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1 Introduction

We have developed an information geometrical framework of the Belief propagation (BP) algo-
rithm in {1, 2]. One important aspect of the information geometrical framework is that we can
view different methods developed in different fields from a unified viewpoint. In this draft, we first
summarize the information geometrical framework, and show that the adaptive TAP[3] method is
also expressed in the same framework. This will allow us to apply well-developed tools and results
of the loopy BP to the adaptive TAP.

2 Information geometrical framework of BP

First, we summarize the information geometrical view of BP.

2.1 Problem
The distribution we would like to focus on is given as follows
g(x) = expleo(@) + c1(2) + -+~ + cL(@) = Y-

For a while, we restrict ourselves to the case where z € {—1,+1}". In the case of the Boltzmann
machine,

co(x)=h- -z, c(x)=Jjziz;.
For a large N, we cannot compute 14, which is the log-partition function.

The goal of the BP algorithm is to infer n = Ey[x], or equivalently compute []; ¢(z;). The direct
computation is not tractable when N is large and the graph is cyclic.



2.2 Models, manifolds, and equilibrium

Let us define the set of all distributions S. .
s ={p@ | 3_»(@) = 1,p(z) > 0}.
A submanifold My C S is defined as

My = {po(2;8) = explh- =+ 8 -2 — yo(6)] | h,0 e R},

where - shows the inner product. This is a set of factorizable distributions. Each component is
independent for the distributions of Mp, and its natural parameter is 8. Conversely, every factor-
izable distribution is included in My. Therefore, the problem to compute [, g(z;) is equivalent to
compute the natural parameter 6 which satisfies po(z; ) = [, ¢(z:). '

Let us define the m—projection of distribution r(x) to M, as

0 = mp, o r(z) = argmin D[r(z); po(x; 0)], Iy, o r(x) = argmin Dir(z); po(z; 9)],
() p(r)EMo

where D[.; ] is the KL-divergence, and we have the following relation

N
po(x;0") = Iy, 0 g(x) = Hq(:z:,-»), where 6" = )4, o g(x).

i=1

Now, let us define p.(x;¢{,), r =1,--- ,L as,
pr(z;¢) =explh-z+ e () + & 2 -9 (&), &RV, r=1,-.. L
Pr(; ¢r) is an exponential family which includes c,(z).
M, = {Pr(‘”;Cr) | ¢ € ?t”}, r=1,---,L.

Its natural parameter is (.. We assume the computation of 7, o p,(x;¢,) is tractable for every
¢r € RN and r. With py(z;0) and p,(x;¢.), r =1, , L, the BP algorithm is defined as follows,

1. Set t =0, {::0, Cf,:o,r:]_,... L.
2. Increase t by 1 and update €:+!, r =1,... , L as follows

€M = mpppope(a; &E) - CL

3. Update 8*+! and ¢! as follows

1
C,t_+1=z€:-,|~1, 0t+1=2€,t_+1 = L_IZC:+1'
r'#r T T

4. Repeat 2 and 3 until {€!} converges.




At the equilibrium, we know the following conditions hold [2].

m~condition: 6* = my, o p.(; ).

e~condition: 6* = 1_ 1 Z(,, or equivalently g(xz) =

r=1

1 H,,I-;l pr(m;C'r)
Z po(w;0)L-1

We have shown these conditions are satisfied at the equilibrium of BP, TRP, and CCCP in [2].

2.3 Free energy

When the e-condition is satisfied, we have the following relation.

l_ Hf:l p,.(Z; $r) ‘

a(@) = Z po(x;0)L1

Moreover, when graph is tree, at the equilibrium of BP, Z becomes 1, that is

_ A, pr(€)
9(@) = po(e; 0*)L-1

This equation shows that when graph is tree, free energy is expressed as

F = (L - 1)o(6") Z«MC‘

r=1

This relation does not hold for cyclic graphs, but the right hand side of the equation is called the
Bethe free energy. This equation is deeply related to the BP algorithm [2].

Foethe = (L — 1)10(8") Ewr(c*

r=1

3 Adaptive TAP

The adaptive TAP method is described in detail by Opper and Winther[3]. We follow their

results, where notations are slightly modified to make consistency with this memo.

3.1 Problem

We consider the distribution

15 1,
q(z) = 7 H p(z,) exp [h T+ 3 Jm]. (1)

r=1
J is a symmetric matrix where diagonal elements are 0. In the paper, p takes a lot of kinds of
functions, such as Dirac delta function. Actually, by taking p(z,) = (6(z, — 1) +0(zr +1))/2, g(x)
becomes equivalent to the Boltzmann machine.



3.2 Adaptive TAP equations

The aim of the adaptive TAP approach is to infer Eg[z,] and Eq[z2]. Let m, be the inference of
Eg[z,]. A summary of Adaptive TAP equations is given as follow.

——In Z§" @)

8hr
(r) - Ve 2
Zy' = p(z,) exp (Z Jrams = Vom, + hr) zr + "2"1"1- dz,
a=1
Come _ 8 ) -1
Bh,. 'a—h2-1 Z [(S - J) ]rr, : (3)
. 1 r _
S:dlag(sl’... ,SN)’ " __V 3 h =[(S"‘J) 1]"'..
Let us define p,(z.) as follows,
Y 1%
Pr(xr) = Z(,,.) P(xr) exp [(; Jrsmy = Vom, +h )Zr + —'21$3:| . (4)

From the definition of Z((,'), pr(zy) is a density function of z,. Now, we can rewrite the adaptive
TAP equations (2) and (3) as follows,

m, = / Zppr(Tr )dz, | (5)
(=9, = [Ge = me)iplar)da, = [ polor)de, ~m? (6)

3.3 Free energy

The free energy, which is the inference of —In Z is given as follows at the solutions of adaptive

TAP equations.

&) =P — —l-mTJm+ 5 Indet(S - J) - —ZV,X,, + = Zlnx,,.

r=1 'r=1

= —Zlnz(') +mTJIm + - ZV M,,

r=1 'r=1

Xrr = M, - m,. =[(5- J)_I]""

where M, is the inference of ¥,[z2]. We can simplify the above free energy as

Zan(" lndet(S D+ = Zln[(S D)™ + -mTJm--ZVm. )

r=1 'r=1 r=]



4 From BP to adaptive TAP

We show that the information geometrical framework of the BP algorithm explains the adaptive
TAP equations and free energy.

4.1 Problem

We consider the case where p(z,) is strictly positive for z, € ®. This is not true when p is the
Dirac delta function. Naively, we can treat such a problem by putting

@1 (@ +1)?

p(x,)=2\/217r7(exp[ 207 ]’*’e"p[ 202 D

and bringing 02 — 0. But we put this problem beside and assume p(z,.) > 0. Equation (1) can be
rewritten as

q(x) = expleo(@) + e1(@) + - + en (@) — ¥,

1 (8)
co(xe) = 2% Jz, c(z) =cr(z,) =Inp(z;)+ hrz,, $g=InZ

Next, we define py as the distribution whose sufficient statistics are z,, 2, r = 1,--- , N. Natural
choice is the normal distribution, which is defined as

1
po(z; p, S) = exp [Co(m) +p-x— EwTSz - Yo(p, S)] ,
S = diag(s1,++ ,sn), (9)
Yo (s, S) = %,-ln21r —Indet(S - J) + %,ﬂ(s -0t

From the definition po(x; u, S) ~ N((S = J)~*, (S = J)~1), where N shows the density function
of a normal distribution. We set M as

Mo = {po(z; 1, S) | p € RN, S = diag(s1,-- , sn), 8 > 0}
Now, our ultimate goal is to obtain the m-projection of g(z) defined as (8) to My, which then
provides the exact mean and variance of z,.
4.2 e—condition and m—condition
We define pr(x; p\r, S\r) as follows
1
P,-(:L';ﬂ\,‘, S\'r) = exp [00(3) + cr () + HB\r - T\r — Ez\rTS\-rw\r - ¢1‘(p’\1') S\r)] ’
S\r = dja'g(sla Tty Sp-1y8r41y ’sN) € m(N-l)x(N—l),

B\r = (ll'l"" yMr—1y Brgly e ,IJN)T € RN—l,

_— T N-1
3\1-——(Z1,"‘,-%--1,23,-4.1,"',ZN) ER .



We define M, as
M, = {p,(z; m\r, S\r)}.
The difference between py and p, is that,
“pr does not include p.z, nor —s,z2/2, but includes c,.(z,).”
This is similar to the information geometrical framework of the BP algorithm.
e—condition
It is easy to show the e—condition holds, that is

(w) — _1_ H,I-v-_q p’r(m; “\rv S\r)
T =2 mo(mip, SN

(10)

The numerator of the right hand side is

I pr(2; s, S\r) x exp [NCo(w) +) er(@)+ (N =13 gz, - 5 ;srmr} :

r=1 r=1 r=1

and its denominator is

- N (N=1) &
pg(w;ﬂ,S)N—l X exp (N_I)CO(E)'*'(N_I)ZPrxr"‘ 2 Ehﬁ ’

r=1 r=]1

which proves (10).

m~condition
Next, we show that the m—condition corresponds to the adaptive TAP equations. When the

m~—condition holds,

pO(m;“» S) = HM() op,.(a:;u\,,S\,.) = N'Smm D[pr(z; u\nS\r);p(w)]’ r= 1) et ’N-
p(®)EMo

The sufficient statistics of pg is z,., mf, r=1,...,N. Therefore the m—condition is equivalent to

m=Klp= /mpr(Z'; B\r, S\r)dz,

1
[K—l] = /zfp"'(w1“\ras\r)dw - mf, r,8= 1’ e ,N'

where, K =8-J



Let us set J,, K\,, and J\, as follows

0 o ey iy e AN \

J\ = J(r—l)l J('r—l)N € RIN-DX(N-1)
’ J(r+1)1 J(r+1)N
vy INgey INesny 0 )

K\r - (S\r - J\r) € %(N—I)X(N—l)
Jr = (J'rly v )Jr(r—-l), Jr(r+1), cee ,J,-N)T e RNV-1

We can rewrite p,(a:i M\r, S\,) as follows,

Pr(x; P\r, S\r) = p‘r(zr; p\r’ S\r)pr(w\rlwr; H\ry S\r)

_ - (11)
= pr(zr; Hyrs S\T)N(K\T 1(”\1’ + err)) K\r 1)
where,
1 1 - -
pr(zr; Hyry S\r) = z exp [cr(xr) + E(JTTK\T lJr)ﬁ + (JTTK\r IM\,.):B,-] . (12)
We can also rewrite py(z; p, S) as follows,
po(z; 4, S) = po (zr; 14, S)po (m\rlxr; P\r; S\r) (13)
= po(Zr; M4, S)N(K\r-l(“\r + Jrz,), K\r_l)
where, ‘
1 1 1 _ -
pO(zr; K, S) = Z €xp [_'2'31-13- + UrZr + ‘2‘(JrTK\r 1Jr)13 + (JTTK\r lu\r)xr]
=N 1 (/J' +JTK _lﬂ\) 1
se= JTKGIL T O B T S TR,
And we have the following proposition
proposition 1. The m~condition is satisfied, if and only if the following equations hold.
my = /a:rpr(xr;“\r: S\r)dz, (14)
1
S—-NY,,.= =/zz,x; ry S\r)dz, — m? 15
(( )" ler sr"JrTK\r_lJr Pr(Tr; by \r) r (15)

r=1,--,N, where m=(5-J)pu,
Now we move to the adaptive TAP equations

lemma 1. Egquations (14) and (15) are equivalent to (5) and (6).



Proof. What we have to show is that p.(z,) in (4) is equivalent to p,(z,; ., S\r) in (12). We

show both of them again.

N

1 V. .

pr(zr) = -Z-gp(l'r) exp (E  Jrjm = Vemy + h,)zi + 52 (16)
0 i=1

1 1 - -
pr(xr; Hr, S\'r) = 'Z. exp [C,-(ZE.,-) + E(JTTK\T lJf)zz + (J'I'TK\T 1“\r)$r]

1 _ 1 -
= 'Z—p(zr)exp [(JTTK\r 1""\1' + h"‘)z‘r + §(JTTK\1' lJf)zz] (17)
.
1
[(S - J)—I]""' = ;_.-_7> m\, = (Ma,es yMpo1, Myyy, - va)T e RNV, (18)

where we used cr(z,) = Inp(z,) + h,z.. And by comparing (16) and (17), what we have to prove

is
N
JrTK\r_lp\r = Z Jramg = Vom, = JrTm\r - Vim, (19)
s=1
JTK\ =V, (20)

From (15) and (18), V; = J,TK\, *J, is shown and (20) is proved, and from the relation m =

K=p or u = Km, we have
(l“" ) = ( Sr —'J"‘T ) ( my )
[l\,. —Jr K\.,. ""‘\r

HPr = SpMyp — er\r
Wy = —Jym, + K\rm\r'

Which proves (19), that is,
JrTK\r—ll-‘\r = —JrTK\r_lerr + J'rTm\r
A = JrTm\,. - V,.m,.

Thus, the m—condition derives the adaptive TAP equations. O

4.3 Free energy

Since we have seen that the framework of the adaptive TAP method is very similar to that of
the BP algorithm, we can define the free energy as the Bethe free energy, that is

N
F=(N-1)%(,5) - Y vr(byr, S\r).

r=1
We now show that this free energy is equivalent to the adaptive TAP free energy in (7). Above

equation can be rewritten as

N
F =Y (o, S) = vrltirr, S\r)) — Yo(is, 9).
r=]



From (9),

Yo, S) = %ln%r —Indet(S - J) + %[.LT(S - J)!

= -12!111 27 — Indet(S — J) + -21-mT(S -J)m
And by comparing (11) and (13), we have
Yo(us, S) — Yr(prr, S\r) =—InZ, + %ln 27 — %ln(s, - JTTK\,_IJT)

1
- JrTK\r_lJr

——InZ+ %ln21r + %m[(s — D) Y +

+ (F'r + JrTK\r—ll-"\r)2

1 1 9
2 (s - J)-I]rrmr

The free energy is rewritten as

N
}'——Zan +Indet(S - J)-—mT(s J)m Zln[(S D)7 e + %;(s DT

r=1
1
==) InZ +Indet(S-J)+ =) W[(S -+ -mTIm~-=) Vim2
3 inde(s )4 1S -9t = 13

This is equivalent to (7).

4.4 BP like algorithm for adaptive TAP

It is written in [3}, that it is not easy to compute the solution of adaptive TAP equations. But
since the framework of adaptive TAP method is similar to that of the BP, we can derive BP or
related algorithms such as CCCP to solve the adaptive TAP equations. Here we show one example,
which is the BP like algorithm to solve the adaptive TAP equations.

1. Set t =0 and (¥ = o, s()—c, (c>0, forexa.mple,czl)rzl,--- , L.
2. Increase t by 1 and calculate m® and a(t) r=1,...,L as follows

ms-t) =/zrpr(zr;”’\r(t)vs\f‘(t))dx"
2
01(-t) = /(-’Er - ms-t))zpr(zr;l"\r(t)’S\"‘(t))dxr

1 1 - -
where p‘r(xr;"\ras\r) = exp {C-,-(x.,.) + E(J,.TK\,. IJT)Z,? + (JrTK\r ll"\r)zr]-

Z.
3. Update pgﬂ) and stV 5 = 1,---, L as follows

1 T -1
SS-HI) = —5+Jr(t) K\r(t) JT(t)

ot

t+1 (t) t t)"1 [,
T

4. Repeat 2 and 3 until convergence.




(We have no idea if this algorithm works or not.)

5 Summary

We have shown the information geometrical framework of the belief propagation algorithm and
that the adaptive TAP equations are derived in the similar manner as the equilibrium conditions
of the BP algorithm. Here we defined g(x), po(x; i, S), and p,(; u\r, S\) in a different way from
original BP, but the information geometrical view is almost the same for both cases. We have also
shown that the free energy, which corresponds to the Bethe free energy in the case of BP, is the
adaptive TAP free energy.

In the case of BP, the solution becomes exact when the graph is tree. In this problem, we do
not have the same result, but adaptive TAP becomes exact when the target distribution g¢(x)
is a normal distribution. The information geometrical framework immediately shows this since
when ¢(z) is a normal distribution, ¢(z), po(z; u, S), pr(; p\r, S\r) € Mp, and every distribution
becomes equivalent.

This memo shows that the information geometrical frameworks of BP and adaptive TAP are
equivalent. From this fact, there is a possibility that we can reuse a lot of results developed for BP
and inference problem of loopy graphs. One important direction is the algorithm. We can derive
the BP and CCCP algorithms to compute the equilibrium of adaptive TAP equations.
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