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1. INTRODUCTION

The aim of this article is to exhibit some results about dynamical
zeta functions for suspension semi-flows of the anglemultiplying maps
on the circle. The proofs and more detailed argument will be provided
in the forthcoming paper with the same title[15].

For an Anosov flow, the dynamical zeta function is the function
defined by

(1)
$\zeta(s)=\prod_{\gamma}(1-e^{-s|\gamma|})^{-1}$

where the product is taken over all prime periodic orbits 7 and $|\gamma|$ de-
notes the prime period of $\gamma$ . Though the right hand side is well-defined
for complex numbers $s\in \mathbb{C}$ with real part larger than the topological
entropy $h_{top}$ , it extends meromorphically to much larger region. For in-
stance, D. Fried[7] showed that $\zeta(s)$ extends to a meromorphic function
on the complex plane $\mathbb{C}$ provided that the Anosov flow is real-analytic.

In this paper, we are interested in the singularities, zeros and poles,
of such meromorphic extension. It is well known that, $\zeta(s)$ is a holo-
morphic function without zeros on the region $\Re(s)>h_{top}$ and, if the
flow is mixing, $h_{top}$ is the unique pole on the line $\Re(s)=h_{top}$ . More
recently, D. Dolgopyat showed, under some reasonable conditions, that
there exists some $\epsilon>0$ such that $\zeta(s)$ has no pole or zero other than
$h_{\iota op}$ on the region $\Re(s)>h_{top}-\epsilon$ .

The geodesic flows of closed surfaces with constant negative cur-
vature are types of the Anosov flow. And the famous results $[12, 9]$

, of Selberg give much more precise description to the singularities of
$\zeta(s)$ for such flows, which motivated the study of dynamical zeta func-
tions: $\zeta(s)$ has only finitely many poles on the region $\Re(s)>h_{top}/2$

and countably many poles on the line $\Re(s)=h_{to\mathrm{p}}/2$ while no zeros on
$\Re(s)\geq 0$ . In view of this result, we pose a question how small we may
take a real number $h$ so that $\zeta(s)$ has only finitely many poles on the
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region $\Re(s)>h$ . In this paper, we study this question in a simplified
setting: the suspension semi-flows of angle-multiplying maps on the
circle. This class of expanding semi-flows was studied by D. Ruelle[ll]
as a simplified model of Anosov flows and then by M. Pollicott[10] and
the author[14] more recently.

Let $\ell\geq 2$ and $r\geq 3$ be integers. Let $\tau$ : $S^{1}arrow S^{1}$ be the angle-
multiplying map on $S^{1}=\mathbb{R}/\mathbb{Z}$ defined by $\tau(x)=\ell x$ . Let $C_{+}^{f}(S^{1})$ be
the set of positive-valued $C^{r}\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ on $S^{1}$ . For each $f\in C_{+}^{r}(S^{1})$ , we
consider the subset

$X_{f}=\{(x, s)\in S^{1}\cross \mathbb{R}|0\leq s<f(x)\}$

of the cylinder $S^{1}\cross$ R. The suspension semi-flow $\mathrm{T}_{f}=\{T_{J^{t}}$ : $X_{f}arrow$

$X_{f}\}_{t\geq 0}$ for the ceiling function $f$ is the semi-flow on $X_{f}$ , in which
each point on $X_{f}$ moves upward with unit speed and, at the instant
it $\mathrm{r}e$aches to the upper boundary of $X_{f}$ , it jumps down to the bottom
side with the $x$-coordinate transfered by $\tau$ . (Figure 1) The time-t-map
$T_{f}^{t}$ : $X_{f}arrow X_{f}$ of the semi-flow $\mathrm{T}_{f}$ is given as

$T_{f}^{t}(x, s)=(\tau^{n(x,s+t;f)}.(x), s+t-f^{(n(x,s+t;f))}(x))$

where $f^{(n)}(x)= \sum_{i=0}^{n-1}f(\tau^{i}(x))$ for $n\geq 0$ and

$n(x, t;f):= \max\{n\geq 0|f^{(n)}(\prime x)\leq t\}$ .

$\mathrm{x}$

FIGURE 1. The semiflow $\mathrm{T}_{f}$

Let $m=m_{f}$ be the normalization of the standard Lebesgue measure
on $X_{f}$ . This is an ergodic invariant measure for $\mathrm{T}_{f}$ . For a point
$z=(,x, s)$ and $t,$ $\geq 0$ , we put $E(z, t;f):=\ell^{n(x,s+t_{j}f)}$ . Note that

(2)
$‘ \sum_{w:T(w)=z}E(w, t;f)^{-1}=1$

for any $z\in X_{f}$ and $t\geq 0$ .
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For the semi-flow $\mathrm{T}_{J}$ and a real number $\alpha$ , we define

$\lambda_{\min}(\mathrm{T}_{f}, \alpha):=\lim_{tarrow\infty}(\inf_{z\in X_{f}}E(z, t;f)^{\alpha})^{1/t}$

and

$\lambda_{\max}(\mathrm{T}_{f}, \alpha):=\lim_{tarrow\infty}(\sup_{z\in X_{f}}E(z, t;f)^{\alpha})^{1/t}$

Then the minimum and maximum expansion rate of the semi-flow $\mathrm{T}_{f}$

is given as $\lambda_{\min}(\mathrm{T}_{f}):=\lambda_{\min}(\mathrm{T}_{f}, 1)$ and $\lambda_{\max}(\mathrm{T}_{f}):=\lambda_{\mathrm{m}\mathrm{a}\mathfrak{l}\mathrm{x}}(\mathrm{T}_{f}, 1)$ re-
spectively.

Let $\zeta_{f}(s)$ be the dynamical zeta function of the semi-flow $\mathrm{T}_{f}$ defined
by (1). The main results in the next section will give

Theorem 1.1. Under a $C^{r}generic$ condition on the ceiling function
$f\in C_{+}^{r}(S^{1})$ , the function $1/\zeta_{f}(s)$ extends to the region $\Re(s)>\lambda_{\max}(\mathrm{T}_{f})/2$

as a holomorphic function and has only finitely many zeros on the re-
gion

(3) $\Re(s)>(\lambda_{\max}(\mathrm{T}_{f})/2)+\epsilon$ for each $\epsilon>0$ .

Notice that, for the geodesic flows of clos$e\mathrm{d}$ surfaces with constant
negative curvature, the topological entropy of the flow coincides with
the constant expansion rate in the unstable direction. So, if we trans-
late the theorem above to such cases, the bound (3) would be best-
possible. Still, the bound (3) is definitely not optimal in the case where
$1o\mathrm{g}f$ is far from constant: $\lambda_{\max}(\mathrm{T}_{f})/2$ may be larger than the topolog-
ical entropy $h_{top}(\mathrm{T}_{f})$ , so that the theorem may be vacuous. We would
like to end this introduction by posing a question: Does the theorem
above hold true if we substitute $h_{top}(\mathrm{T}_{f})/2$ for $\lambda_{\max}(\mathrm{T}_{f})/2$ ?

2. RESULTS

We consider the semi-flow $\mathrm{T}_{f}$ for $f\in C_{+}^{r}(S^{1})$ defined in the previous
section.

2.1. Ruelle transfer operators and Selberg functions. For a $\in$

$\mathbb{R}$, we define the semi-group of Ruelle transfer operators

$\mathcal{L}_{f,\alpha}^{t}$ : $L^{1}(X_{f}, m_{f})arrow L^{1}(X_{f},m_{f})$ , $t\geq 0$ ,

by

$\mathcal{L}_{f,\alpha}^{t}(u)(z)=\sum_{w\in(T_{f}^{t})^{-1}(z)}E(w, t;f)^{-\alpha}\cdot u(w)$
.
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The Selberg functions for these semi-groups are defined by

$d_{f,\alpha}(s)= \exp(\sum_{\gamma}\sum_{n=1}^{\infty}\frac{\exp(-sn|\gamma|)\cdot E(\gamma)^{(-\alpha+1)n}}{n\cdot(E(\gamma)^{n}-1)})$

for $s\in \mathbb{C}$ with sufficiently large real part, where the sum $\sum_{\gamma}$ is taken
over all prime periodic orbit $\gamma$ of the semi-flow $\mathrm{T}_{f},$ $|\gamma|$ denotes the
prime period of $\gamma$ and $E(\gamma):=E(z, |\gamma|;f)$ for any (or some) $z\in\gamma$ . In
a heuristical sense, we may regard this function as

(4) $\exp(\mathrm{n}(\int_{+0}^{\infty}\frac{1}{t}e^{-st}\mathcal{L}_{f,\alpha}^{t}dt))$ .

And the dynamical zeta funtion $\zeta_{f}(s)$ defined in the previous section
is given by

(5) $\zeta_{f}(s)=d_{f,1}(s)/d_{f,0}(s)$ .
So we expect that the zeros ( $\mathrm{r}e\mathrm{s}\mathrm{p}$ . poles) of the meromorphic extension
of $\zeta_{f}(s)$ are related to the eigenvalues of the operators $\mathcal{L}_{f,1}^{t}$ (resp. $\mathcal{L}_{f,0}^{t}$ ).

2.2. Transversality exponent. For $t\geq 0$ and $z\in X_{f}$ , we define
the differential $(DT_{f}^{t})_{z}$ : $\mathbb{R}^{2}arrow \mathbb{R}^{2}$ of $T_{f}^{t}$ at $z\in X_{f}$ in the usual
way if $z\in X_{f}^{\mathrm{o}}\cap(T_{f}^{t})^{-1}(X_{f}^{\mathrm{o}})$ and, otherwise, as the limit $(DT_{f}^{t})_{z}=$

$\lim_{\epsilonarrow+0}(DT_{f}^{t})_{z+(0,\epsilon)}$ . Let $(DT_{f}^{t})_{z}^{tf}$ be the transpose of $(DT_{f}^{t})_{z}$ . We will
consider the cone

$\mathrm{C}^{*}(\theta)=\{(x, y)\in \mathbb{R}^{2}||x|\leq\theta|y|\}$ for $\theta>0$ .
We henceforth fix a real number $\ell-1<\gamma_{0}<1$ and put

$\mathrm{C}_{f}^{*}:=\mathrm{C}^{*}(\theta_{f})=\{(x, y)\in \mathbb{R}^{2}||x|\leq\theta_{f}|y|\}$

where
$\theta_{f}=(1/(\gamma_{0}\ell-1))\cdot\max_{x\in S^{1}}|f’(x)|$ .

Then the cone $\mathrm{C}_{f}^{*}$ is forward-invariant for the differentials of $\mathrm{T}_{f}$ in the
sense that
(6)
$((DT_{f}^{t})_{z}^{tt})^{-1}(\mathrm{C}_{f}^{*})\subset\subset \mathrm{C}(\gamma_{0}\theta_{f})\subset\subset \mathrm{C}_{f}^{*}$ for $z=(x, s)\in X_{f}$ and $t\geq f(x)-s$

where $\mathrm{C}\subset\subset \mathrm{C}’$ implies that $\mathrm{C}\backslash \{0\}$ is contained in the interior of $\mathrm{C}’$ .
Suppose that $T^{t}(\zeta)=T^{t}(\zeta’)$ for some $\zeta,$ $\zeta’\in X_{f}$ and $t\geq 0$ . We will

write $\zeta\wedge\eta$ if the cones $((DT_{f}^{t})_{\zeta}^{t\tau})^{-1}(\mathrm{C}_{f}^{*})$ and $((DT_{f}^{t})_{\eta}^{\iota t})^{-1}(\mathrm{C}_{f}^{*})$ intersect
only at the origin and write $\zeta$ di $\eta$ otherwise. (Note that this relation
does not depend on the choice of $t.$ ) $\mathrm{U}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\sim$ this relation, we define two
exponents

$\mathrm{m}_{\alpha}(f)=\lim_{tarrow}\sup_{\infty}\mathrm{m}_{\alpha}(t;f)^{1/t}$ for $\alpha=0,1$ ,
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where

$\mathrm{m}_{0}(t,\cdot f)=\max_{z\in X}\underline{\max_{\iota\zeta’\in(T_{f})1(z)}}E(\zeta’, t;f)\#\{\zeta\in(T_{f}^{t})^{-1}(z)|\zeta ffl (’\}$

and
$\mathrm{m}_{1}(t,\cdot f)=\max_{z\in\prime}\underline{\max_{\in \mathrm{x}_{\zeta}(T_{f}^{t})1(z)}}\sum_{\zeta:\zeta\phi\zeta’}\frac{1}{E(\zeta,t;f)}$ .

For the expon$e\mathrm{n}\mathrm{t}\mathrm{m}_{1}(t;f)7$ we showed in [14]

Theorem 2.1. The semi-flow $(\mathrm{T}_{f}, m_{f})$ is mixing if and only if $\mathrm{m}_{1}(f)<$

$1$ . For any $\rho>1$ , there exists an open and dense subset $\mathcal{R}_{1}(\rho)\subset$

$C_{+}^{f}(S^{1})$ such that $\mathrm{m}_{1}(f)<\rho\cdot\lambda_{\min}^{-1}$ for $f\in \mathcal{R}_{1}(\rho)$ .

In the same spirit, we can show

Theorem 2.2. For any $\rho>0_{f}$ there exists an open and dense subset
$\mathcal{R}_{0}(\epsilon)\subset C_{+}^{r}(S^{1})$ such that $\mathrm{m}_{0}(f)<\rho$ . $A_{\max}$ for $f\in \mathcal{R}_{0}(\rho)$ .

Thus we have

Corollary 2.3. $\mathrm{m}_{0}(f)=\lambda_{\max}$ and $\mathrm{m}_{1}(f)=\lambda_{\min}^{-1}$ for $C^{f}$ generic $f\in$

$C_{+}^{f}(S^{1})$ .
2.3. Statement of the main results. Let $C_{0}^{f}(X_{f})$ be the set of func-
tions on $X_{f}$ whose pull-back by $T_{f}^{t}$ for any $t\geq 0$ is $C^{f}$ on $X_{f}^{\mathrm{o}}$ . Similarly
let $C_{1}^{r}(X_{f})$ be the set of functions on $X_{f}$ whose image by $\mathcal{L}_{f,\alpha}^{t}$ for any
$t\geq 0$ is $C^{f}$ on $X_{f}^{\mathrm{o}}$ . $1$ )

Now we state the main results. The first one is about spectral prop-
erties of the operators $\mathcal{L}_{f,\alpha}^{t}$ . This is a slight generalization of the main
result of the paper[14].

Theorem 2.4. For $\alpha\in\{0,1\}$ , there erists a Hilbert space
$C_{\alpha}^{1}(X_{f})\subset W_{\alpha}(X_{f})\subset L^{2}(X_{f})$

such that $\mathcal{L}_{f,\alpha}^{t}$ for sufficiently large $t>0$ restricts to a bounded operator
$\mathcal{L}_{f,\alpha}^{t}$ : $W_{\uparrow}(X_{f})arrow W_{\uparrow}(X_{f})$

whose essential spectral radius is bounded by $\mathrm{m}_{\alpha}(f)^{t/2}$ . Further, for
any $\epsilon>0$ , there exists a decomposition of the Banach space $W_{\uparrow}(X_{f})=$

$W_{0}\oplus W_{1}$ into closed subspaces such that
(a) $W_{0}$ and $W_{1}$ are invariant with respect to $\mathcal{L}_{f,\alpha}^{t}$ .
(b) $\dim W_{0}<\infty$ .

$1)_{\mathrm{T}\mathrm{h}\mathrm{e}}$ functions in $C_{0}^{r}(X_{f})$ and those in $C_{1}^{r}(X_{f})$ are $C^{r}$ on the interior of $X_{f}$

and satisfies different restrictions on their behavior near the boundary of $\mathrm{x}_{f}$ .
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(c) The restriction $\mathcal{L}_{f,\alpha}^{t}|_{W_{0}}$ is written as $e^{tA}$ for a linear map $A$ :
$W_{0}arrow W_{0}$ , whose real parts of eigenvalues are not smaller than
(1/2) $\log \mathrm{m}_{\alpha}(f)+\epsilon$ .

(d) $||\mathcal{L}_{f,\alpha}^{t}|_{W_{1}}||\leq C\cdot e^{\epsilon t}\cdot \mathrm{m}_{\alpha}(f)^{t/2}$ for some $C>0$ .

The second one is about the Selberg function.

Theorem 2.5. For $\alpha\in\{0,1\}$ , the Selberg function $d_{f,\alpha}(s)$ extends
to the region $\Re(s)>(1/2)\log \mathrm{m}_{\alpha}(f)$ as a $hol_{omo7}phic$ function. Fur-
ther, for any $\epsilon>0$ , the zeros of the extension in the region $\Re(s)>$

$(1/2)\log \mathrm{m}_{\alpha}(f)+\epsilon$ is in one-to-one correspondence to the eigenvalues
of the linear map $A$ : $W_{0}arrow W_{0}$ in the last theorem, the order of the
zero coinciding with the algebraic multiplicity of the eigenvalue.

Theorem 1.1 in the previous section is an immediate consequence
of these theorems, Corollary 2.3 and the relation (5). The proofs of
theorem 2.4 and 2.5 will be provided in the paper [15] in preparation.
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