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Numerical analysis of normal sequences of finite
open covers and Pontrjagin-Schnirelmann’s
theorem

hnEA S8 (Hisao Kato), S K% (University of Tsukuba)

1 Introduction

~ Recently, there has been an increase in the importance of fractal sets in the sciences,
and fractal dimension theory has been studied by many scientists and mathematicians
(e.g. see [1], [5], [10] and [15]). Fractal dimensions depend on the metrics on spaces
and hence the analysis of metrics of the spaces are very important. In this note, we
study some properties of topological dimension, metrics and box-counting dimensions
of separable metric spaces from a point of view of general topology. In general topology,
the notion of normal sequence of open covers is one of the most useful tools for the study
(e.g. see [11, 12, 13]). For example, the notion is the essence of metrizability of spaces
(see Theorem 2.1). The key word is ”normal sequence” of finite open covers. In this
note, we study directly the numerical properties of normal sequences of ”finite” open
covers on a given separable metric space X and we will give another proof of Pontrjagin
and Schnirelmann’s theorem. Furtheremore, by use of normal sequences we construct
metrics p which can control the values of lﬂ;LI;’g(ffl In particular, we can construct
chaotic metrics with respect to the determination of the box-counting dimensions.
The methods used in this note are based on dimensional theoretical techniques in an
abstract topological space.

In fractal dimension theory, Pontrjagin and Schnirelmann [16] proved the following
fundamental result involving topological dimension dim X and (lower) box-counting
dimension dimpg(X, p) for a compact metric space (X, p): For a metric p on X and
€>0,let

N(e, p) = min{|U| | U is a finite open cover of X with mesh,(i/) < €}

and

. . ~.log N(e, . . .log N(e,
dims(X, p) = sup{mf{—-—g:—l-(—)(g?ml 0<e<e}|0<e}(=liminf gTb(-Efl), _

where |A| denotes the cardinality of a set A. Then
dim X = min{dimp(X, p)| p is a metric for X}.

More generally, Bruijning ([2] or [12, p.81, Corollary]) showed that if X is a separable
metric space, then

dim X = min{dimp(X, p)| p is a totally bounded metric for X}.

Pontrjagin and Schnirelmann proved their theorem by use of geometric arguments in an
Euclidean space. In fact, such a metric p on X with dim X = dimp(X, p) was obtained



by use of geometric arguments (embedding arguments) on polyhedra approximations
of n-dimensional sets in the (2n + 1)-dimensional Euclidean space R*"*! (see [12] and
[16]).-

2 Normal sequences of open covers

In this note, we need the following terminology and concepts. Let U and V be open
covers of a space X. We assume that each element of any open cover of a space is not
an empty set. If V refines U, then we denote V < U (e.g. see [11] and [13]). Suppose
that A is a subset of a space X and U is an open cover of X. Then we denote

St(AU) = J{U eU| UN A+ ¢},
Inductively, we define St°(A,U) = A, St'(A,U) = St(A,U) and
StPL(A,U) = SHSEP(A,U),U) = | {U e U| UN S(A,U) # ¢} (p 2 1).

We put
U= {St(U,U) | U e U} and U = {St(z,U) | z € X}.

Note that if [¢{| is finite, then |U/*| and |44| are finite. Also, we put U*’ = U, UL’ =
U, U* =U*, and U2 =UA. Inductively, we define

U = U7Y = {StW,U7) | W e U’}

and
UL = (UPP) = {St(z,U™") | z € X}.

An open cover V of X is a star p-refinement of an open cover U of X if V¥ <U. An
open cover V of X is a delta p-refinement of an open cover U of X if VA” < U. An open
cover V of X is a star-refinement of an open cover U of X if V is a star 1-refinement of
U. An open cover V of X is a delta-refinement of an open cover U of X if V is a delta
1-refinement of U. Note that ¥ < VA < V* < VA%,

Let U; (i = 1,2,..,) be open covers of X. Then the sequence {U;}2; is called
a normal star-sequence (e.g. see [11)], [12] and [13)) if U;4, is a star-refinement of
U; (i =1,2,...,). Also, the sequence {U;}2, is called a normal delta-sequence if U,
is a delta-refinement of U; (i = 1,2,...,). The sequence {¥;}2, is called a normal
sequence (e.g. see [11], [12] and [13]) if either (x) {4}$2; is a normal star-sequence or
(A) {44}, is a normal delta-sequence. The sequence {U;}:2, is called a development
of X if {St(z,U;)| i =1,2,..., } is a neighborhood base for each point z of X.

The following theorem is well known as Alexandroff-Urysohn’s metrization theorem
(e.g. see [11, 12, 13]). We need some constructions of metrics in the proof of the
theorem.

Theorem 2.1 (Alexandroff-Urysohn’s metrization theorem) A T;-space X is metriz-
able if and only if there ezists a sequence {Us}32, of open covers of X such that {U;}2,
is a normal sequence and a development of X.
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For any normal space X and natural numbers k¥ and p, we define the following
indices:

(1) The function #;(X) is defined as the least natural number m such that for every
open cover Y of X with |U| = k, there is an open cover V of X such that |V| < m and
V¥ < U (see [14)).

(2) The function A¥(X) is defined as the least natural number m such that for every
open cover U of X with [U| = k, there is an open cover V of X such that [V| < m and
VA < U (see [14]).

By Ck, we shall denote the set of all m-element subsets of the set {1,2,..,k} and

by ( :; ) its cardinality, i.e.,
k) K
m ) ml(k—m)!

For natural numbers k, m,p > 1 with k > m, we define the natural numbers

; DAYEAN S
A(k;m;p) = Znzji2ja>...25p21 ( i ) <J; )( '3-?1 )

) k(i I )
*(k;m;p) = 2m2j12j22~-21’p21 ( 71 ) ( ]; ) ( ;Pl )JP.

In [3], Bruijning and Nagata determined the index Ai(X), and in [6], Hashimoto and
Hattori determined the index *;(X). Finally, in [9, Corollary 3.11] we determined the
indices AR (X) and #;(X) for all p > 1 as follows, which is the key lemma of this note.

and

Lemma 2.2 Let X be an infinite normal space with dim X = m and let k and p be
natural numbers. Then

*(X) = { *(k; k; (1/2)(3 ~ 1)) = k[(1/2)(3 = 1) + 1)]*7Y, if k<m+1
k)= F(k;m +1;(1/2)(37 - 1)), if k>2m+1.
" AP(X) = Ak ;2771 = (P +1)F = (27, if k<m+1
k(X) = { A(k;m +1;2071), if k>m+1.

3 Topological dimension and normal sequences of
finite open covers

By use of Lemma 2.2, we obtain the next theorem which means that topological
dimension is characterized in terms of the growth of the global cardinality |24| of
members U; of normal sequences.
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Theorem 3.1 Let X be a separable metric space. Then
1 :
(1) dimX = min{li;g inf _‘E# | {Us}2, is a normal star-sequence of

finite open covers of X and a development of X}

and
: o 108, Uil o
(2) dimX = mn{hggﬂ — | {Us}2, is a normal delta-sequence of

finite open covers of X and a development of X}.

For the another proof of Pontrjagin and Schnirelmann’s theorem, we need the fol-
lowings.

Proposition 3.2 Let X be a separable metric space. Then
(1) dim X = min{dimg(X, p.) | p. is an Alezandroff-Urysohn’s metric for X induced by
a sequence {U;}:2, which is a normal star-sequence of finite
open covers of X and a development of X},
(2) dim X = min{dimp(X,da) | da is an Alezandroff-Urysohn’s metric for X induced by
a sequence {U;};2, which is a normal delta-sequence of finite

open covers of X and a development of X}.

Let X be a metrizable space and let p; and p; be two metrics on X. Then p;
is Lipschitz equivalent to p, if the identity maps Id; : (X, p1) — (X, p2) and Id, :
(X, p2) = (X, p1) are Lipschitz homeomorphisms. :

Proposition 3.3 Let (X, p;) be a metric space such that p; is bounded, i.e., diam,, X <
00. Suppose that {U;}2, is a normal star (resp. delta)-sequence of open covers of X
and a development of X. Then the followings are equivalent.

(1) The Alexandroff-Urysohn’s metric p, induced by {Ui}2, is Lipschitz equivalent
to p1. ’

(2) There are positive humbers Co >0 > 0 such that for each i,
{Um(x’ cl/3i) | TE X} SU < {Um‘(m, 02/3i) |z € X}
(resp. {Up,(z,¢1/2) | z € X} Ui < {Up,(2,¢2/2') | z € X}).

The next proposition implies that for any separable metric space X there is a natural
bijection from the set of all totally bounded metrics on X to the set of Alexandroff-
Urysohn’s metrics on X induced by normal sequences of finite open covers which are
developments of X, up to Lipschitz equivalence.



Proposition 3.4 Let X be a separable metric space and let p, be a totally bounded
metric on X. Then there is a normal star (resp. delta)-sequence {U;}2, of finite open
covers of X such that {U;}2, is a development of X and p; is Lipschitz equivalent
to pa, where p, is the Alezandroff-Urysohn’s metric induced by {U;}2,. In particular,
dimp(X, ;1) = dimp(X, p2).

Theorem 3.5 (Pontrjagin-Schnirelmann and Bruijning’s theorem) Let X be a sepa-
rable metric space. Then

dim X = min{dimpg(X, p)| p is a totally bounded metric for X}.

Proof. Put dim X = m. By Proposition 3.4, we see that if p; is any totally bounded
metric on X, then there is a normal star-sequence {U;}2, of finite open covers of X
such that {U;}32, is a development of X and dimp(X, p,) = dimp(X, p;), where p; is
the Alexandroff-Urysohn’s metric induced by {i4;}32,. By use of this fact, we can prove
Pontrjagin-Schnirelmann and Bruijning’s theorem.

4 Chaotic metrics with respect to the determina-
tion of the box-counting dimensions

In this section, we construct chaotic metrics with respect to the determination of
the box-counting dimensions. By Theorem 3.1, we know that for any separable metric
space X, there is a normal star (resp.delta)-sequence {U}2, of finite open covers of X
and a development of X such that liminf;_, E%inl = dim X (resp. lim inf;_,o : . il

dim X). We call such a normal sequence {{;}2, a fundamental normal sequence of X.

Theorem 4.1 Let X be a separable metric space with dim X = m > 1. Suppose that
{U:}2, is a fundamental normal star-sequence of X (i.e., iminf; o l"—‘ﬁﬂ"—‘-l =dimX.)
Let o be any real number witha > m (= dim X') or a = co. Then there is a subsequence
{Us,}2, of {Ui}2, such that

J‘kl

logg |U;
[, 00] = {hin inf —g%l—;—- | {3k}, is an increasing subsegquence
—> 00 k
of natural numbers}.

Also, there is a totally bounded metric p, on X such that

log NV (e, pa) | {€x}32, is a decreasing sequence

[@,00] = {hgg}f oz e

of positive numbers with lim ¢, = 0},
k—o0

where N(e, po) = min{|U| | Uis a finite open cover of X with mesh,, (U) < €}.
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Remark. Let X be a separable metric space with dim X = m > 1. Suppose that
{U;}22, is a fundamental normal star-sequence of X. Then

10g3 IU,

[dim X, 00] = {limi logs 4| | {Ui;}2, is a subsequence of {14}2,}
J—00

= {dimpg(X, p«) | p« is the Alexandroff-Urysohn’s metric for X induced

by a subsequence {U;;}72, of {t4}2,}.

In other words, all box-counting dimensions of X are generated by each fundamental
normal star-sequence of X. In case of normal delta-sequence of finite open covers of
X, we have the following theorem.

Theorem 4.2 Let X be a separable metric space with dim X = m > 1. Suppose that
{U;}2, is a fundamental normal delta-sequence of X (i.e., liminf; ,o 5)_52;@_[ =dimX.)

Let a be any real number with @ > m (= dim X) or a = oo. Then there is a subsequence

{Ui,}32, of {Ui}2, such that

log, |U;;
[a, 00] = {hg inf —g%l-il | {jk}re; is an increasing subsequence
o0 k

of natural numbers}.

Also, there is a totally bounded metric d, on X such that

lOg N(eky a)

“ogex | {ex}2, is a decreasing sequence

lo oo] = {Hpm ot
of positive numbers with lim e, = 0}.
k—oo

Corollary 4.3 Let X be a separable metric space with dimX > 1. If a is a real
number with a > dim X or a = 0o, then there is a totally bounded metric p, on X
such that for any subset A of X with dim A =dim X,

log N (ek, pa; A)
—logex

[a,00] = {11{1_1_) inf | {ex}re, is a decreasing sequence
(>}

of positive numbers with klg{.lo e, = 0},

where N(¢, pa; A) = min{|U| | Uis a finite open cover of A with mesh,, (U) < €}. In
particular, dimp(A, p.|A) = a.

Corollary 4.4 Let X be a separable metric space with dimX > 1. Suppose that
{An}2, is a family of mutually disjoint closed subsets A, of X with dim A, = dim X
for each n. If ay, is a real number with o, 2> dim X or a, = oo for each n, then there

is a totally bounded metric p on X such that dimg(An, p|As) = an for each n.
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5 Upper box-counting dimension dimp(X, p) and nor-
mal sequences of finite open covers

In this sectin, we study relations between upper box-counting dimension and normal
sequence of finite open covers. For a separable metric space (X, p), we consider the
upper box-counting dimension of (X, p) (e.g. see [5] and [15]):

log N(e, p)

Tma(X,p) =i ~Top

Theorem 5.1 Let X be a separable metric space with dim X = m > 1. Suppose that
there is a sequence {U;}32, which is a normal star (resp.delta)-sequence of finite open
covers of X and a development of X such that lim;_, ’—"Eﬂ;w =m (resp. lim;_o0 l"—gﬁjﬂl =
m). For any o, with m < a < 3 < oo, there is a totally bounded metric pag on X
such that

lOg N (ek’ Pa

Tl ) . . .
[@,8] = {llg gf “loges | {ex} is a decreasing sequence of positive

numbers with lim ¢ = 0}.
k—oo
In particular, dimp(X, pas) = @ < B = dimp(X, pa,p)-

Corollary 5.2 Let I = [0,1] be the unit interval and let X = I™ be the m-cube
(m > 1). Then there is a sequence {U;}2, which is a normal star (resp.delta)-
sequence of finite open covers and a development of X such that lim; o lﬂ“ﬂ‘i =m
(resp. lim; ﬂz;‘-z’ﬂ = m). Moreover, for any a, withm < a < < oo, there is a
metric p, g on X such that

[a’ ﬂ] = {hél_l)lﬂf log N(fk)pa

2) | {ex} is a decreasing sequence of positive
— log €

numbers with lim ¢ = 0}.
k—o0
In particular, dimp(X, pag) = a < 8 = dimp(X, pa,gs)-
For the case of dim X = 0, we have the following.

Theorem 5.3 Let X be an infinite 0-dimensional separable metric space. Then there
is a sequence {U;}2, which is a sequence of mutually disjoint clopen covers and a
development of X such that [U;| = i for each i = 1,2,---. For any a,B with0 < a <
B < o0, there is a totally bounded metric pog on X such that

%ﬁz | {ex} is a decreasing sequence of positive
- k

o 8] = {liminf
numbers with klixg e = 0}.

In particular, dimp(X, pas) = @ < B = dimp(X, pa,s)-
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Compared with our results of this note and the Pontrjagin-Schnirelmann’ theorem,
finally we have the following problem.

Problem 5.4 Let X be a separable metric space with dim X = m > 1. Does there exist
a sequence {U;}2, which is a normal star (resp.delta)-sequence of finite open covers of
X and a development of X such that lim;_, l"—g-"i-w =m (resp. lim; 00 l"—nglg‘-l =m) ¢
Does there ezist a totally bounded metric p for X such that dimp(X,p) =dim X ? In
particular, if X is the Menger m-dimensional compactum (m > 1) (e.g. see [4] for the
Menger m-dimensional compactum), is it true ¢
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