
NORMAL COVERS OF RECTANGULAR
PRODUCTS WITH ORDINAL FACTORS

大分大学教育福祉科学部 家本 宣幸 (NOBUYUKI KEMOTO)
神奈川大学工学部 矢島 幸信 (YUKINOBU YAJIMA)

1. NORMAL COVERS

All spaces considered here are assume to be Hausdorff.
Let $X$ be a space and $\mathcal{U}$ a cover of it. A cover $A$ of $X$ is an refinement of $\mathcal{U}$ if

each $A\in A$ is contained in some $U_{A}\in \mathcal{U}$ . A cover $\mathcal{V}$ of $X$ is a star-refinement of $\mathcal{U}$ if
{St(V, W): $V\in \mathcal{V}$} is a refinement of $\mathcal{U}$ , where St(V, $\mathcal{V}$ ) $=\cup\{W\in \mathcal{V}:W\cap V\neq\emptyset\}$ .

An open cover $\mathcal{O}$ of a space $X$ is normal if there is a sequence $\{\mathcal{U}_{n}\}$ of open covers
of $X$ such that $\mathcal{U}_{n+1}$ is a star-refinement of $\mathcal{U}_{n}$ for each $n\in\omega$ , where $\mathcal{U}_{0}=O$ .

The study of normal covers was begun by Tukey [T]. The concept of normal covers
is very important because of the following result proved by Stone [S].

Stone’s Theorem. A space $X$ is paracompact if and only if every open cover of $X$

is normal. Hence every metric space is paracompact.

An open set $U$ in a space $X$ is a cozero-set if $U=\{x\in X:f(x)>0\}$ for
some continuous function $f:Xarrow[0,1]$ . A closed set $Z$ in $X$ is a zero-set if it is the
complement of a cozero-set in $X$ . An open cover $\mathcal{U}$ of $X$ has a $sh$rinking $\{F_{U} : U\in \mathcal{U}\}$

if it is a closed cover of $X$ such that $F_{U}\subset U$ for each $U\in \mathcal{U}$ .
Subsequently, normal covers were characterized in terms of cozero refinements in

various forms. This was summarized in [M] as follows.
$\mathrm{S}\mathrm{t}o\mathrm{n}\mathrm{e}-\mathrm{M}\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{e}\mathrm{l}-\mathrm{M}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{a}’ \mathrm{s}$ Theorem. Let $X$ be a space and $O$ an open cover of $X$ .
Then the following are equivalent.

(a) $O$ is normal.
(b) $O$ has a $\sigma$ -locally finite cozero refinement.
(c) $O$ has a $\sigma$ -discrete cozero refinement.
(d) $O$ has a locally finite cozero refinement.
(e) $O$ has a locally finite, $\sigma$-discrete, cozero refinement $\mathcal{U}$ which has a shrinking

$\{Z_{U} : U\in \mathcal{U}\}$ consisting of zero-sets.

2. NORMAL COVERS OF RECTANGULAR PRODUCTS

Let $X\cross \mathrm{Y}$ be a product space. A subset of the form $A\cross B$ in $X\cross \mathrm{Y}$ is called a
rectangle. A rectangle $U\cross V$ in $X\cross \mathrm{Y}$ is called a cozero rectangle (zero-set rectangle)
if $U$ and $V$ is cozero-sets (zero-sets) in $X$ and $\mathrm{Y}$ , respectively,
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A cover $\mathcal{G}$ of $X\cross \mathrm{Y}$ is called rectangular cozero (respectively, rectangular zero-set)
if each member of $\mathcal{G}$ is a cozero rectangle (respectively, zero-set rectangle) in $X\cross \mathrm{Y}$ .

A product space $X\cross \mathrm{Y}$ is said to be rectangular if every normal (equivalently,
finite cozero cover or binary cozero) cover of $X\cross \mathrm{Y}$ has a a-locally finite rectangular
cozero refinement.

This concept was introduced by Pasynkov [P] to prove the product theorem in
dimension theory.

Pasynkov’s Theorem. Let $X$ and $\mathrm{Y}$ be a Tychonoff spaces. If $X\cross \mathrm{Y}$ is rectangular,
then $\dim X\cross \mathrm{Y}\leq\dim X+\dim$ Y.

Now, we have raised the following question concerning normal covers.

Question 1. Is there a characterization analogous to Stone-Miiael-Morita’s Theo-
rem for normal covers of rectangular products in terms of rectangular cozero refine-
ments?

A space $X$ is called a $\sigma$ -space if it has a a-locally finite closed net. Making use of
it, the second author has given an answer to Question 1 as follows.

Theorem 2.1 [Y2]. Let $X\cross \mathrm{Y}$ be a rectangular prvduct with a paracompact $\sigma$ -space
factor $X$ and $O$ an open cover of $X\cross \mathrm{Y}$ . Then the following are equivalent.

(a) $O$ is normal.
(b) $O$ has a $\sigma$ -locally finite rectangular cozerv refinement.
(c) $O$ has a $\sigma$ -discrete rectangular cozero refinement.
(d) $O$ has a locally finite rectangular cozero refinement.
(e) $O$ has a locally finite, $\sigma$ -discrete, rectangular cozero refinement which has a

rectangular zero-set shrinking.

3. NORMAL COVERS OF INFINITE PRODUCTS

Let $X= \prod_{\lambda\in\Lambda}X_{\lambda}$ be an infinite product. For each A $\in\Lambda,$ $\pi_{\lambda}$ denotes the
projection of $X$ onto $X_{\lambda}$ . A subset of the form $\bigcap_{\lambda\in\theta}\pi_{\lambda}^{-1}(U_{\lambda})$ in $X$ is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ a
rectangle if $\theta$ is a finite subset of $\Lambda$ , where $U_{\lambda}\subset X_{\lambda}$ for each A $\in\theta$ . A rectangle
$\bigcap_{\lambda\in\theta}\pi_{\lambda}^{-1}(U_{\lambda})$ in $X$ is called a cozero rectangle (respectively, zero-set rectangle) if $U_{\lambda}$

is a cozero-set (respectgively, zero-set) for each $\lambda\in\theta$ . A cover $\mathcal{G}$ of the product $X$ is
said to be rectangular (respectgively, rectangular cozero, rectangular zero-set) if each
member of $\mathcal{G}$ is a rectangle (respectgively, cozero rectangle, zero-set rectangle) in $X$ .

Question 2. Is there a similar version to our Theorem 2.1 above for normal covers
of infinite products?

Recall that a space $X$ is an $M$ -space if there is a quasi-perfect map $f$ (that is,
$f$ is a closed map such that each $f^{-1}(y)$ is countably compact) from $X$ onto some
metric space $M$ . Note that the class of paracompact $M$-spaces is coincided with that
of paracompact p-.spaces and is countably productive.
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Filippov’s Theorem. Let $X= \prod_{\alpha\in\Lambda}X_{\alpha}$ be an infinite product of pamcompact
$M$ -spaces. Then every normal cover of $X$ has a $\sigma$ -locally finite rectangular cozero
refinement.

In order to solve Question 2, the Filippov’s proof for the above in [F] was very
useful. Making use of his idea, the second author has given an answer to Question 2
extending his result.

Theorem 3.1 [Y3]. Let $X= \prod_{\alpha\in\Lambda}X_{\alpha}$ be an infinite product of pamcompact M-
spaces. Let $O$ be an open cover of X. Then the following are equivalent.

(a) $O$ is normal.
(b) $O$ has a $\sigma$ -locally finite $[] \mathrm{t}ctangular$ cozero refinement.
(c) $O$ has a $\sigma$ -discrete rectangular cozero refinement.
(d) $O$ has a locally finite rectangular cozero refinement.
(e) $O$ has a locally finite, $\sigma$ -discrete, rectangular cozero refinement which has a

rectangular zero-set shrinking.

Recall that a regular space $S$ is a strong $\Sigma$-space if there are a $\sigma$-locaUy finite
closed cover $F$ of $S$ and acover $\mathcal{K}$ of $S$ by compact sets such that, whenever $K\in \mathcal{K}$

and $U$ is open in $S$ with $K\subset U$ , one can find $F\in F$ with $K\subset F\subset U$ .
Note that a paracompact $\Sigma$-space is a strong $\Sigma$-space and the class of all para-

compact $\Sigma$-spaces is countably productive.
Moreover, we have also given another answer to Question 2, which strengthens

[Yl, Proposition 3].

Theorem 3.2 [Y3]. Let $X= \prod_{\alpha\in\Lambda}X_{\alpha}$ be an infinite product of paracompact $\Sigma_{-}$

spaces, and each finite subproduct of which has countable tightness. Let $O$ be an open
cover of X. Then the following are equivalent.

(a) $O$ is normal.
(b) $O$ has a $\sigma$-locally finite rectangular cozero refinement.
(c) $O$ has a $\sigma$-discrete rectangular cozero refinement.
(d) $O$ has a locally finite rectangular cozero refinement.
(e) $O$ has a locally finite, $\sigma$ -discrete, rectangular cozero refinement which has a

rectangular zero-set shrinking.

In [Y3], Theorems 3.1 and 3.2 have been simultaneously derived from a more
generalized form in terms of perfect maps and $\beta$-spaces instead of $M$-spaces and
$\Sigma$-spaces.

4. RECTANGULAR PRODUCTS WITH ORDINAL FACTORS

As stated the previous three sections, the study of the characterization of “Normal
Covers” has been stepped by the following order:

(1) a topological space $X$ ,
(2) a product space $X\cross \mathrm{Y}$ ,
(3) an infinite product $\prod_{\alpha\in\Lambda}X_{a}$ ,
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So it is natural to ask

Question 4.1 What kind of products is the next subject for the above study?
Let A be an ordinal. Then A is considered as a space with the usual order topology.

The study of the products of two subspaces of an ordinal was stimulated with the
following result in [KOT].

Kemot$x\mathrm{O}\mathrm{h}\mathrm{t}\mathrm{a}-\mathrm{T}\mathrm{a}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{o}’ \mathrm{s}$ Theorem. Let $A$ and $B$ be subspaces of an ordinal.
(1) Then the follounng are equivalent.

(a) $A\cross B$ is normal.
(b) $A\cross B$ is collectionwise norrteal.
(c) $A\cross B$ is shrinking.

(2) If $A\cross B$ is normal, then $A\cross B$ is countably paracompact.

Note that $\dim A=0$ holds for each subspace $A$ of an ordinal. Moreover, the
following was given in [FKT].
$\mathrm{F}\mathrm{l}\mathrm{e}\mathrm{i}\mathrm{s}\mathrm{s}\mathrm{n}\mathrm{e}\mathrm{r}-\mathrm{K}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{t}\infty \mathrm{T}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{a}\mathrm{w}\mathrm{a}’ \mathrm{s}$ Theorem. Let $A$ and $B$ be subspaces of an ordi-
nal. Then $\dim A\cross B=0$ holds.

The world of such products of two ordinal spaces is rather special. However, such
a speciality has sometimes brought quite unexpected results. So, as an answer to
Question 4.1, we investigate normal covers of the products of two subspaces of an
ordinal.

First, from Pasynkov’s Theorem and FKT’s Theorem above, we have to ask

Question 4.2. For two subspaces $A$ and $B$ of an ordinal, is the product $A\cross B$

rectangular?

However, it is rather easy to find a negative answer to Question 4.2. In fact,
take two disjoint stationary subsets $A$ and $B$ of $\omega_{1}$ . Then it is not so difficult to
show that $A\cross B$ is not rectangular. Hence we see that it is necessary to assume the
rectangularity of such products.

Now, we can raise many questions for rectangular products of two subspaces of an
ordinal from KOT’s and FKT’s Theorems above as follows.

Question 4.3. Let $A$ and $B$ be subspaces of an ordinal.
(1) If $A\cross B$ is normal, is it rectangular?
(2) If $A\cross B$ is rectangular, is it countably paracompact?
(3) If $A\cross B$ is rectangular, every normal cover of $A\cross B$ has a discrete rectangular

clopen refinement?
(4) Is there a nice equivalent condition for the rectangularity of $A\cross B$?

The plenty of Question 4.3 suggests us without any doubt that the rectangularity
of $A\cross B$ deserves to investigate.

Now, the results below in this section will be published in our recent paper [KY3].
It is quite unexpected that we can obtain the following result, which answers all

questions (1)$-(4\rangle$ in Question 4.3 simultaneously.

23



Theorem 4.1. Let $A$ and $B$ be subspaces of an ordinal. Then the following are
equivalent.

(a) $A\cross B$ is $7\mathrm{e}ctangular$ .
(b) $A\cross B$ is countably paracompact.
(c) Every binary cozero cover of $A\cross B$ has a discrete rectangular clopen refine-

ment.
(d) Every nomal cover of $A\cross B$ has a discrete rectangular clopen refinement.
As an immediate consequence of Theorem 4.1, we have

Corollary 4.2. Let $A$ and $B$ be subspaces of an ordinal. Then the following are
equivalent.

(a) $A\cross B$ is normal.
(b) $Eve\eta$ binary open cover of $A\cross B$ has $a$ a-locally finite rectangular open

refinement.
(c) $Eve\eta$ binary open cover of $A\cross B$ has a discrete rectangular clopen refinement.

Remark 1. For a countably paracompact (and normal) space $X$ which is not para-
compact, there is a paracompact space $\mathrm{Y}$ such that $X\cross \mathrm{Y}$ is countably paracompact
(and normal) but not rectangular (see [O]). So we generally have

Countable paracompactness of $X\cross \mathrm{Y}_{\Leftarrow}^{\neq\Rightarrow}$ Rectangularity of $X\cross \mathrm{Y}$ .
Remark 2. Note that $\omega_{1}\cross(\omega_{1}+1)$ is countably compact but not normal. So we have

Rectangularity of $A\cross B\neq\Rightarrow \mathrm{N}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ of $A\cross B$ .
Remark $S$. Notice that Theorem 4.1 and Corollary 4.2 give topological characteri-
zations for countable paracompactness and normality of $A\cross B$ , respectively. From
these characterizations, we can easily see a quite delicate difference between count-
able paracompactness and normality of the products of ordinals. Moreover, from the
difference, we can immediately see that no $A\cross B$ is a Dowker space (see [KOT]).

5. PRODUCTS WITH ONE ORDINAL FACTOR

As the last section, we look into an intermediate world between the products of
two general spaces and the products of two ordinal spaces. The intermediate one is
the class of products of a general space $X$ and an ordinal space $A$ . Here we discuss
some covering properties of such products. The new results stated in this section will
be also published in the paper [KY3].

Proposition 5.1 [KY1]. Let $A$ and $B$ be subspaces of an odinal. The following are
equivalent.

(1) $A$ and $B$ are paracompact.
(2) $A$ and $B$ are weakly submetacompact.
(3) $A\cross B$ is paracompact.
(4) $A\cross B$ is weakly submetacompact.

This is generalized as follows:
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Theorem 5.2. If $X$ is a paracompact space and $A$ is a paracompact subspace of an
ordinal, then $X\cross A$ is paracompact and rectangular.

Moreover, we obtain

Theorem 5.3. Let $X$ be a collectionwise normal and countably paracompact space
with $\dim X=0$ . Let $A$ be a subspace of an ordinal. Then every $\sigma$ -point-finite
rectangular open cover of $X\cross A$ has a discrete rectangular clopen refinement.

Immdiately, we have

Corollary 5.4. Let $X$ be a collectionwise no$7mal$ and countably paracompact space
with $\dim X=0$ . Let $A$ be a subspace of an odinal. If $X\cross A$ is rectangular, then
ever3t normal cover of $X\cross A$ has a discrete rectangular clopen refinement.

Corolary 5.4 immediately yields that (1) implies (4) in Theorem 4.1.
Recall that a space $X$ is orthocompact if every open cover $\mathcal{U}$ of $X$ has an interior-

preserving open refinement $\mathcal{V}$ (that is, $\cap \mathcal{W}$ is open in $X$ for each $\mathcal{W}\subset \mathcal{V}$).
This concept gives another equivalent condition to the normality of $A\cross B$ as

follows.

Theorem 5.5 [KY1]. Let $A$ and $B$ be subspaces of an odinal. Then $A\cross B$ is normal
if and only if it is orthocompact.

Kunen pointed out that a space $X$ is paracompact if and only if $X\cross(\kappa+1)$ is
normal, where $\kappa$ is a sufficiently large cardinal. On the other hand, taking off the
last point from the $\kappa+1$ , we could obtain an opposite implication which is quite
unexpected as follows.

Theorem 4.5 [KY2]. Let $X$ be a paracompact space and rc an uncountable regular
cardinal. If $X\cross\kappa$ is orthocompact, then it is normal.

This result is also generalized as follows.

Theorem 4.6. Let $X$ be a paracompact space and $A$ a subspace of an orvlinal. If
$X\cross A$ is orthocompact, then it is normal and rectangular.
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