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Abstract
In this paper we will define a cardinal invariant corresponding to
the independence number for partitions of w. By using Cohen forcing

we will prove that this cardinal invariant is consistently smaller than
the continuum.

1 Introduction

The structure ([w]¥,C*) of the set of all infinite subsets of w ordered by
“almost inclusion” is well studied in set theory. To describe much of the
combinatorial structure of ([w]?, C*) cardinal invariants of the continuum
are introduced like, for example, the reaping number t or the independence
number i. ,

In recent years partial orders similar to ([w]*, C*) have been focused on
and analogous cardinal invariants have been defined and investigated. For
example ((w)¥, <*), the set of all infinite partitions of w ordered by “almost
coarser”, and the cardinal invariants py, t4, S4, t4, 8¢ and bg have been defined
and investigated in [2], [3] and [4].

In this work we will define the dual-independence number i; analogous
to the independence number i and get a consistency result.

Once we define dual-independence number i4, we can prove the following
proposition similar to the proof of t <1i.

Proposition 1.1 (Brendle). t; < ig.

And t; has the following property.



Theorem 1.2. [8] M A implies t; = c.

So it is consistent that i = ¢. And it is natural to ask the following
question. '

Question 1.3. Is it consistent that iz < ¢?

In section 2 we will define the dual-independence number and study its
properties. In section 3 we will prove that iz < ¢ is consistent by using Cohen
forcing.

2 (w)¥ and dual-independent family

We start with the definition of “partition of w”.

Definition 2.1. X is a partition of w if X is a subset of p(w), JX = w and
for each a,b € X ifa#b, thenanb= 0. By (w) we denote all partitions
of w. Also by (w)* we denote all infinite partitions of w and by (w)<* we
denote all finite partitions of w.

For partitions of w we give the ordering “coarser”.

Definition 2.2. For X,Y € (w) X is coarser than'Y (Y is finer than X ) if
for each x € X there exists a subset Y' of Y such that z =JY".

For X,Y € (w)” X is almost coarser than'Y (Y is almost finer than V)
if for all but finitely many x € X there exists Y' CY such that z =JY".

We can easily check that ((w), <) is a lattice. For each X, Y € (w) by
X AY we denote the infimum of X and Y. For X,Y € (W) by X L Y we
mean that X AY € (w)<“.

As ([w]¥, C*), ((w)*, <*) has the following properties:

Lemma 2.3. /3] Suppose that Xo > X; > X, > ... is a decreasing sequence
of (w)“. Then there exists Y € (w)¥ such that Y <* X,, forn € w.

Lemma 2.4. [3] For X,Y € (w)* if =(X <*Y), then there exists Z € (w)¥
suchthat Z<*X and Z 1 Y.

So ((w)¥, <*) is similar to ([w]“, C*). On the other hand there is a serious
difference: ([w]“, C*) is a Boolean algebra but ((w)*, <*) is just a lattice and
not a Boolean algebra.
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In general when we define independence, we use complementation. But
((w)“,<*) doesn’t have any natural complementation. So we will define
independence for ((w)¥, <*) without mentioning complementation.

Definition 2.5. Let T be a subset of (w)“. T is dual-independent if for all
A and B finite subsets of T with ANB = 0 there ezists C € (w)“ such that

(i) C<*Afor Ae A and
(it) C L B for B € B.
Then define dual-independence number iy by
ig=min{|Z]|: T z'sb a mazimal dual-independent family}.

Since there is no natural complementation for an element of ((w)¥, <*),
it becomes more difficult to handle dual-independent families than to handle
independent families for a Boolean algebra. But the following lemmata helps
to handle dual-independent families.

Lemma 2.6. [/ If XY € (w)¥ and ~(X <*Y), then there exists an infinite
sequence {an}new of different elements of X such that

VnewdyeY (yNagy #OAyNazgmi #0)
or there erists a finite subset A ofX such that the set
{zeX\A:eY@ny#£0A| JANny #0)}
is infinite.

Proof. Suppose that we have defined a sequence {ay}n<ar but for any two
a,b€ X\{ag,...,a0k1} and y €Y wehaveanNny=0orbNy=0. Let A
denote the finite family {ao,...,a-1} and let

.7-'={w€X\A:Eler(zﬂy;é@/\UAﬂy#ﬂ)}.
If F is finite, then the partition
X.={JAu|JFrux\AuF)

is a finite modification of X which is coarser than Y. It is a contradiction to
(X <*Y).
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By this lemma we can prove the following useful lemma.

Lemma 2.7. If X € (w)¥ and B is a finite subset of (w)¥ such that ~(X <*
B) for B € B, then there ezists Z < X such that Z L B for B € B.

Proof. Let B = {B; : i < n}. By the above lemma for each i < n there
exists an infinite sequence {aj} }re. of different elements of X such that

Vk € wb € Bi(bNaly, # O AbNak,,, #0)

or there exists a finite subset A; of X and an infinite sequence {a}}rew of
different elements of X \ A; such that

Vkewdbe Bi(bNaj #BA| JAinb #0).

In the first case we define A; = 0.
Recursively we shall construct a subsequence {b: }rew of {ak }rew fori < n.
Given {b}}1<ax for i < n and b, bl ., for i < j for some j < n.

A; =0 Choose ko € w such that

{ady,, ady 130 (U AU{b:i <nAL< 2k} U {bhy, byyy 14 < J}) 0.

i<n
. L
Put b, = a3, and b,y = ay,-

A; #0 Choose ko < k1 € w such that
{a},, a1, } N (UA,»U{b;' 8 <AL <2k} U (b, by 1 % <j}) =0.
<n

i . i

Define Z = {|_Jth, : k € w}U{w\ |J | Jts}- Then Z < X and for each
i<n kew i<n
z € Z and i < n there exists b € B; such that

bnz#0Aw\ | JJbk) Nb#0.

kEw i<n

Hence Z 1 B; for i < n.
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So it becomes easier to check dual-independence.

Corollary 2.8. 7 is dual-independent if and only if for each finite subset A
of Tand BET\ A

NAZ B

3 Cohen forcing and dual-independence num-
ber

By using Cohen forcing we will prove it is consistent that iz < ¢.
Theorem 3.1. Suppose V |= CH. Then VC@2) = iy = w;.
To prove Theorem 3.1 we use the following lemma.

Lemma 3.2. Assume p € C, T is a countable dual-independent family and
X 15 a C-name such that p I “X 4s a mon-trivial infinite partition of w and
{X} UZ is dual-independent”. Then there exists X* € (w)* NV such that
{X*}UT is dual-independent and pIF X L X*.

Proof of 3.1 from 3.2 Within the ground model we shall define a maximal
dual-independent family Z of size w;. It suffices to verify maximality of Z in
the extension via C (see [5] pp256).

By CH, let (p¢, 7¢) £ < wi enumerate all pairs (p, 7) such that p € C and
T is a nice name for an infinite partition of w. By recursion, pick an infinite
partition of w as follows. Given {X, : n < £} for some £ < w;. Choose X so
that

(1) {Xe} U{X,:n < &} is dual-independent.
(2) ¥ pelk “{re} U{X, : n < &} is dual-independent”, then pg I+ X L 7¢.

(2) is possible by Lemma 3.2. Let T = {X,, : < w;}. We shall prove T is
maximal. If 7 is not maximal in V[G] for some C-generic G, then there exists
Pe¢ € G and ¢ such that pg IF {7¢} UZ is dual-independent. By construction
there exists X, € 7 and p¢ IF 7¢ L X,. It is a contradiction.

O
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Proof of 3.2. Let P(Z) be a partial order such that (o, H) € P(Z) if o is a
partition of a finite subset of w and H is a finite subset of Z. It is ordered by

(o,H) < (1,G) if
(i) Vz € 732’ € o(z C 7'),
(i) HD G,
(iii) Vzo # z1 € TVZp € 0 (29 C g — 1 Nz = B),

(iv) VY € GVyo, 11 € (Y A7)V, 91 € (Y A o)
(nu=0AUrnuw#0AUJrnu #0A% CshAn Coi % Nsi=0).
Claim 3.2.1. The following sets are dense.

(i) D, ={{o,H):n€ o} forn € w.

(i) DY = {{(o,H) : AC HA|{he (AHAQG):hNJo #0} > 1} for
finite subsets A of T and | € w.

(iti) Dag = {(occH) : AC HATz €eo({he AH:z2Nh#0} >l)} for
finite subsets A of T and | € w.

(iv) Let A be a finite subset of T, B € T\.A and A= A\ A. Since =(A <* B)
and by Lemma 2.6, there exists {an}ncw Such that

Vn € w3b € B(ag Nb# O Aagni1 Nb# D) (1)

or there exists a finite subset Ao of A such that the set
Ao ={a€A\A0:ByEY(yﬂa%Q)/\yﬂUAo#@)} (2)

is infinite. If (1) holds, fix {an}new. If (2) holds, fix Ay and Fa,
(1) Let Dap; = {{o,H) : I{a’ : i < 21} C (AA0) (Vi < 2U(Jo Nat # O)A
A{a® : i < 21} is pairwise disjoint AVi < 13b€ B(a®?Nb# D Aa®t1Nb+#0))}.
(2) Let Dap; = {{o,H) : 3{a’ : i < 1} C (AA0) (Vi < I(Jo Na’ # B)A
{a* : i < 1} is pairwise disjoint AVi <I({JAoNa’ = 0)A
Va€ AjlanJo #0)AVi<iTbe Blbna' #BAbNJ A #0))}.



(v) Let {Z;: i € w} be C-names such that - X = {&; : i € w} and min; <

min#;41. Put Dy, = {(o,H): Ir < gq(ri 3z e (X Ao)(U,., % C z)
X,lq i<l

forg<pandl € w.

Proof of Claim.

(1)
(i)

(iii)

(iv)

Clear.

Let (7, H) € P(Z). Without loss of generality, we can assume A C H.
Let H = AH. Choose h; € H for ¢ < | such that h; N|J7 = 0. Choose
ni € hi. Puto =7U{{n;} :i <1} Then {h;:i<il} c{h€(HAo0):
hnUo # 0}. So (o, H) € D\,.

We shall prove (g, H) < (7,H). Let Y € H. Since h; N|J7 = @ and
ni€hifori<l,{ye(YAo):yNnUo #0}={ye YAT):ynJo #
0}U{y €Y : 3i < l(n; € y)}. Hence (o, H) < (1, H).

Let (7, H) € P(T). Without loss of generality, we can assume A C H.
Let H = A'H. Choose {h; : i < I} distinct elements of H such that
hin{yr =0 fori < l. Choose n; € h; fori < l. Put ¢ = 7U {{n; :
i<l}}. Then{he H:{ni:i<l}nh#0}={h:i<I1} So
(0‘, H) € DA’[.

We shall prove (o, ’H) < {1, H).

Since b, N|J7 =P and n; e by fori <, {ye Y Ao):ynUo #
0}={ye¥YAr):ynUr #0}U{U{y €Y : T < I(n; € y)}}. Hence
(o, H) < (1, H). ,

(1) Let (r,H) € P(Z). Choose distinct i; € w for j < I so that [J7 N
ag; = 0 and |7 Nagi;41 = 0 for j < I. Let k, = mina, forn € w. Put
o = 7U {{ka,}, {kai;41} : § < 1}. Since U7 Nagi; = U7 Nagi41 =0
and k, € a,, {azij,azij+1 1< l} C (A/\O’) R {ag,-j,agij+1 1J < l} is
pairwise distinct and for i < I there exists b € B such that bNag; # 0
and bﬂazij.H #0. So <O’, H) € Da gy

We shall prove (o, H) < (1,H) Let Y € H. Since U7 Nay; = UTN
a1 =0, {yeYAo):yNUo #0}={ye YAT):ynUoc #
0yU{y € (YAT) : 35 < l(kai; € yVkai;41 € y)}. Hence (o, H) < (1, H).
(2) Let (r,H) € P(Z). Without loss of generality we can assume | J7 N
a # 0 for a € Ap. Choose distinct a* for i < I so that a* N Y7 = 0
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and a' € Fu,. Let k; = mina’ and 0 = 7 U {{k;} : i < I}. Since
UrnNai=0,a" € Fyyand ks €a’, {a*:j <1} C(AA0), {a*:i< 1}
is pairwise distinct, | J Ao N a* = @ and for each i < [ there exists b € B
such that bNa* # @ and bN|J Ao # 0. So (0, H) € Dap,.

We shall prove (o,H) < (r,H). Let Y € H. Then {y € (Y Ao):yN
Ue#0={ye YAT) :ynUr #0}U{ye (Y AT): Ti< l(k; € y)}.
Hence (o, H) < (1, H).

Let (T H) e P(T)and g € C. Let H = A'H. Let ¢ < gand n; € wsuch
that ¢’ I n; € &; for 4 < I. Without loss of generality we can assume
n; € |J7. Since p - {X} UT is dusal-independent, p I =(H <* X). So

plk “I(hy, : 'nEw)CH(VnGwHa:EX(hgnﬂx#-(b/\hzﬂHﬂ:r;é@))
orSHoCHﬁmte(l{hEH\Ho Ha:EX(mr‘lhaé(b/\xﬂUHoaéQ))}l—w)

Without loss of generality we can assume

{1 i €w) C H (Vn€wdz € X(hn N7 #0Ahania Nz £0))”

(3)

or
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¢ |- “Ifinite HOCHO{heH\HO:BxeX(a:nh#@/\wﬂUHoaé(b)}l=w)”.

| (4)
case(3) Let r < ¢/, (h; : ¢ < 2l) C H and (k; : ¢ < 2l) such that
Uo Nh; =0, h; are pairwise disjoint and

riFVi <13z € X (ky € £ N hoy Akgigy € 0 hoigs).

Put k_; = ko. Then put 0 = {8’ : &' = sU {kai, kpi—1: n; € s} for s €
T}

We shall prove (o, H) € Dy, ,. Let & be a C-name such that r IF “z €
(XANo)ANz; C & for some i < I. Sincer IF n; € :z:,, r - n; € .
Since there exists s’ € o such that {n;, kg, kai—1} C &', v IF ky € 4.
Since r IF “Iz € X ({kg,,k2,+1} C z)” and there exists s’ € o such
that {k2,+1,k2,+2,n,+1} C s, rlknipy € 4. Sorlk ;& C . Hence
(0,H) € Dy o

Finally we shall prove (o, H) < (r,H). Let Y € H and y; € Y such
that k; € y; for i < 2I. Then {y € Y Ao) : yNnlUo # 0} = {y U



U{yairyoic1 : i< l(ns e )} cye YAT)AyNUJT # 0}. Since
H <Y, {h; : i < 21} is pairwise disjoint and |J7 N h; = @ for i < 21,
{yi : i < 2} is pairwise disjoint and |Jr Ny, = @ for s < I. So if
yv#y € (YAT)withynU7r #0Ay'NIUT # 0, then (yUJ{yas, y2i-1 :
n; € y}) N (Y U U{y2s, y2i-1 : 7 € ¥'}) = 0. Hence (o, H) < (1, H).

case(4) Let G be C-generic over V with ¢’ € G. We will work in V[G].
Let Hy be a finite subset of H such that the set

{he H\Hy:3z € X[G]: hnz # DAz n| JHo # 0}

is infinite where X[G] is the interpretation of X in V[G]. Since Hj is
finite, there exists h’ € Hy such that the set

{he H\{}:Fx e X[G](hNz # DAz N} #0)}
is infinite.
Let (h; : j € w) be an enumeration of the set
{he H\ {¥}: 3z € X[G] (hﬂx#@/\azﬂh’#@/\hﬂUT%@)}
and (k; : j € w) be natural numbers such that
3z € X[G)(kyj € TN R; Akogjyy € TNA).

Let {Y; : ¢ < m} be an enumeration of . By induction we shall
construct decreasing sequence {A; : 7 < m} of infinite sets of natural
numbers. Put A_; = {koi41:2 € w}\UT.

Suppose we already have A;. Let A; | Vi1 = {4;Ny:y € Vi }\{0}.

If A; [ Y;4, is infinite, put

Aj+1=U{Ajﬂy:yﬂU’r=(D/\y€Y,-+1}.

If A; [ Y}, is finite, then choose y € Y4 so that A; Ny is infinite and
put

Ajp=ynNA4A;.
In both cases A4, is infinite. Choose j; for @ < I so that kgj,+1 € Am—1
for i < I. Then define ¢ = {s' : & = sU{kgj, : n; € s}fors €
YU {{koji41 18 < 13}
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From now on we will work in V' and prove (o, H) € Dy - Letr < ¢
such that

rlF Vi < 13z € X (kyj, € zNhj, Akgjp1 €TNR).

Suppose r I+ “¢ € (X Ao) A&; C &” for some i < | and a C-name
£. Since r I+ #; C &, r IF n; € £. Since there exists ' € o such
that {ko;;,ni} C &, v IF {koj;,ni} C &. Since r I 3z € X(koj, €
z N hj‘. A k2j,'+1 €zNn hl), r - {kzj,-,k2j,-+1} C %. Since {k2j,'+1 1<
I} € o, rIF kyj; ., 41 € . By similar argument, we have r I+ 2,41 C .
Therefore r I+ U, 2+ C £. Hence (0, H) € Dy ,,.

Finally we shall prove (o, H) < (7, H). Let Y € H. By construction of
{A; : j < m}, there is y € Y such that {kyj,41:i <!} Cyorfori<l
and y €Y if kyj,41 €y, thenyNYr =0.

case 1. There is y € Y such that {kgj+1:7 <} Cy.

For each y € Y let y. € (Y A7) such that y C y.. Let ¥ € Y such that
{kyjr1:i<i} Cy. Then{ye (Y Ao):ynUo # 0} ={y;} U{y. U
Wy eY di<i(hky, ey Aniey)iynUr#0AyeY).
Suppose y. # y, for some y € Y with yN|J7 # 0. Since H <Y, {h;, :
i < I} U {R'} is pairwise disjoint, ' C I, kgj, € hj, and [Jo Nh; = 0,
YoNYe =y N(yrU{y" €Y i <i(ky €y*Am €y)}) =0

Let 42 # y2 such that 32 # o, y2 # ¢, ¥ NUT # B and y* NYT # 0.
Since H <Y, {h;, : i < I} is pairwise disjoint, ¥’ C k', koj, € hj, and
Uonh; = @, ygﬂy; = (yﬁUU{y‘ €Y :di< l(kzj,. EY*An; € y,?)})ﬂ
WUy eY:Ti<l(ky, €y*An;€yl)} =0. Hence V%, 9yl €Y

(y30y1=@/\UTﬂy°¢@/\Umyl%ﬂﬁygﬂyi=0)-

case 2. fori <land y € Y if kg, 41 € .

IEVi<iVyeY(ky,cy—oynUr=0),{ye Y Ao):ynJo #
0} ={U{y €Y : 3 <lbyjn e }}U{zrVU{yr e Y : Ti <
L(ky, €y* Ani€y)}:ynUr #0 Ay € Y}. Since kyj 41 € y implies
’yﬂUT=®, U{yEY:3i<l(k2,-,.+1 Ey)}ﬂUT=(b.

Let 92 # y! with °NUr # @ and y' NYT # 0. Since H < Y
and {h;, : i < I} is pairwise disjoint, (12U U{y* € Y : 3i < I(ky;, €




v A €YD Ny UU{yr € Y Fi < Uk, € y* Ams € 91)}) = 0.
Hence V3%, yl € Y
(ygﬂyi = 0/\U7‘ﬂy°¢0/\Ufrﬂy1 #0—-y20Nnyl = (6).
Therefore (o, H) < (1,'H). |
Claim B

Let D = {D,:n € w}U{DY : Ais a finite subset of TAl € w}U{D4; :
A is a finite subset of ZAl € w} U {D4p,; : Ais a finite subset of ZA B €
I\ ANl ew}U{Dy,,:q<pAl€w}and G is D-generic for P(Z).

Let X¢ be a partition generated by =z where =¢ is defined by

n =g m if 3(o, H)3z € o ({n,m} C z).
Then by (i) and (ii) X¢ € (w)¥. By (ii) Xg AAA € (w)“ for finite A C T.
By (iii)) ~(AA <* Xg) for finite A C Z. By (iv) =(Xg AAA <* Y) for
finite A C T and Y € T\ A. Therefore {X¢} UZ is dual-independent by
Corollary 2.8. By (v) plF X 1L Xg. Hence X¢ is a required partition.
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