to the following
minimization problem:

$\min$ $\frac{1}{n}.\sum_{*=1}^{n}(u(\mathrm{x}_{1})+\mu-y:)^{2}+\alpha(|u_{1}|_{H^{1}(\Omega)}^{2}+|u_{2}|_{H^{1}(\Omega)}^{2})$

$\mathrm{s}.\mathrm{t}$ . $($Vu, $\nabla v)_{L^{2}(\Omega)^{2}}=(\mathrm{u},\nabla v)_{L^{2}(\Omega)^{2}}$ , $\forall v\in H^{1}(\Omega)$

$\sum_{i=1}^{n-\mathrm{r}}u(\sim)=0$ (4)

$u(\mathrm{x}\iota)+\mu\geq\tilde{y}_{\dot{*}}$ , $i=1,2,$ $\ldots,r$

over all functions $u,$ $u_{1},$ $u_{2}\in H^{1}(\Omega)$ . In this problem, $u_{1}$ and $u_{2}$ are approximations of $\frac{\partial u}{\partial x_{1}}$

and $\frac{\partial u}{\partial x_{2}’}$ respectively. The purpose in introducing auxiliary functions $\mathrm{u}_{1}$ and $u_{2}$ is for
the use of simple finite element spaces in $H^{1}(\Omega)$ . In particular, we use simple continuous
piecewise polynomial spaces $\Omega^{h}\subset H^{1}(\Omega)$ associated with a finite element mesh over the
domain $\Omega$ .

Let $\mathrm{b}(x)=(b_{1}(x), \ldots,b_{m}(\mathrm{x}))^{T}$ denote a vector of basis functions for $\Omega^{h}$ . Then func-
tions $\mathrm{u},$ $u_{1},$ $u_{2}$ are given by

$\mathrm{u}(\mathrm{x})=\mathrm{b}(\mathrm{x})^{T}c$, $u_{1}(\mathrm{x})=\mathrm{b}(\mathrm{x})^{T}g_{1}$ , $u_{2}(\mathrm{x})=\mathrm{b}(\mathrm{x})^{T}g_{2}$ ,

where the vectors $c,g_{1},g_{2}\in \mathbb{R}^{m}$ represent the linear combination coefficients in the basis
$\mathrm{b}$ . Using the following matrix $N=(b:(x_{j}))\in \mathbb{R}^{n\mathrm{x}m}$, we can define the values of $u,$ $u_{1},$ $u_{2}$

at points $x_{l},i=1,2,$ $\ldots,n$ , by

$u(\mathrm{r})=(Nc):$ , $u_{1}(n)=(Ng_{1})_{i}$ , $u_{2}(\mathrm{r})=(Ng_{2}):$ .
Let matrices $A,$ $B_{1},$ $B_{2}\in \mathbb{R}^{m\mathrm{x}m}$ be given by

$A_{i,j}= \int_{\Omega}(\frac{\partial b_{1}}{\partial x_{1}}\frac{\partial b_{j}}{\partial x_{1}}+\frac{\partial b_{i}}{\partial x_{2}}\frac{\partial b_{j}}{\partial x_{2}})d\mathrm{x}$ , $(B_{\iota})_{i,j}= \int_{\Omega}\frac{\partial b_{i}}{\partial x_{l}}$bjdx, $l=1,2$.
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Set $P=(0_{r\mathrm{x}(n-r)}, I_{r\mathrm{x}r})\in \mathbb{R}^{r\mathrm{x}n}$ . Let $e_{n}\in R^{n}$ and $e_{f}\in R^{r}$ be the vectors whose $\mathrm{e}1\triangleright$

ments are all ones. For the corresponding data $y_{i}$ , we set $\mathrm{y}=(y_{1}\cdots y_{n})^{T}\in \mathbb{R}^{n}$ , $\tilde{\mathrm{y}}=$

$(\tilde{y}_{1}\cdots\tilde{y}_{\mathrm{r}})^{T}\in \mathbb{R}^{r}$ . Now, we can write the finite element surface fitting problem as a con-
strained optimization problem in $\mathbb{R}^{3m}$ ,

$\min$ $\frac{1}{n}||Nc+\mu e_{n}-\mathrm{y}||_{2}^{2}+\alpha(g_{1}^{T}Ag_{1}+g_{2}^{T}Ag_{2})$

$\mathrm{s}.\mathrm{t}$ . $Ac=B_{1}g_{1}+B_{2}g_{2}$ (5)
$(e_{n}^{T}-e_{f}^{T}P)Nc=0$

$PNc+\mu e_{r}\geq\tilde{\mathrm{y}}$

It is worth noting that the number of variables $(c,g_{1},g_{2})\in \mathbb{R}^{3m}$ depends on the dis-
cretization of a finite element mesh, but not on the size of data. Moreover, matrices
$A,$ $B_{1},$ $B_{2}\in \mathbb{R}^{m\mathrm{x}m}$ and $N\in \mathbb{R}^{n\mathrm{x}m}$ are sparse.

3. Preconditioned Newton method

In this section, we show that problem (5) has a solution and present a preconditioned
Newton method for solving (5).

Let

$W=$ .

For any given $g_{1},g_{2}\in \mathbb{R}^{m},$ $c$ can be obtained by the equality constraints in problem (5) as

$c=W^{+}$ ,

where $W^{+}$ is the generalized inverse of $W[2]$ which satisfies $W^{+}W=I\in \mathbb{R}^{m\mathrm{x}m}$. Let
$W_{1}^{+}\in \mathbb{R}^{m\mathrm{x}m}$ be the submatrix of $W^{+}$ whose entries lie in the first $m$ columns. Then we
have $c=W_{1}^{+}(B_{1g_{1}}+B_{2g_{2}})$ . Let us denote

$g=$ , $G=NW_{1}^{+}(B_{1}, B_{2}),$ $H=$ .

Then problem (5) reduces to the following optimization problem

$\min$ $\frac{1}{n}||Gg+\mu e_{n}-\mathrm{y}||_{2}^{2}+\alpha g^{T}Hg$

(6)
$\mathrm{s}.\mathrm{t}$ . $PGg+\mu e_{f}\geq\tilde{\mathrm{y}}$ .

The objective function in (6) can be rewritten as

$\frac{1}{n}g^{T}(G^{T}G+n\alpha H)g-\frac{2}{n}g^{T}G^{T}(\mathrm{y}-\mu e_{n})+\frac{1}{n}(\mathrm{y}- \mathrm{p}e_{n})^{T}(\mathrm{y}-\mu e_{n})$ .
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Let $Z=W_{1}^{+}N^{T}NW_{1}^{+}$ . The matrix

$Q:=G^{T}G+n\alpha H=$

is symmetric positive definite. Therefore, the objective function in (6) is strongly convex,
and problem (6) has a unique solution.

By convex optimization theory, problem (6) is equivalent to the following system of
nonsmooth equations

$F(z)==0$ (7)

where $z=(g, \lambda)$ and A $\in R^{f}$ is the Lagrange multiplier.
To solve (7), we use the generalized Newton method,

$z^{k+1}=z^{k}-V_{k}^{-1}F(z^{k})$ (8)

where $V_{k}$ is an element in the generalized Jacobian of $F$ at $z^{k}[4]$ . Moreover, at each
iteration of (8), we use a preconditioned Uzawa method [3] to solve the system of linear
equations

$V_{k}d=-F(z^{k})$ . (9)

We can show that this method superlinearly converges to a solution $z^{*}$ of (7), that is,

$\lim_{\mathrm{k}arrow\infty}\frac{||z^{k+1}-z^{*}||}{||z^{k}-z^{*}||}=0$ . (10)

Moreover, it can be shown that there is a constant $\kappa$ such that for any $z\in R^{2m+\gamma}$ ,

$||z-z^{*}||\leq\kappa||F(z)||$ . (11)

This error bound can be used to examine how measurement errors in the data affect
predicated values.

4. Numerical experiment

In the United States, data mining methods have been used to efficiently access bridge
inventory database and geographic information for the study of bridge deterioration [1].
The KITACON company inspects bridges in Aomori Region regularly and has structural
evaluations and traffic records for all bridges managed by Aomori Prefecture. In order to
use efficient data mining methods for bridge management, we need environmental data,
such as snowdepth values, rainfall values, earthquake magnitude, etc, on every bridge. We
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used the finite element surface fitting method proposed in previous sections and climate
data from Japan Meteorological Agency to predicate some environmental data on every
bridge in Aomori Region.

Aomori Region is surrounded by water on all three sides, the Pacific Ocean to the
east, the Tsugaru Channel to the north and the sea of Japan to the west. Climate factors
have great impact to bridges in Aomori Region. We report some numerical results on
temperature, snowdepth, rainfall in Figures 2-4.

To verify the accuracy of the predicated environmental data on every bridge, we use
these predicated data and the finite element surface fitting method to define testing values
at the measurement points of Japan Meteorological Agency. Table 1 shows the relative
error of the testing values to the true values at the measurement points.

Finally, we use the”peaks” function from Matlab to show that our finite element surface
fitting method can handle very large data sets. The peaks function is formed as a linear
combination of several scaled and translated Gaussian distributions. Table 2 reports the
error $= \frac{1}{n}\sum_{1=1}^{n}.|f(\mathrm{r})-y:|$ for a data set of $n$ points with a finite element grid of $m$ by $m$ .

Preliminary numerical results indicate that the finite element surface fitting method is
promising for handling very large data sets. The generalized Newton method is efficient
for solving (7). Computation time for solving (7) are shown in thble 1 and Table 2.
Computations were performed by using Matlab 7.0 on a IBM PC with IGB memory and
Pentium $4(3\mathrm{G}\mathrm{H}\mathrm{z})$ .
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$\frac{\mathrm{T}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}1:\mathrm{E}\mathrm{n}\mathrm{v}\mathrm{i}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{l}\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{A}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{i}(\mathrm{n}=734,\alpha=10^{-10})}{\mathrm{m}\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}\mathrm{C}\mathrm{P}\mathrm{U}(\sec)}$

mean $\max$

temperature 380 7.71E-04 6. $25\mathrm{B}03$ 1.31
575 5.24E-04 5.38E-03 4.14
992 2.74E-04 3.10E-03 20.33

rainfall 380 2.98E-03 3.43E-02 1.23
575 2.24E-03 2.12E-02 4.22
992 1.01E-03 1.57E-02 20.43

snowdepth $36l$ 7.90E-03 1.33E-0l 1.11
576 5.29E-03 7.09E-02 4.19
961 3.13E-03 4. $69\mathrm{B}02$ 18.52

Table 2: Numerical results using the peaks function $(\alpha=10^{-11})$

$\mathrm{n}$ $\mathrm{m}$ $\mathrm{r}$ absolute error CPU(sec)
mean $\max$

$10^{3}$ 324 $0$ 3.25E-02 0.244 1.34
30 3.$28\mathrm{B}02$ 0.241 2.66

400 $0$ 2.27E-02 0.207 2.30
40 2.26E-02 0.206 3.55

$10^{4}$ 324 $0$ 3.43E-02 0.348 1.30
30 3.47E-02 0.346 2.44

400 $0$ 2.70E-02 0.280 2.25
40 2. $75\mathrm{B}02$ 0.279 3.56

$10^{5}$ 324 $0$ 3.49E-02 0.450 1.98
30 3.61E-02 0.448 2.02

400 $0$ 2.80E-02 0.529 3.39
40 2.72E-02 0.351 3.66

$10^{6}$ 400 $0$ 2. $73\mathrm{B}02$ 0.371 2.30
40 2.82E-02 0.368 5.28

500 $0$ 1.97E-02 0.289 5.08
50 $2.00\mathrm{E}\cdot 02$ 0.288 9.56
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Figure 1: Distribution of bridges in Aomori

Figure 2: Values of maximum difference in temperature in 2005 $(^{\mathrm{o}}\mathrm{C})$
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Figure 3: Values of highest snowdepth in 2005 (cm)

Figure 4: Values of total rainfall in 2005 (mm)
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