Singular limit problem for some elliptic systems

岡山大学・大学院自然科学研究科(理)大下承民(Yoshihito Oshita) Graduate School of Natural Science and Technology Okayama University

1 Introduction

We consider the following singularly perturbed elliptic systems:

$$\epsilon^2 \Delta u + f(u) - v = 0, \qquad \Delta v + g(u, v) = 0, \tag{1}$$

where u = u(y) and v = v(y) are real-valued functions on $y \in \mathbb{R}^2$; $\epsilon > 0$ is a positive constant; $f \in C^1(\mathbb{R})$ is a negative derivative of a double-equal-well potential $W \in C^2(\mathbb{R})$ satisfying $W(1) = W(-1) = 0 < W(s)^{\forall} s \in \mathbb{R} \setminus \{1, -1\}, W''(1)W''(-1) > 0$; and $g \in C^1(\mathbb{R}^2)$ is a smooth function such that g(1, 0) = 1 - m > 0, g(-1, 0) = -m < 0. Note that there hold $f(s) = -W'(s), \int_{-1}^1 f(s) ds = 0$, and f(i) = 0, f'(i) < 0 ($i = \pm 1$). A typical example of (f, g)is FitzHugh-Nagumo type, i.e., $f(s) = s - s^3$, $g(u, v) = \frac{1}{2}u - v$. The general case is referred to as the stationary activator-inhibitor system.

When the parameter ϵ is extremely small, very interesting patterns, such as stripes or spots, often appear. As a mathematical approach to understand this pattern formation, we consider the limit $\epsilon \rightarrow 0$. Then usually the domain is divided into two regions and the remaining part becomes a thin layer. In some cases, the width of the internal transition layer approaches 0 in the limit, and the discontinuity surface inside the domain, which is called sharp interface, appears. Recently very fine layered patterns of (1) have attracted a great deal of attention. See [5, 14, 15]. We consider this fine pattern which has the space scale of $\epsilon^{1/3}$ order. This is the unique scale that the driving force of ν has the same order as that of the curvature of the sharp interface. See [12]. This scale also appeared in [5]. After rescaling $x = \frac{\gamma}{\epsilon^{1/3}}$ and

 $\varepsilon = \epsilon^{2/3}$, we obtain

$$\begin{cases} \Delta u + \frac{1}{\varepsilon^2} (f(u) - v) = 0, \\ \Delta v + \varepsilon g(u, v) = 0. \end{cases}$$
(2)

We consider the solutions of (2) subject to the homogeneous Neumann boundary condition:

$$(-\varepsilon^{2}\Delta u = f(u) - v, \text{ in } \Omega,$$

$$-\Delta v = \varepsilon g(u, v), \text{ in } \Omega,$$

$$\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0, \text{ on } \partial \Omega,$$
(3)

where $\Omega \subset \mathbb{R}^2$ is a bounded domain with the smooth bounday $\partial \Omega$; $\partial/\partial n$ is the outward normal derivative on $\partial \Omega$.

We shall formally deduce the reduced problem. If we assume $u \to u_0$ and $v \to v_0$ in the limit $\varepsilon \to 0$, we have $f(u_0) = v_0$, $\Delta v_0 = 0$ in Ω , $\frac{\partial v_0}{\partial n} = 0$ on $\partial \Omega$. Hence v_0 is a constant. Now assume that v_0 is close to 0 and $u_0 = f_1^{-1}(v_0)\mathbf{1}_{\Omega^+} + f_{-1}^{-1}(v_0)\mathbf{1}_{\Omega^-}$, where Ω^+ , Ω^- are mutually disjoint open sets in Ω such that $\Gamma = \Omega \setminus (\Omega^+ \cup \Omega^-)$ is a curve embedded in Ω ; $\mathbf{1}_{\Omega^\pm}$ denote the characteristic functions of Ω^{\pm} ; $u = f_{\pm 1}^{-1}(v)$ are the inverse functions of v = f(u) near $u = \pm 1$ respectively. Here we call Γ sharp interface. We shall identify the profile of u near Γ .

It is known that there exists a constant $\tau > 0$, depending on f, such that for any $v \in (-\tau, \tau)$, the equation for u, $u_t = u_{xx} + f(u) - v$, has a traveling wave solution u(x, t) = Q(x - ct; v)with the speed c = c(v) and the profile $Q = Q(\xi; v)$. More precisely, c(v) and $Q(\xi; v)$ for $v \in (-\tau, \tau), \xi \in \mathbb{R}$ satisfy

$$\begin{cases} \ddot{Q} + c(v)\dot{Q} + f(Q) - v = 0, & \text{in } \mathbb{R}, \\ \lim_{\xi \to -\infty} Q(\xi; v) = f_1^{-1}(v), \\ \lim_{\xi \to +\infty} Q(\xi; v) = f_{-1}^{-1}(v), \\ c(0) = 0. \end{cases}$$

Here dot means $d/d\xi$. See, for example, [4]. Near the sharp interface Γ , consider the function

$$u(x)=Q\bigg(\frac{d(x)}{\varepsilon};v\bigg),$$

where d = d(x) is the signed distance function from Γ such that d(x) > 0 if $x \in \Omega^-$ and d(x) < 0 if $x \in \Omega^+$. If the above function satisfy the first equation of (3) for each prescribed v, noting that $|\nabla d| = 1$, there holds $\ddot{Q} + \varepsilon(\Delta d)\dot{Q} + f(Q) - v = 0$. Since Δd is equal to the curvature κ of Γ on the interface Γ (here we choose the sign such that $\kappa > 0$ when Ω^+ is a disk), it follows that $c(v) = \varepsilon \kappa$ on Γ . Since c(0) = 0 by the assumption, we may assume that $v_0 = 0$ and $u_0 = \mathbf{1}_{\Omega^+} - \mathbf{1}_{\Omega^-}$.

Next we consider the higher order term. Assume $v = \varepsilon v_1 + O(\varepsilon^2)$. Then we obtain the reduced problem

$$-\Delta v_1 = g(u_0, 0) = \mathbf{1}_{\Omega^+} - m, \quad \text{in } \Omega,$$
$$\frac{\partial v_1}{\partial n} = 0, \qquad \text{on } \partial \Omega,$$
$$c'(0)v_1 = \kappa, \qquad \text{on } \Gamma.$$

It is easily seen that there holds $c'(0) = -\frac{2}{\sigma} < 0$ with

$$\sigma=\int_{-1}^1\sqrt{2W(s)}\,ds.$$

Therefore, letting $\beta = 2/\sigma$, we finally obtain

$$\begin{cases}
-\Delta v = \mathbf{1}_{\Omega^{+}} - m, & \text{in } \Omega, \\
\frac{\partial v}{\partial n} = 0, & \text{on } \partial \Omega, \\
\beta v + \kappa = 0, & \text{on } \Gamma.
\end{cases}$$
(4)

Recall that $\Omega \subset \mathbb{R}^2$ is a bounded domain with the smooth boundary $\partial\Omega$; $\partial/\partial n$ is the normal derivative on $\partial\Omega$; Ω^+ is an open set in Ω ; $\Gamma = \partial\Omega^+ \subset \Omega$ is a C^2 -curve embedded in Ω ; κ is the curvature of Γ ; $m \in (0, 1)$ is a constant; and $\mathbf{1}_{\Omega^+}$ denotes the characteristic function of Ω^+ .

The essentially same equation as (4) was obtained in [13] by using the matched expansion method. Once you have a "non-degenerate" solution of (4) in some sense, you can find a layered solution for the singularly perturbed elliptic problem (3). See [13]. For the reduction from the parabolic system to the sharp interface model, see [19].

In this résumé, we consider the problem to find a non-degenerate solution of (4) which does not necessarily correspond to the global minimizers. The radially symmetric case for the related problems is studied in [6, 7, 13, 17, 18, 20]. We do not assume any symmetry of the domain.

This résumé is organized as follows. In Section 2, we consider the existence of solutions. In Section 3, we consider the linearized non-degeneracy of the problem.

2 Existence

In order to state the result, we define the Green's function and its harmonic part.

Definition 2.1 For each $y \in \Omega$, let G(x, y) be the solution to

$$-\Delta_x G(x, y) = \delta(x - y) - \frac{1}{|\Omega|}, \quad x \in \Omega,$$
$$\frac{\partial G}{\partial n_x}(x, y) = 0, \qquad x \in \partial\Omega,$$
$$\int_{\Omega} G(x, y) \, dx = 0.$$

Set

$$G(x,y) = -\frac{1}{2\pi} \log |x-y| + \frac{|x-y|^2}{4|\Omega|} + H(x,y), \quad x,y \in \Omega.$$

Then it is known that H(x, y) is symmetric and harmonic in both x and y. Let $\mathcal{H}(x) = H(x, x)$.

We define the following two conditions.

- (A1) $0 \in \Omega$ is a strict local minimum point of \mathcal{H} . More precisely, there exists a neighborhood U of 0 in Ω such that $\mathcal{H}(0) < \mathcal{H}(x)$ for all $x \in U \setminus \{0\}$.
- (A2) $0 \in \Omega$ is a non-degenerate critical point of \mathcal{H} .

Remark. When $\Omega = \{x \in \mathbb{R}^2 ; |x| < 1\}, x = 0$ is a unique minimum point of \mathcal{H} and both (A1) and (A2) are satisfied. Indeed, we have $\mathcal{H}(x) = -\frac{1}{2\pi} \log(1-|x|^2) + \frac{|x|^2}{2\pi} + \mathcal{H}(0)$, and hence $\frac{\partial^2 \mathcal{H}}{\partial x_i \partial x_j}(0) = \frac{2}{\pi} \delta_{ij}$.

The regular part of Green's function subject to the homogeneous Dirichlet boundary condition has a unique non-degenerate minimum point when $\Omega \subset \mathbb{R}^2$ is convex (see [2]). On the other hand, the regular part of Green's function subject to the homogeneous Neumann boundary condition is studied in [8]. We denote by $d_{\rm H}$ the Hausdorff metric

 $d_{\rm H}(K_1, K_2) = \max[\sup\{\operatorname{dist}(x, K_2); x \in K_1\}, \sup\{\operatorname{dist}(y, K_1); y \in K_2\}],$

 $S_r(0) = \{x \in \mathbb{R} ; |x| = r\}$, and $B_r(0) = \{x \in \mathbb{R} ; |x| < r\}$.

Theorem 2.1 Assume that (A1) or (A2). If $r_0 := \sqrt{\frac{m|\Omega|}{\pi}} < \text{dist}(0, \partial\Omega)$, then there exists a constant $\beta_0 > 0$ such that (4) has a solution $(\Gamma, \nu, \Omega^+) = (\Gamma_\beta, \nu_\beta, \Omega_\beta^+)$ for all $\beta < \beta_0$ satisfying $d_{\mathrm{H}}(\Gamma_\beta, S_{r_0}(0)) \to 0$ as $\beta \to 0$.

2.1 Notations

We identify 2π -periodic functions on \mathbb{R} with the functions on $S^1 = \{x \in \mathbb{R}^2; |x| = 1\} \cong \mathbb{R}/2\pi\mathbb{Z}$. For $q \in C^2(S^1)$, we use the following notations:

$$\dot{q}(\omega) = \frac{dq}{d\omega}(\omega) = \frac{d}{d\theta}q(\cos\theta,\sin\theta), \quad \omega = (\cos\theta,\sin\theta) \in S^{1}$$

and

$$\ddot{q}(\omega) = \frac{d^2q}{d\omega^2}(\omega) = \frac{d^2}{d\theta^2}q(\cos\theta,\sin\theta), \quad \omega = (\cos\theta,\sin\theta) \in S^1$$

We set $X = C^2(S^1)$,

$$\|q\|_{X} = \max_{\omega \in S^{\perp}} |q(\omega)| + \max_{\omega \in S^{\perp}} |\dot{q}(\omega)| + \max_{\omega \in S^{\perp}} |\ddot{q}(\omega)|,$$

 $Y = C(S^1)$, and

$$||q||_Y = \max_{\omega \in S^1} |q(\omega)|.$$

For $q_1, q_2 \in L^2(S^1)$, denote

$$\langle q_1, q_2 \rangle = \int_{S^1} q_1(\omega) q_2(\omega) d\omega = \int_0^{2\pi} q_1(\cos\theta, \sin\theta) q_2(\cos\theta, \sin\theta) d\theta$$

and $||q_1||^2 = \langle q_1, q_1 \rangle$. Let $\Pi_{n^2} : L^2(S^1) \to L^2(S^1)$ denote the projections with respect to $\langle \cdot, \cdot \rangle$ onto span{cos $i\theta$, sin $i\theta$; $i = 0, 1, \dots, n$ } for $n = 0, 1, \dots$. Let $\Pi_{n^2}^{\perp} = \mathbf{Id} - \Pi_{n^2}$.

Define $\Phi_0(\omega) = 1/\sqrt{2\pi}$, $\Phi_1(\omega) = \omega_1/\sqrt{\pi}$, and $\Phi_2(\omega) = \omega_2/\sqrt{\pi}$ for $\omega = (\omega_1, \omega_2) \in S^1$. Then $\Pi_0^{\perp}, \Pi_1^{\perp}$ are the projections onto the orthogonal complements of span{ Φ_0 } and span{ Φ_i ; i = 0, 1, 2} respectively.

2.2 Outline of Proof of Theorem 2.1

For brevity's sake, we assume that $r_0 = 1 < \text{dist}(0, \partial \Omega)$. For $\ell > 0$, define $X_{\ell} = \{q \in X; ||q||_X \le \ell\}$. We can choose a constant $\delta \in (0, 1/2)$ such that $B_{1+\delta}(0) \subset \Omega$ by the assumption. For $q \in X_{\delta/2}$, define

$$\Gamma(q) = \{\sqrt{1+q(\omega)}\omega; \ \omega \in S^1\}, \quad \Omega^+(q) = \{r\omega; \ 0 \le r \le \sqrt{1+q(\omega)}, \ \omega \in S^1\}.$$

Note that there hold $\Gamma(q) \subset \Omega$ and $|\Omega^+(q)| = \pi$ for any $q \in X_{\delta/2} \cap \Pi_0^{\perp} X$. Let

$$L(t, p, s) = \frac{1 + t + \frac{3p^2}{4(1+t)} - \frac{1}{2}s}{\left[1 + t + \frac{p^2}{4(1+t)}\right]^{3/2}}$$

for t > -1, $p \in \mathbb{R}$, $s \in \mathbb{R}$. Then $K(q) = L(q, \dot{q}, \ddot{q})$ is the curvature of $\Gamma(q)$ for any $q \in X_{\delta/2}$. Let M_{β} be the map from $X_{\delta/2}$ to Y defined by

$$M_{\beta}(q)(\omega) = K(q)(\omega) + \beta \int_{\Omega^{+}(q)} G(\sqrt{1+q(\omega)}\omega, y) \, dy, \qquad \omega \in S^{1}$$

for $q \in X_{\delta/2}$. In order to prove Theorem 2.1, we need only show the following:

Proposition 2.1 Suppose either (A1) or (A2). If $1 = \sqrt{m|\Omega|/\pi} < \operatorname{dist}(0, \partial\Omega)$, then there exists a constant $\beta_0 > 0$ such that $\prod_0^{\perp} M_{\beta}(q) = 0$ has a solution $q = q_{\beta} \in X_{\delta/2} \cap \prod_0^{\perp} X$ for all $\beta \in (0, \beta_0)$ satisfying $q_{\beta} \to 0$ in X as $\beta \to 0$. In addition, $\Gamma(q_{\beta}) = P_{\beta} + \Gamma(\tilde{q}_{\beta})$ for some $P_{\beta} \in \Omega$, $\tilde{q}_{\beta} \in X$ such that $P_{\beta} \to 0$, $\|\tilde{q}_{\beta}\|_X = O(\beta)$ as $\beta \to 0$.

Indeed, if $q \in X_{\delta/2} \cap \Pi_0^{\perp} X$ is a solution of $\Pi_0^{\perp} M_{\beta}(q) = 0$, then there exists a constant C_1 such that $M_{\beta}(q) \equiv C_1$. Now set

$$v(x) = \int_{\Omega^+(q)} G(x, y) \, dy - \frac{1}{\beta} C_1, \quad x \in \Omega.$$

Then v satisfies

$$\begin{cases} -\Delta v = \mathbf{1}_{\Omega^+(q)} - m, & \text{in } \Omega, \\\\ \frac{\partial v}{\partial n} = 0, & \text{on } \partial \Omega. \end{cases}$$

Hence we see that

$$\Gamma = \Gamma(q), \quad v(x) = \int_{\Omega^+(q)} G(x, y) \, dy - \frac{1}{\beta} C_1, \quad \Omega^+ = \Omega^+(q)$$

solves our equation (4) and completes the proof of Theorem 2.1.

3 Non-degeneracy

Throughout this section, we assume that there exists a compact subset $\mathcal{N} \subset \Omega$ satisfying dist $(\mathcal{N}, \partial \Omega) > 1$. We linearize the equation around $\mathbf{P} + \Gamma(q) = \{\mathbf{P} + \sqrt{1 + q(\omega)}\omega; \omega \in S^1\}$ for $\mathbf{P} \in \mathcal{N}$. Set

$$M_{\beta}(q; \boldsymbol{P})(\omega) := K(q)(\omega) + \beta \int_{\boldsymbol{P} + \Omega^{+}(q)} G(\boldsymbol{P} + \sqrt{1 + q(\omega)}\omega, y) \, dy, \qquad \omega \in S^{1}$$

for $q \in X_{\delta/2}$, where $P + \Omega^+(q)$ is the region surrounded by $P + \Gamma(q)$.

Theorem 3.1 Suppose that

(B1) for every small $\beta > 0$, there exist $\tilde{q}_{\beta} \in X$ and $P \in \mathcal{N}$ such that

$$(\Pi_4 - \Pi_1) M_\beta(\tilde{q}_\beta; \boldsymbol{P}) = 0,$$

(B2) $\|\tilde{q}_{\beta}\|_{X} = O(\beta) \text{ as } \beta \to 0, \text{ and}$ (B3) the Hessian matrix $\left(\frac{\partial^{2}\mathcal{H}}{\partial x_{i}\partial x_{j}}(P)\right)_{1 \le i,j \le 2}$ of \mathcal{H} is non-degenerate for any $P \in \mathcal{N}$.

Then for sufficiently small β , $\mathcal{L} = \prod_0^{\perp} M'_{\beta}(\tilde{q}_{\beta}; P)$ is non-degenerate in the sense that $\mathcal{L}\zeta = 0$, $\int_{S^1} \zeta \, d\omega = 0$ implies that $\zeta = 0$.

Let q_{β} be a solution obtained in Proposition 2.1. Then there exist $P_{\beta} \in \Omega$ and $\tilde{q}_{\beta} \in X$ such that $\Gamma(q_{\beta}) = P_{\beta} + \Gamma(\tilde{q}_{\beta})$, (B1) with $P = P_{\beta}$, and (B2) hold. Thus we have the following:

Corollary 3.1 Suppose (A2). Then the solution obtained in Theorem 2.1 is non-degenerate in the sense of Theorem 3.1.

3.1 Outline of Proof of Theorem 3.1

For brevity's sake, we write $q = \tilde{q}_{\beta}$. Set

$$B(\zeta,\zeta) = \int_{S^1} \left[-L_s(q,\dot{q},\ddot{q})\dot{\zeta}^2 + L_t(q,\dot{q},\ddot{q})\zeta^2\right]d\omega$$

+ $\frac{\beta}{2}\int_{S^1}\int_{S^1}\zeta(\omega)G(P + \sqrt{1+q(\omega)}\omega, P + \sqrt{1+q(\hat{\omega})}\hat{\omega})\zeta(\hat{\omega})\,d\omega d\hat{\omega}$
+ $\frac{\beta}{2}\int_{S^1}d\omega \frac{\zeta(\omega)^2}{\sqrt{1+q(\omega)}}\int_{P+\Omega^+(q)}\omega \cdot \nabla_x G(P + \sqrt{1+q(\omega)}\omega, y)\,dy,$

for $\zeta \in H^1(S^1)$, where

$$L(t, p, s) = \frac{1 + t + \frac{3p^2}{4(1+t)} - \frac{1}{2}s}{\left[1 + t + \frac{p^2}{4(1+t)}\right]^{3/2}}$$

for t > -1, $p \in \mathbb{R}$, $s \in \mathbb{R}$. We regard \mathcal{L} as the operator on $\Pi_0^{\perp} H^2(S^1)$ satisfying $B(\zeta, \zeta) = \langle \mathcal{L}\zeta, \zeta \rangle$ for all $\zeta \in \Pi_0^{\perp} H^2(S^1)$. Then we have the following two lemmas:

Lemma 3.1 Suppose (B2). Let $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots$ be the eigenvalues of $\mathcal{L} : \prod_0^{\perp} H^2(S^1) \rightarrow \prod_0^{\perp} L^2(S^1)$ and $\zeta_i \in \prod_0^{\perp} H^2(S^1)$ be the normalized eigenfunctions associated with λ_i . Then

$$\lambda_{1} = \inf_{\substack{\zeta \in \Pi_{0}^{\perp} H^{1}(S^{1}), \|\zeta\|=1\\ \zeta \in \Pi_{0}^{\perp} H^{1}(S^{1}), \|\zeta\|=1\\ \zeta \in \Pi_{0}^{\perp} H^{1}(S^{1}), \|\zeta\|=1\\ \zeta \in \Omega_{1}^{\perp}} B(\zeta, \zeta) = B(\zeta_{2}, \zeta_{2}) = O(\beta),$$

$$\lambda_3 = \inf_{\substack{\zeta \in \Pi_0^\perp H^1(S^1), \|\zeta\|=1\\ \zeta \perp \operatorname{span}(\zeta_1, \zeta_2)}} B(\zeta, \zeta) = B(\zeta_3, \zeta_3) = \frac{3}{2} + O(\beta).$$

Lemma 3.2 1. There hold $L_{ts}(0,0,0) = L_{tt}(0,0,0) = L_{pp}(0,0,0) = \frac{3}{4}$ and $L_{ss}(0,0,0) = L_{ps}(0,0,0) = L_{tp}(0,0,0) = 0.$

2. There hold

$$\int_{S^1} d\omega \Phi_j(\omega) \Phi_k(\omega) \omega \cdot \nabla_x H(\boldsymbol{P} + \omega, \boldsymbol{P}) = \frac{1}{2} \frac{\partial^2 H}{\partial x_j \partial x_k}(x, y) \Big|_{x=y=\boldsymbol{P}}$$

and

$$\int_{S^{\perp}} \int_{S^{\perp}} \Phi_j(\omega) H(\boldsymbol{P} + \omega, \boldsymbol{P} + \hat{\omega}) \Phi_k(\hat{\omega}) \, d\omega d\hat{\omega} = \pi \frac{\partial^2 H}{\partial x_j \partial y_k}(x, y) \Big|_{x=y=\boldsymbol{P}}$$

for each j, k = 1, 2.

3. Suppose (B1) and (B2). Then

$$\lim_{\beta \to 0} \frac{1}{\beta} \langle \dot{q} \Phi_k, \dot{\Phi}_j \rangle = -\frac{\pi}{3} \frac{\partial^2 H}{\partial x_j \partial x_k} (x, y) \Big|_{x=y=P}$$

for each j, k = 1, 2.

Using these lemmas, we can show the following:

Lemma 3.3 Suppose (B1) and (B2). Then there exists an orthogonal matrix $(c_{ij})_{i,j=1,2}$ such that for each $i = 1, 2, \zeta_i^R = \zeta_i - (c_{1i}\Phi_1 + c_{2i}\Phi_2)$ satisfies $||\zeta_i^R||^2 = O(\beta)$ as $\beta \to 0$. In addition, there holds

$$\sum_{k=1}^{2} \frac{\pi}{4} \frac{\partial^{2} \mathcal{H}}{\partial x_{j} \partial x_{k}} (\boldsymbol{P}) c_{ki} = o(1) + \frac{\lambda_{i}}{\beta} c_{ji}$$

for each i, j = 1, 2.

Completion of the proof of Theorem 3.1. Assume by contrary that there exists a sequence ζ_{β} such that $\mathcal{L}\zeta_{\beta} = 0$, $||\zeta_{\beta}|| = 1$, and $\int_{S^1} \zeta_{\beta} d\omega = 0$. This means that ζ_{β} is an eigenfunction of of \mathcal{L} associated with the eigenvalue 0. We see that for sufficiently small β , either λ_1 or λ_2 is equal to 0. Then by Lemma 3.3, we have $\zeta_{\beta} = c_1 \Phi_1 + c_2 \Phi_2 + \zeta^R$ such that $(c_1, c_2) \in S^1$ and $||\zeta^R||^2 = O(\beta)$, and

$$\sum_{k=1}^{2} \frac{\partial^2 \mathcal{H}}{\partial x_j \partial x_k} (\boldsymbol{P}) c_k = o(1) \quad \text{for } j = 1, 2,$$

as $\beta \to 0$. Taking a subsequence if necessary, we may assume that $(c_1, c_2) \to (\hat{c}_1, \hat{c}_2) \in S^1$ and

$$\sum_{k=1}^{2} \frac{\partial^2 \mathcal{H}}{\partial x_j \partial x_k} (\boldsymbol{P}) \hat{c}_k = 0 \quad \text{for } j = 1, 2.$$

It follows from (B3) that $\hat{c}_1 = \hat{c}_2 = 0$. This is a contradiction and completes the proof.

参考文献

 J. Byeon and Y. Oshita, Existence of Multi-bump standing waves with a critical frequency for Nonlinear Schrödinger equations, *Comm. Partial Differential Equations* 29 (2004), no. 11-12, 1877–1904.

- [2] L. A. Caffarelli and A. Friedman, Convexity of solutions of semilinear elliptic equations, Duke Math. J. 52 (1985), no. 2, 431–456.
- [3] X. Chen, private communication.
- [4] X. Chen, D. Hilhorst, and E. Logak, Asymptotic behavior of solutions of an Allen– Cahn equation with a nonlocal term, *Nonlinear Anal.* 28 (1997), no. 7, 1283–1298.
- [5] X. Chen and Y. Oshita, Periodicity and uniqueness of global minimizers of an energy functional containing a long-range interaction, SIAM J. Math. Anal. 37 (2005), no. 4, 1299–1332.
- [6] X. Chen and M. Taniguchi, Instability of spherical interfaces in a nonlinear free boundary problem, Adv. Differential Equations 5 (2000), no. 4-6, 747-772.
- [7] M. A. del Pino, Radially symmetric internal layers in a semilinear elliptic system, Trans. Amer. Math. Soc. 347 (1995), no. 12, 4807–4837.
- [8] T. Kolokolnikov, M. Titcombe, and M. Ward, Optimizing the Fundamental Neumann Eigenvalue for the Laplacian in a Domain with Small Traps, *European J. Applied Math.* 16 (2005), no.2, 161–200.
- [9] Y. Y. Li, On a singularly perturbed elliptic equation, Adv. Differential Equations 2 (1997), no.6, 955–980.
- [10] Y. Y. Li, On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations 23 (1998), no. 3-4, 487–545.
- [11] Y. Y. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure appl. Math. 51 (1998), no. 11-12, 1445–1490.
- [12] Y. Nishiura and H. Suzuki, Nonexistence of higher-dimensional stable Turing patterns in the singular limit, SIAM J. Math. Anal. 29 (1998), no. 5, 1087–1105.
- [13] Y. Nishiura and H. Suzuki, Higher dimensional SLEP equation and applications to morphological stability in polymer problems, SIAM J. Math. Anal. 36 (2004/05), no. 3, 916–966.
- [14] Y. Oshita, On stable nonconstant stationary solutions and mesoscopic patterns for FitzHugh-Nagumo equations in higher dimensions, J. Differential Equations 188 (2003), no. 1, 110-134.

- [15] Y. Oshita, Stable stationary patterns and interfaces arising in reaction-diffusion systems, SIAM J. Math. Anal. 36 (2004), no. 2, 479–497.
- [16] Y. Oshita, Singular limit problem for some elliptic systems, preprint.
- [17] K. Sakamoto and H. Suzuki, Spherically symmetric internal layers for activatorinhibitor systems. I. Existence by a Lyapunov-Schmidt reduction, J. Differential Equations 204 (2004), no. 1, 56–92.
- [18] K. Sakamoto and H. Suzuki, Spherically symmetric internal layers for activatorinhibitor systems. II. Stability and symmetry breaking bifurcations, J. Differential Equations 204 (2004), no. 1, 93-122.
- [19] P. Soravia and P. E. Souganidis, Phase-field theory for FitzHugh-Nagumo-type systems, SIAM J. Math. Anal. 27 (1996), no. 5, 1341–1359.
- [20] M. Taniguchi, Multiple existence and linear stability of equilibrium balls in a nonlinear free boundary problem, *Quart. Appl. Math.* 58 (2000), no. 2, 283–302.