Independence number for partitions of ω

Hiroaki Minami

Graduate School of Science and Technology, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan. minami@kurt.scitec.kobe-u.ac.jp

Abstract

In this paper we will define a cardinal invariant corresponding to the independence number for partitions of ω . By using Cohen forcing we will prove that this cardinal invariant is consistently smaller than the continuum.

1 Introduction

The structure $([\omega]^{\omega}, \subset^*)$ of the set of all infinite subsets of ω ordered by "almost inclusion" is well studied in set theory. To describe much of the combinatorial structure of $([\omega]^{\omega}, \subset^*)$ cardinal invariants of the continuum are introduced like, for example, the reaping number \mathfrak{r} or the independence number \mathfrak{i} .

In recent years partial orders similar to $([\omega]^{\omega}, \subset^*)$ have been focused on and analogous cardinal invariants have been defined and investigated. For example $((\omega)^{\omega}, \leq^*)$, the set of all infinite partitions of ω ordered by "almost coarser", and the cardinal invariants \mathfrak{p}_d , \mathfrak{t}_d , \mathfrak{s}_d , \mathfrak{r}_d , \mathfrak{a}_d and \mathfrak{h}_d have been defined and investigated in [2], [3] and [4].

In this work we will define the dual-independence number i_d analogous to the independence number i and get a consistency result.

Once we define dual-independence number i_d , we can prove the following proposition similar to the proof of $r \leq i$.

Proposition 1.1 (Brendle). $r_d \leq i_d$.

And \mathfrak{r}_d has the following property.

Theorem 1.2. [3] MA implies $r_d = c$.

So it is consistent that $i_d = c$. And it is natural to ask the following question.

Question 1.3. Is it consistent that $i_d < c$?

In section 2 we will define the dual-independence number and study its properties. In section 3 we will prove that $i_d < \mathfrak{c}$ is consistent by using Cohen forcing.

2 $(\omega)^{\omega}$ and dual-independent family

We start with the definition of "partition of ω ".

Definition 2.1. X is a partition of ω if X is a subset of $\wp(\omega)$, $\bigcup X = \omega$ and for each $a, b \in X$ if $a \neq b$, then $a \cap b = \emptyset$. By (ω) we denote all partitions of ω . Also by $(\omega)^{\omega}$ we denote all infinite partitions of ω and by $(\omega)^{<\omega}$ we denote all finite partitions of ω .

For partitions of ω we give the ordering "coarser".

Definition 2.2. For $X, Y \in (\omega)$ X is coarser than Y (Y is finer than X) if for each $x \in X$ there exists a subset Y' of Y such that $x = \bigcup Y'$.

For $X, Y \in (\omega)^{\omega} X$ is almost coarser than Y (Y is almost finer than Y) if for all but finitely many $x \in X$ there exists $Y' \subset Y$ such that $x = \bigcup Y'$.

We can easily check that $((\omega), \leq)$ is a lattice. For each $X, Y \in (\omega)$ by $X \wedge Y$ we denote the infimum of X and Y. For $X, Y \in (\omega)^{\omega}$ by $X \perp Y$ we mean that $X \wedge Y \in (\omega)^{<\omega}$.

As $([\omega]^{\omega}, \subset^*)$, $((\omega)^{\omega}, \leq^*)$ has the following properties:

Lemma 2.3. [3] Suppose that $X_0 \ge X_1 \ge X_2 \ge \dots$ is a decreasing sequence of $(\omega)^{\omega}$. Then there exists $Y \in (\omega)^{\omega}$ such that $Y \le^* X_n$ for $n \in \omega$.

Lemma 2.4. [3] For $X, Y \in (\omega)^{\omega}$ if $\neg (X \leq^* Y)$, then there exists $Z \in (\omega)^{\omega}$ such that $Z \leq^* X$ and $Z \perp Y$.

So $((\omega)^{\omega}, \leq^*)$ is similar to $([\omega]^{\omega}, \subset^*)$. On the other hand there is a serious difference: $([\omega]^{\omega}, \subset^*)$ is a Boolean algebra but $((\omega)^{\omega}, \leq^*)$ is just a lattice and not a Boolean algebra.

In general when we define independence, we use complementation. But $((\omega)^{\omega}, \leq^*)$ doesn't have any natural complementation. So we will define independence for $((\omega)^{\omega}, \leq^*)$ without mentioning complementation.

Definition 2.5. Let \mathcal{I} be a subset of $(\omega)^{\omega}$. \mathcal{I} is dual-independent if for all \mathcal{A} and \mathcal{B} finite subsets of \mathcal{I} with $\mathcal{A} \cap \mathcal{B} = \emptyset$ there exists $C \in (\omega)^{\omega}$ such that

(i)
$$C \leq^* A$$
 for $A \in \mathcal{A}$ and

(ii)
$$C \perp B$$
 for $B \in \mathcal{B}$.

Then define dual-independence number i_d by

$$i_d = \min\{|\mathcal{I}| : \mathcal{I} \text{ is a maximal dual-independent family}\}.$$

Since there is no natural complementation for an element of $((\omega)^{\omega}, \leq^*)$, it becomes more difficult to handle dual-independent families than to handle independent families for a Boolean algebra. But the following lemmata helps to handle dual-independent families.

Lemma 2.6. [3] If $X, Y \in (\omega)^{\omega}$ and $\neg (X \leq^* Y)$, then there exists an infinite sequence $\{a_n\}_{n\in\omega}$ of different elements of X such that

$$\forall n \in \omega \exists y \in Y (y \cap a_{2n} \neq \emptyset \land y \cap a_{2n+1} \neq \emptyset)$$

or there exists a finite subset A of X such that the set

$$\{x \in X \setminus A : \exists y \in Y (x \cap y \neq \emptyset \land \bigcup A \cap y \neq \emptyset)\}\$$

is infinite.

Proof. Suppose that we have defined a sequence $\{a_n\}_{n<2k}$ but for any two $a, b \in X \setminus \{a_0, \ldots, a_{2k-1}\}$ and $y \in Y$ we have $a \cap y = \emptyset$ or $b \cap y = \emptyset$. Let A denote the finite family $\{a_0, \ldots, a_{2k-1}\}$ and let

$$\mathcal{F} = \{x \in X \setminus A : \exists y \in Y \left(x \cap y \neq \emptyset \wedge \bigcup A \cap y \neq \emptyset \right) \}.$$

If \mathcal{F} is finite, then the partition

$$X_* = \{ \left[\begin{array}{c} A \cup \left[\begin{array}{c} F \end{array} \right] \cup (X \setminus A \cup F) \end{array} \right]$$

is a finite modification of X which is coarser than Y. It is a contradiction to $\neg(X \leq^* Y)$.

By this lemma we can prove the following useful lemma.

Lemma 2.7. If $X \in (\omega)^{\omega}$ and \mathcal{B} is a finite subset of $(\omega)^{\omega}$ such that $\neg (X \leq^* B)$ for $B \in \mathcal{B}$, then there exists $Z \leq X$ such that $Z \perp B$ for $B \in \mathcal{B}$.

Proof. Let $\mathcal{B} = \{B_i : i < n\}$. By the above lemma for each i < n there exists an infinite sequence $\{a_k^i\}_{k \in \omega}$ of different elements of X such that

$$\forall k \in \omega \exists b \in B_i (b \cap a_{2k}^i \neq \emptyset \land b \cap a_{2k+1}^i \neq \emptyset)$$

or there exists a finite subset A_i of X and an infinite sequence $\{a_k^i\}_{k\in\omega}$ of different elements of $X\setminus A_i$ such that

$$\forall k \in \omega \exists b \in B_i (b \cap a_k^i \neq \emptyset \land \bigcup A_i \cap b \neq \emptyset).$$

In the first case we define $A_i = \emptyset$.

Recursively we shall construct a subsequence $\{b_k^i\}_{k \in \omega}$ of $\{a_k^i\}_{k \in \omega}$ for i < n. Given $\{b_l^i\}_{l < 2k}$ for i < n and b_{2k}^i, b_{2k+1}^i for i < j for some j < n.

 $A_j = \emptyset$ Choose $k_0 \in \omega$ such that

$$\{a_{2k_0}^j, a_{2k_0+1}^j\} \cap \left(\bigcup_{i < n} A_i \cup \{b_l^i : i < n \land l < 2k\} \cup \{b_{2k}^i, b_{2k+1}^i : i < j\}\right) = \emptyset.$$

Put $b_{2k}^j = a_{2k_0}^j$ and $b_{2k+1}^j = a_{2k_0+1}^j$.

 $A_j \neq \emptyset$ Choose $k_0 < k_1 \in \omega$ such that

$$\{a_{k_0}^j, a_{k_1}^j\} \cap \left(\bigcup_{i < n} A_i \cup \{b_l^i : i < n \land l < 2k\} \cup \{b_{2k}^i, b_{2k+1}^i : i < j\}\right) = \emptyset.$$

Put $b_{2k}^j = a_{k_0}^j$ and $b_{2k+1}^j = a_{k_1}^j$.

Define $Z = \{\bigcup_{i < n} b_{2k}^i : k \in \omega\} \cup \{\omega \setminus \bigcup_{k \in \omega} \bigcup_{i < n} b_{2k}^i\}$. Then $Z \leq X$ and for each $z \in Z$ and i < n there exists $b \in B_i$ such that

$$b \cap z \neq \emptyset \land (\omega \setminus \bigcup_{k \in \omega} \bigcup_{i < n} b_{2k}^i) \cap b \neq \emptyset.$$

Hence $Z \perp B_i$ for i < n.

So it becomes easier to check dual-independence.

Corollary 2.8. \mathcal{I} is dual-independent if and only if for each finite subset \mathcal{A} of \mathcal{I} and $B \in \mathcal{I} \setminus \mathcal{A}$

 $\bigwedge A \not\leq^* B.$

3 Cohen forcing and dual-independence number

By using Cohen forcing we will prove it is consistent that $\mathfrak{i}_d < \mathfrak{c}$.

Theorem 3.1. Suppose $V \models CH$. Then $V^{\mathbb{C}(\omega_2)} \models i_d = \omega_1$.

To prove Theorem 3.1 we use the following lemma.

Lemma 3.2. Assume $p \in \mathbb{C}$, \mathcal{I} is a countable dual-independent family and \dot{X} is a \mathbb{C} -name such that $p \Vdash "\dot{X}$ is a non-trivial infinite partition of ω and $\{\dot{X}\} \cup \mathcal{I}$ is dual-independent". Then there exists $X^* \in (\omega)^{\omega} \cap V$ such that $\{X^*\} \cup \mathcal{I}$ is dual-independent and $p \Vdash \dot{X} \perp X^*$.

Proof of 3.1 from 3.2 Within the ground model we shall define a maximal dual-independent family \mathcal{I} of size ω_1 . It suffices to verify maximality of \mathcal{I} in the extension via \mathbb{C} (see [5] pp256).

By CH, let $\langle p_{\xi}, \tau_{\xi} \rangle \xi < \omega_1$ enumerate all pairs $\langle p, \tau \rangle$ such that $p \in \mathbb{C}$ and τ is a nice name for an infinite partition of ω . By recursion, pick an infinite partition of ω as follows. Given $\{X_{\eta} : \eta < \xi\}$ for some $\xi < \omega_1$. Choose X_{ξ} so that

- (1) $\{X_{\xi}\} \cup \{X_{\eta} : \eta < \xi\}$ is dual-independent.
- (2) If $p_{\xi} \Vdash \text{``}\{\tau_{\xi}\} \cup \{X_{\eta} : \eta < \xi\}$ is dual-independent", then $p_{\xi} \Vdash X_{\xi} \perp \tau_{\xi}$.
- (2) is possible by Lemma 3.2. Let $\mathcal{I} = \{X_{\eta} : \eta < \omega_1\}$. We shall prove \mathcal{I} is maximal. If \mathcal{I} is not maximal in V[G] for some \mathbb{C} -generic G, then there exists $p_{\xi} \in G$ and τ_{ξ} such that $p_{\xi} \Vdash \{\tau_{\xi}\} \cup \mathcal{I}$ is dual-independent. By construction there exists $X_{\xi} \in \mathcal{I}$ and $p_{\xi} \Vdash \tau_{\xi} \perp X_{\xi}$. It is a contradiction.

Proof of 3.2. Let $\mathbb{P}(\mathcal{I})$ be a partial order such that $\langle \sigma, \mathcal{H} \rangle \in \mathbb{P}(\mathcal{I})$ if σ is a partition of a finite subset of ω and \mathcal{H} is a finite subset of \mathcal{I} . It is ordered by $\langle \sigma, \mathcal{H} \rangle \leq \langle \tau, \mathcal{G} \rangle$ if

- (i) $\forall x \in \tau \exists x' \in \sigma(x \subset x')$,
- (ii) $\mathcal{H} \supset \mathcal{G}$,
- (iii) $\forall x_0 \neq x_1 \in \tau \forall x_0' \in \sigma (x_0 \subset x_0' \to x_1 \cap x_0' = \emptyset),$
- (iv) $\forall Y \in \mathcal{G} \forall y_0, y_1 \in (Y \land \tau) \forall y_0', y_1' \in (Y \land \sigma)$

$$\left(y_0\cap y_1=\emptyset \wedge \bigcup \tau\cap y_0\neq\emptyset \wedge \bigcup \tau\cap y_1\neq\emptyset \wedge y_0\subset y_0'\wedge y_1\subset y_1'\to y_0'\cap y_1'=\emptyset\right).$$

Claim 3.2.1. The following sets are dense.

- (i) $D_n = \{ \langle \sigma, \mathcal{H} \rangle : n \in \bigcup \sigma \} \text{ for } n \in \omega.$
- (ii) $D_{\mathcal{A}}^{l} = \{ \langle \sigma, \mathcal{H} \rangle : \mathcal{A} \subset \mathcal{H} \wedge | \{ h \in (\bigwedge \mathcal{H} \wedge \sigma) : h \cap \bigcup \sigma \neq \emptyset \} | \geq l \}$ for finite subsets \mathcal{A} of \mathcal{I} and $l \in \omega$.
- (iii) $D_{\mathcal{A},l} = \{ \langle \sigma, \mathcal{H} \rangle : \mathcal{A} \subset \mathcal{H} \land \exists x \in \sigma (|\{h \in \bigwedge \mathcal{H} : x \cap h \neq \emptyset\}| \geq l) \}$ for finite subsets \mathcal{A} of \mathcal{I} and $l \in \omega$.
- (iv) Let A be a finite subset of I, $B \in I \setminus A$ and $A = \bigwedge A$. Since $\neg (A \leq^* B)$ and by Lemma 2.6, there exists $\{a_n\}_{n \in \omega}$ such that

$$\forall n \in \omega \exists b \in B (a_{2n} \cap b \neq \emptyset \land a_{2n+1} \cap b \neq \emptyset)$$
 (1)

or there exists a finite subset A₀ of A such that the set

$$\mathcal{F}_{A_0} = \{ a \in A \setminus A_0 : \exists y \in Y \left(y \cap a \neq \emptyset \land y \cap \bigcup A_0 \neq \emptyset \right) \}$$
 (2)

is infinite. If (1) holds, fix $\{a_n\}_{n\in\omega}$. If (2) holds, fix A_0 and \mathcal{F}_{A_0}

- (1) Let $D_{A,B,l} = \{ \langle \sigma, \mathcal{H} \rangle : \exists \{ a^i : i < 2l \} \subset (A \wedge \sigma) \ (\forall i < 2l (\bigcup \sigma \cap a^i \neq \emptyset) \wedge \land \{ a^i : i < 2l \} \ is \ pairwise \ disjoint \ \land \forall i < l \exists b \in B(a^{2i} \cap b \neq \emptyset \wedge a^{2i+1} \cap b \neq \emptyset) \} \}.$
- (2) Let $D_{A,B,l} = \{ \langle \sigma, \mathcal{H} \rangle : \exists \{ a^i : i < l \} \subset (A \land \sigma) \ (\forall i < l (\bigcup \sigma \cap a^i \neq \emptyset) \land \{ a^i : i < l \} \ \text{is pairwise disjoint} \ \land \forall i < l (\bigcup A_0 \cap a^i = \emptyset) \land \forall a \in A_0(a \cap \bigcup \sigma \neq \emptyset) \land \forall i < l \exists b \in B(b \cap a^i \neq \emptyset \land b \cap \bigcup A_0 \neq \emptyset) \}.$

(v) Let $\{\dot{x}_i : i \in \omega\}$ be \mathbb{C} -names such that $\Vdash \dot{X} = \{\dot{x}_i : i \in \omega\}$ and $\min \dot{x}_i < \min \dot{x}_{i+1}$. Put $D_{\dot{X},l,q} = \{\langle \sigma, \mathcal{H} \rangle : \exists r \leq q \left(r \Vdash \exists x \in (\dot{X} \land \sigma)(\bigcup_{i < l} \dot{x}_i \subset x)\right)\}$ for $q \leq p$ and $l \in \omega$.

Proof of Claim.

- (i) Clear.
- (ii) Let $\langle \tau, \mathcal{H} \rangle \in \mathbb{P}(\mathcal{I})$. Without loss of generality, we can assume $\mathcal{A} \subset \mathcal{H}$. Let $H = \wedge \mathcal{H}$. Choose $h_i \in H$ for i < l such that $h_i \cap \bigcup \tau = \emptyset$. Choose $n_i \in h_i$. Put $\sigma = \tau \cup \{\{n_i\} : i < l\}$. Then $\{h_i : i < l\} \subset \{h \in (H \wedge \sigma) : h \cap \bigcup \sigma \neq \emptyset\}$. So $\langle \sigma, \mathcal{H} \rangle \in \mathcal{D}^l_{\mathcal{A}}$.

We shall prove $\langle \sigma, \mathcal{H} \rangle \leq \langle \tau, \mathcal{H} \rangle$. Let $Y \in \mathcal{H}$. Since $h_i \cap \bigcup \tau = \emptyset$ and $n_i \in h_i$ for i < l, $\{y \in (Y \land \sigma) : y \cap \bigcup \sigma \neq \emptyset\} = \{y \in (Y \land \tau) : y \cap \bigcup \sigma \neq \emptyset\} \cup \{y \in Y : \exists i < l(n_i \in y)\}$. Hence $\langle \sigma, \mathcal{H} \rangle \leq \langle \tau, \mathcal{H} \rangle$.

(iii) Let $\langle \tau, \mathcal{H} \rangle \in \mathbb{P}(\mathcal{I})$. Without loss of generality, we can assume $\mathcal{A} \subset \mathcal{H}$. Let $H = \bigwedge \mathcal{H}$. Choose $\{h_i : i < l\}$ distinct elements of H such that $h_i \cap \bigcup \tau = \emptyset$ for i < l. Choose $n_i \in h_i$ for i < l. Put $\sigma = \tau \cup \{\{n_i : i < l\}\}$. Then $\{h \in H : \{n_i : i < l\} \cap h \neq \emptyset\} = \{h_i : i < l\}$. So $\langle \sigma, \mathcal{H} \rangle \in \mathcal{D}_{\mathcal{A},l}$.

We shall prove $\langle \sigma, \mathcal{H} \rangle \leq \langle \tau, \mathcal{H} \rangle$.

Since $h_i \cap \bigcup \tau = \emptyset$ and $n_i \in h_i$ for i < l, $\{y \in (Y \land \sigma) : y \cap \bigcup \sigma \neq \emptyset\} = \{y \in (Y \land \tau) : y \cap \bigcup \tau \neq \emptyset\} \cup \{\bigcup \{y \in Y : \exists i < l(n_i \in y)\}\}$. Hence $\langle \sigma, \mathcal{H} \rangle \leq \langle \tau, \mathcal{H} \rangle$.

(iv) (1) Let $\langle \tau, \mathcal{H} \rangle \in \mathbb{P}(\mathcal{I})$. Choose distinct $i_j \in \omega$ for $j \leq l$ so that $\bigcup \tau \cap a_{2i_j} = \emptyset$ and $\bigcup \tau \cap a_{2i_j+1} = \emptyset$ for j < l. Let $k_n = \min a_n$ for $n \in \omega$. Put $\sigma = \tau \cup \{\{k_{2i_j}\}, \{k_{2i_j+1}\} : j < l\}$. Since $\bigcup \tau \cap a_{2i_j} = \bigcup \tau \cap a_{2i_j+1} = \emptyset$ and $k_n \in a_n$, $\{a_{2i_j}, a_{2i_j+1} : j < l\} \subset (A \wedge \sigma)$, $\{a_{2i_j}, a_{2i_j+1} : j < l\}$ is pairwise distinct and for i < l there exists $b \in B$ such that $b \cap a_{2i_j} \neq \emptyset$ and $b \cap a_{2i_j+1} \neq \emptyset$. So $\langle \sigma, \mathcal{H} \rangle \in D_{A,B,l}$.

We shall prove $\langle \sigma, \mathcal{H} \rangle \leq \langle \tau, \mathcal{H} \rangle$ Let $Y \in \mathcal{H}$. Since $\bigcup \tau \cap a_{2i_j} = \bigcup \tau \cap a_{2i_j+1} = \emptyset$, $\{y \in (Y \land \sigma) : y \cap \bigcup \sigma \neq \emptyset\} = \{y \in (Y \land \tau) : y \cap \bigcup \sigma \neq \emptyset\} \cup \{y \in (Y \land \tau) : \exists j < l(k_{2i_j} \in y \lor k_{2i_j+1} \in y)\}$. Hence $\langle \sigma, \mathcal{H} \rangle \leq \langle \tau, \mathcal{H} \rangle$.

(2) Let $\langle \tau, \mathcal{H} \rangle \in \mathbb{P}(\mathcal{I})$. Without loss of generality we can assume $\bigcup \tau \cap a \neq \emptyset$ for $a \in A_0$. Choose distinct a^i for i < l so that $a^i \cap \bigcup \tau = \emptyset$

and $a^i \in \mathcal{F}_{A_0}$. Let $k_i = \min a^i$ and $\sigma = \tau \cup \{\{k_i\} : i < l\}$. Since $\bigcup \tau \cap a^i = \emptyset$, $a^i \in \mathcal{F}_{A_0}$ and $k_i \in a^i$, $\{a^i : j < l\} \subset (A \land \sigma)$, $\{a^i : i < l\}$ is pairwise distinct, $\bigcup A_0 \cap a^i = \emptyset$ and for each i < l there exists $b \in B$ such that $b \cap a^i \neq \emptyset$ and $b \cap \bigcup A_0 \neq \emptyset$. So $\langle \sigma, \mathcal{H} \rangle \in D_{A,B,l}$.

We shall prove $\langle \sigma, \mathcal{H} \rangle \leq \langle \tau, \mathcal{H} \rangle$. Let $Y \in \mathcal{H}$. Then $\{y \in (Y \land \sigma) : y \cap \bigcup \sigma \neq \emptyset\} = \{y \in (Y \land \tau) : y \cap \bigcup \tau \neq \emptyset\} \cup \{y \in (Y \land \tau) : \exists i < l(k_i \in y)\}$. Hence $\langle \sigma, \mathcal{H} \rangle \leq \langle \tau, \mathcal{H} \rangle$.

(v) Let $\langle \tau, \mathcal{H} \rangle \in \mathbb{P}(\mathcal{I})$ and $q \in \mathbb{C}$. Let $H = \bigwedge \mathcal{H}$. Let $q' \leq q$ and $n_i \in \omega$ such that $q' \Vdash n_i \in \dot{x}_i$ for i < l. Without loss of generality we can assume $n_i \in \bigcup \tau$. Since $p \Vdash \{\dot{X}\} \cup \mathcal{I}$ is dual-independent, $p \Vdash \neg (H \leq^* \dot{X})$. So $p \Vdash \text{``} \exists \langle h_n : n \in \omega \rangle \subset H \left(\forall n \in \omega \exists x \in \dot{X} (h_{2n} \cap x \neq \emptyset \land h_{2n+1} \cap x \neq \emptyset) \right)$ or $\exists H_0 \subset H$ finite $\left(\left| \{h \in H \setminus H_0 : \exists x \in \dot{X} (x \cap h \neq \emptyset \land x \cap \bigcup H_0 \neq \emptyset) \} \right| = \omega \right)$. Without loss of generality we can assume

$$q' \Vdash \text{``}\exists \langle h_n : n \in \omega \rangle \subset H\left(\forall n \in \omega \exists x \in \dot{X}(h_{2n} \cap x \neq \emptyset \land h_{2n+1} \cap x \neq \emptyset)\right)\text{''}$$
(3)

or

$$q' \Vdash$$
 " $\exists \text{finite } H_0 \subset H\left(\left|\{h \in H \setminus H_0 : \exists x \in \dot{X}(x \cap h \neq \emptyset \land x \cap \bigcup H_0 \neq \emptyset)\}\right| = \omega\right)$ ".

case(3) Let $r \leq q'$, $\langle h_i : i < 2l \rangle \subset H$ and $\langle k_i : i < 2l \rangle$ such that $\bigcup \sigma \cap h_i = \emptyset$, h_i are pairwise disjoint and

$$r \Vdash \forall i < l \exists x \in \dot{X} (k_{2i} \in x \cap h_{2i} \land k_{2i+1} \in x \cap h_{2i+1})$$
.

Put $k_{-1} = k_0$. Then put $\sigma = \{s' : s' = s \cup \{k_{2i}, k_{2i-1} : n_i \in s\} \text{ for } s \in \tau\}$.

We shall prove $\langle \sigma, \mathcal{H} \rangle \in D_{\dot{X},l,q}$. Let \dot{x} be a \mathbb{C} -name such that $r \Vdash "\dot{x} \in (\dot{X} \wedge \sigma) \wedge \dot{x}_i \subset \dot{x}$ " for some i < l. Since $r \Vdash n_i \in \dot{x}_i$, $r \Vdash n_i \in \dot{x}$. Since there exists $s' \in \sigma$ such that $\{n_i, k_{2i}, k_{2i-1}\} \subset s', r \Vdash k_{2i} \in \dot{x}$. Since $r \Vdash "\exists x \in \dot{X}(\{k_{2i}, k_{2i+1}\} \subset x)$ " and there exists $s' \in \sigma$ such that $\{k_{2i+1}, k_{2i+2}, n_{i+1}\} \subset s', r \Vdash n_{i+1} \in \dot{x}$. So $r \Vdash \bigcup_{i < l} \dot{x}_i \subset \dot{x}$. Hence $\langle \sigma, \mathcal{H} \rangle \in D_{\dot{X},l,q}$.

Finally we shall prove $\langle \sigma, \mathcal{H} \rangle \leq \langle \tau, \mathcal{H} \rangle$. Let $Y \in \mathcal{H}$ and $y_i \in Y$ such that $k_i \in y_i$ for i < 2l. Then $\{y \in (Y \land \sigma) : y \cap \bigcup \sigma \neq \emptyset\} = \{y \cup \{y \in Y\}\}$

 $\bigcup\{y_{2i},y_{2i-1}: \exists i < l(n_i \in y)\}: y \in (Y \land \tau) \land y \cap \bigcup \tau \neq \emptyset\}. \text{ Since } H \leq Y, \{h_i: i < 2l\} \text{ is pairwise disjoint and } \bigcup \tau \cap h_i = \emptyset \text{ for } i < 2l, \{y_i: i < 2l\} \text{ is pairwise disjoint and } \bigcup \tau \cap y_i = \emptyset \text{ for } i < l. \text{ So if } y \neq y' \in (Y \land \tau) \text{ with } y \cap \bigcup \tau \neq \emptyset \land y' \cap \bigcup \tau \neq \emptyset, \text{ then } (y \cup \bigcup \{y_{2i}, y_{2i-1}: n_i \in y\}) \cap (y' \cup \bigcup \{y_{2i}, y_{2i-1}: n_i \in y'\}) = \emptyset. \text{ Hence } \langle \sigma, \mathcal{H} \rangle \leq \langle \tau, \mathcal{H} \rangle.$

case(4) Let G be C-generic over V with $q' \in G$. We will work in V[G]. Let H_0 be a finite subset of H such that the set

$$\{h \in H \setminus H_0 : \exists x \in \dot{X}[G] : h \cap x \neq \emptyset \land x \cap \bigcup H_0 \neq \emptyset\}$$

is infinite where $\dot{X}[G]$ is the interpretation of \dot{X} in V[G]. Since H_0 is finite, there exists $h' \in H_0$ such that the set

$$\{h \in H \setminus \{h'\} : \exists x \in \dot{X}[G] (h \cap x \neq \emptyset \land x \cap h' \neq \emptyset)\}\$$

is infinite.

Let $\langle h_j : j \in \omega \rangle$ be an enumeration of the set

$$\{h \in H \setminus \{h'\} : \exists x \in \dot{X}[G] \left(h \cap x \neq \emptyset \land x \cap h' \neq \emptyset \land h \cap \bigcup \tau = \emptyset\right)\}$$

and $\langle k_j : j \in \omega \rangle$ be natural numbers such that

$$\exists x \in \dot{X}[G](k_{2j} \in x \cap h_j \land k_{2j+1} \in x \cap h').$$

Let $\{Y_i : i < m\}$ be an enumeration of \mathcal{H} . By induction we shall construct decreasing sequence $\{A_j : j < m\}$ of infinite sets of natural numbers. Put $A_{-1} = \{k_{2i+1} : i \in \omega\} \setminus \bigcup \tau$.

Suppose we already have A_j . Let $A_j \upharpoonright Y_{j+1} = \{A_j \cap y : y \in Y_{j+1}\} \setminus \{\emptyset\}$. If $A_j \upharpoonright Y_{j+1}$ is infinite, put

$$A_{j+1} = \bigcup \{A_j \cap y : y \cap \bigcup \tau = \emptyset \land y \in Y_{j+1}\}.$$

If $A_j
brack Y_{j+1}$ is finite, then choose $y \in Y_{j+1}$ so that $A_j \cap y$ is infinite and put

$$A_{j+1}=y\cap A_j.$$

In both cases A_{j+1} is infinite. Choose j_i for i < l so that $k_{2j_i+1} \in A_{m-1}$ for i < l. Then define $\sigma = \{s' : s' = s \cup \{k_{2j_i} : n_i \in s\} \text{ for } s \in \tau\} \cup \{\{k_{2j_i+1} : i < l\}\}.$

From now on we will work in V and prove $\langle \sigma, \mathcal{H} \rangle \in D_{\dot{X},q,l}$. Let $r \leq q'$ such that

$$r \Vdash \forall i < l \exists x \in \dot{X} (k_{2j_i} \in x \cap h_{j_i} \wedge k_{2j_i+1} \in x \cap h')$$
.

Suppose $r \Vdash \text{``}\dot{x} \in (X \land \sigma) \land \dot{x}_i \subset \dot{x}$ '' for some i < l and a \mathbb{C} -name \dot{x} . Since $r \Vdash \dot{x}_i \subset \dot{x}$, $r \Vdash n_i \in \dot{x}$. Since there exists $s' \in \sigma$ such that $\{k_{2j_i}, n_i\} \subset s', \ r \Vdash \{k_{2j_i}, n_i\} \subset \dot{x}$. Since $r \Vdash \exists x \in \dot{X}(k_{2j_i} \in x \cap h_{j_i} \land k_{2j_{i+1}} \in x \cap h'), \ r \Vdash \{k_{2j_i}, k_{2j_{i+1}}\} \subset \dot{x}$. Since $\{k_{2j_{i+1}} : i < l\} \in \sigma, \ r \Vdash k_{2j_{i+1}+1} \in \dot{x}$. By similar argument, we have $r \Vdash \dot{x}_{i+1} \subset \dot{x}$. Therefore $r \Vdash \bigcup_{i < l} \dot{x}_i \subset \dot{x}$. Hence $\langle \sigma, \mathcal{H} \rangle \in D_{\dot{X},q,l}$.

Finally we shall prove $\langle \sigma, \mathcal{H} \rangle \leq \langle \tau, \mathcal{H} \rangle$. Let $Y \in \mathcal{H}$. By construction of $\{A_j : j < m\}$, there is $y \in Y$ such that $\{k_{2j_i+1} : i < l\} \subset y$ or for i < l and $y \in Y$ if $k_{2j_i+1} \in y$, then $y \cap \bigcup \tau = \emptyset$.

case 1. There is $y \in Y$ such that $\{k_{2j_{i+1}} : i < l\} \subset y$.

For each $y \in Y$ let $y_{\tau} \in (Y \wedge \tau)$ such that $y \subset y_{\tau}$. Let $y' \in Y$ such that $\{k_{2j_i+1} : i < l\} \subset y'$. Then $\{y \in (Y \wedge \sigma) : y \cap \bigcup \sigma \neq \emptyset\} = \{y'_{\tau}\} \cup \{y_{\tau} \cup \bigcup \{y^* \in Y : \exists i < l \ (k_{2j_i} \in y^* \wedge n_i \in y_{\tau})\} : y \cap \bigcup \tau \neq \emptyset \wedge y \in Y\}$.

Suppose $y'_{\tau} \neq y_{\tau}$ for some $y \in Y$ with $y \cap \bigcup \tau \neq \emptyset$. Since $H \leq Y$, $\{h_{j_i} : i < l\} \cup \{h'\}$ is pairwise disjoint, $y' \subset h'$, $k_{2j_i} \in h_{j_i}$ and $\bigcup \sigma \cap h_i = \emptyset$, $y'_{\sigma} \cap y_{\sigma} = y'_{\tau} \cap (y_{\tau} \cup \{y^* \in Y : \exists i < l (k_{2j_i} \in y^* \land n_i \in y_{\tau})\}) = \emptyset$.

Let $y_{\tau}^0 \neq y_{\tau}^1$ such that $y_{\tau}^0 \neq y_{\tau}'$, $y_{\tau}^1 \neq y_{\tau}'$, $y^0 \cap \bigcup \tau \neq \emptyset$ and $y^1 \cap \bigcup \tau \neq \emptyset$. Since $H \leq Y$, $\{h_{j_i} : i < l\}$ is pairwise disjoint, $y' \subset h'$, $k_{2j_i} \in h_{j_i}$ and $\bigcup \sigma \cap h_i = \emptyset$, $y_{\sigma}^0 \cap y_{\sigma}^1 = (y_{\tau}^0 \cup \bigcup \{y^* \in Y : \exists i < l (k_{2j_i} \in y^* \land n_i \in y_{\tau}^0)\}) \cap (y_{\tau}^1 \cup \bigcup \{y^* \in Y : \exists i < l (k_{2j_i} \in y^* \land n_i \in y_{\tau}^1)\} = \emptyset$. Hence $\forall y^0, y^1 \in Y$

$$\left(y_\tau^0\cap y_\tau^1=\emptyset\wedge\bigcup\tau\cap y^0\neq\emptyset\wedge\bigcup\tau\cap y^1\neq\emptyset\to y_\sigma^0\cap y_\sigma^1=\emptyset\right).$$

case 2. for i < l and $y \in Y$ if $k_{2i+1} \in y$.

If $\forall i < l \forall y \in Y (k_{2j_i} \in y \to y \cap \bigcup \tau = \emptyset), \{y \in (Y \land \sigma) : y \cap \bigcup \sigma \neq \emptyset\} = \{\bigcup \{y \in Y : \exists i < l(k_{2j_i+1} \in y)\}\} \cup \{y_\tau \cup \bigcup \{y^* \in Y : \exists i < l(k_{2j_i} \in y^* \land n_i \in y_\tau)\} : y \cap \bigcup \tau \neq \emptyset \land y \in Y\}.$ Since $k_{2j_i+1} \in y$ implies $y \cap \bigcup \tau = \emptyset, \bigcup \{y \in Y : \exists i < l(k_{2j_i+1} \in y)\} \cap \bigcup \tau = \emptyset.$

Let $y_{\tau}^0 \neq y_{\tau}^1$ with $y^0 \cap \bigcup \tau \neq \emptyset$ and $y^1 \cap \bigcup \tau \neq \emptyset$. Since $H \leq Y$ and $\{h_{j_i} : i < l\}$ is pairwise disjoint, $(y_{\tau}^0 \cup \bigcup \{y^* \in Y : \exists i < l(k_{2j_i} \in Y)\})$

 $y^* \wedge n_i \in y_{\tau}^0)\}) \cap (y_{\tau}^1 \cup \bigcup \{y^* \in Y : \exists i < l(k_{2j_i} \in y^* \wedge n_i \in y_{\tau}^1)\}) = \emptyset.$ Hence $\forall y^0, y^1 \in Y$

$$\left(y^0_\tau\cap y^1_\tau=\emptyset \wedge \bigcup \tau\cap y^0\neq\emptyset \wedge \bigcup \tau\cap y^1\neq\emptyset \to y^0_\sigma\cap y^1_\sigma=\emptyset\right).$$

Therefore $\langle \sigma, \mathcal{H} \rangle \leq \langle \tau, \mathcal{H} \rangle$.

Claim

Let $\mathcal{D} = \{D_n : n \in \omega\} \cup \{D_{\mathcal{A}}^l : \mathcal{A} \text{ is a finite subset of } \mathcal{I} \wedge l \in \omega\} \cup \{D_{\mathcal{A},l} : \mathcal{A} \text{ is a finite subset of } \mathcal{I} \wedge l \in \omega\} \cup \{D_{\mathcal{A},B,l} : \mathcal{A} \text{ is a finite subset of } \mathcal{I} \wedge B \in \mathcal{I} \setminus \mathcal{A} \wedge l \in \omega\} \cup \{D_{\dot{X},l,q} : q \leq p \wedge l \in \omega\} \text{ and } G \text{ is } \mathcal{D}\text{-generic for } \mathbb{P}(\mathcal{I}).$ Let X_G be a partition generated by \equiv_G where \equiv_G is defined by

$$n \equiv_G m \text{ if } \exists \langle \sigma, \mathcal{H} \rangle \exists x \in \sigma \left(\{n, m\} \subset x \right).$$

Then by (i) and (ii) $X_G \in (\omega)^{\omega}$. By (ii) $X_G \wedge \bigwedge \mathcal{A} \in (\omega)^{\omega}$ for finite $\mathcal{A} \subset \mathcal{I}$. By (iii) $\neg (\bigwedge \mathcal{A} \leq^* X_G)$ for finite $\mathcal{A} \subset \mathcal{I}$. By (iv) $\neg (X_G \wedge \bigwedge \mathcal{A} \leq^* Y)$ for finite $\mathcal{A} \subset \mathcal{I}$ and $Y \in \mathcal{I} \setminus \mathcal{A}$. Therefore $\{X_G\} \cup \mathcal{I}$ is dual-independent by Corollary 2.8. By (v) $p \Vdash X \perp X_G$. Hence X_G is a required partition.

Acknowledgment

I would like to thank Jörg Brendle for helpful suggestions and discussions during this work.

References

- [1] Andreas Blass, "Combinatorial cardinal characteristics of the continuum", in Handbook of Set Theory (A.Kanamori et al.,eds.),to appear.
- [2] J.Brendle, "Martin's axiom and the dual distributivity number", MLQ Math. Log. Q. 46 (2000), no. 2, 241–248.
- [3] J.Cichoń, A.Krawczyk, B.Majcher-Iwanow, B.Węglorz, "Dualization of the van Douwen diagram". J. Symbolic Logic 65 (2000), no. 2, 959–968.

- [4] L.Halbeisen, "On shattering, splitting and reaping partitions". Math. Logic Quart. 44 (1998), no. 1, 123–134.
- [5] Kenneth Kunen, "Set Theory", Studies in Logic and the Foundations of Mathematics, 102. North-Holland Publishing Co., Amsterdam, 1983.