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Abstract

The purpose of this note is to investigate the extension problem for
the category of commutative hypergroups. In fact, by applying the new
notion of a field of compact subhypergroups, sufficiently many extensions
can be established, and among them splitting extensions can be charac-
terized. Moreover, the duality of extensions will be studied via duality of
fields of hypergroups. The method of extension via fields of hypergro\"ups
yields the construction of Pontryagin hypergroups which do not arise from
group-theoretic objects.

1 Introduction
Let $H$ and $L$ be hypergroups. Then, a hypergroup $K$ is called an extension of

$L$ by $H$ if the sequence:

$1arrow Harrow Karrow Larrow 1$

is exact. If the quotient hypergroup $K/H$ is defined, this is equivalent to the
fact that $K/H$ is isomorphic to $L$ . Here the notions of subhypergroup, quotient
hypergroup and isomorphism between hypergroups are taken from [B-H], a source
from which all the basic knowledge on hypergroups needed in the sequel will be
taken.

There exist several methods to construct extensions of hypergroups from given
ones. These methods lead to an insight into the structure of hypergroups. One
of the methods is based on the notion of hypergroup join as introduced by Jewett
[J] and further developed by Dunkl-Ramirez[D-R], Fournier-Ross[F-R], $\mathrm{V}\mathrm{o}\mathrm{i}\mathrm{t}[\mathrm{V}_{2}]$ ,
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$\mathrm{V}\mathrm{r}\mathrm{e}\mathrm{m}[\mathrm{V}\mathrm{r}_{1}]$ , and Zeuner[Z]. The join $H\vee L$ of a compact commutative hypergroup
$H$ and a discrete commutative hypergroup $L$ can be interpreted as the minimal
extension of $L$ by $H$ . On the other hand the maximal extension of $L$ by $H$ is the
product hypergroup $H\mathrm{x}L$ . The purpose of the present discussion is to construct
by generalizing the method of join sufficiently many extensions which in some sense
are larger than the join and smaller than the product. The method of substitution
introduced by Voit $[\mathrm{V}_{2}]$ is another generalization of the join which provides ex-
tensions of hypergroups. The relation between the construction presented in this
work and the substitution will be clarified in section 6.

In the course of the paper for two commutative hypergroups $H$ and $L$ such
that each connected component of $L$ is an open set, we shall give the definition of
a field $\varphi$ : $L\ni\ellrightarrow H(\ell)\subset H$ of compact subhypergroups $H(\ell)$ of $H$ based on
$L$ , and show that every field $\varphi$ gives rise to an extension $K(H,\varphi,L)$ of $L$ by $H$ as
described in Theorem 3.1. Moreover, for strong hypergroups $H$ and $L$ such that
each connected component of both $L$ and the dual $H$ of $H$ is an open set, we shall
introduce the dual $\hat{\varphi}$ : $\hat{H}\ni\chirightarrow Z(\chi)\subset\hat{L}$ of the field $\varphi$ and show in Theorem 4.4
that the extension $K(\hat{L},\hat{\varphi},\hat{H})$ of $\hat{H}$ by $\hat{L}$ is isomorphic to the dual of $K(H,\varphi, L)$ .
The latter property implies that if both $H$ and $L$ are Pontryagin hypergroups, then
$K(H, \varphi, L)$ is also a Pontryagin hypergroup. By applying the method of fields one
can also obtain Pontryagin hypergroups not arising from group-theoretic objects
as for example orbital actions and Gelfand pairs. This new aspect is illustrated in
Examples 7.2 and 7.3.

In order to investigate the structure of hypergroups it will be essential to de-
termine all extensions $K$ of $L$ by $H$ for given commutative hypergroups $H$ and $L$ .
In the corresponding discussion we give a characterization of extensions obtained
by a field of compact subhypergroups. Those extensions will be called splitting ex-
tensions. If $L$ is a discrete commutative hypergroup, it will be shown in Theorem
5.1 that all splitting extensions of $L$ by $H$ are determined by the construction via
fields of compact subhypergroups. It is known that in general there are extensions
which do not split. It remains still an open problem to determine all extensions of
commutative hypergroups, a problem that waits for a solution.

2 Preliminaries
In this section we recapitulate the principal notions from the basic theory of

hypergroups by stressing those definitions and properties which are essential in the
course of the discussion. We start with the definition of a hypergroup along the
axiomatics established by Dunkl, Jewett, and Spector. Further elements of the
theory can be taken from the monograph [B-H].

Let $K$ be a locally compact (Hausdorff) space. We write $C(K)$ for the space
of continuous complex-valued functions on $K$ . The space $C(K)$ has various distin-
guished subspaces, $C_{b}(K),$ $C_{0}(K)$ , and $C_{\mathrm{c}}(K)$ , the spaces of bounded continuous
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functions, those that vanish at infinity, and those with compact support respec-
tively. Both $C_{b}(K)$ and $C_{0}(K)$ are topologized by the uniform norm $||\cdot||_{\infty}$ . We
denote by $M_{b}(K),$ $M_{b}^{+}(K)$ and $M^{1}(K)$ the spaces of bounded measures, non-
negative bounded measures and probability measures on $\mathrm{K}$ respectively. For each
$\mu\in M_{b}(K)$ the support of $\mu$ is denoted by $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu)$ and the norm of $\mu$ is given by
$|| \mu||:=\sup\{|\mu(f)|jf\in C_{\mathrm{c}}(K), ||f||_{\infty}\leq 1\}$ . The symbol $\epsilon_{x}$ stands for the Dirac
measure at $x\in K$ . By $C(K)$ we denote the space of non-empty compact subsets
of $K$ , furnished with the Michael-Hausdorff topology.

Deflnition A hypergroup $K:=(K, *)$ consists of a locally compact space
together with an associative product (called convolution) $*\mathrm{o}\mathrm{n}M_{b}(K)$ satisfying
the following conditions:

(1) The space $M_{b}(K)$ admits a convolution $*\mathrm{t}\mathrm{d}$ an involution $-\mathrm{s}\mathrm{u}\mathrm{i}$ that
$(M_{b}(K), *^{-},)$ is an involutive Banach algebra with respect to the norm $||\cdot||$ .

(2) The mapping $(\mu, \nu)rightarrow\mu*\nu \mathrm{h}\mathrm{o}\mathrm{m}M_{b}^{+}(K)\cross M_{b}^{+}(K)$ into $M_{b}^{+}(K)$ is con-
tinuous with respect to the weak topology in $M_{b}(K)$ .

(3) For $x,$ $y\in K$ the convolution product $\epsilon_{x}*\mathrm{g}_{y}$ belongs to $M^{1}(K)$ and
$\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\epsilon_{x}*\epsilon_{y})$ is compact.

(4) The mapping $K\mathrm{x}K\ni(x, y)\mapsto \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\epsilon_{x}*\epsilon_{y})\in C(K)$ is continuous.

(5) There exisits a unit element $e$ of $K$ such that $\epsilon_{e}*\epsilon_{x}=\epsilon_{x}*\epsilon_{\epsilon}=\epsilon_{x}$ for all
$x\in K$ .

(6) There exists an involutive homeomorphism $x|arrow x^{-}$ in $K$ such that
$(\epsilon_{x}*\epsilon_{y})^{-}=\epsilon_{y}^{-}*\epsilon_{x}^{-}$ and $e\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\epsilon_{x}*\epsilon_{y})$ if and only if $x=y^{-}$ for all $x,$ $y\in K$ .

A hypergroup $K$ is said to be commutative if the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}*\mathrm{i}\mathrm{n}M_{b}(K)$ is
commutative, and herrreitian if the $\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}-\mathrm{i}\mathrm{s}$ the identity mapping. There
are prominent classes of commutative hypergroups arising from orbital actions and
Gelfand pairs, and also large classes of examples constructed on $\mathbb{Z}_{+}$ and $\mathbb{R}_{+}$ by
polynomial and Sturm-Liouville methods respectively. The reader is encouraged
to check the details in [B-H].

For subsets $A$ and $B$ of $K$ one defines

$A*B= \bigcup_{x\in A,y\in B}\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\epsilon_{x}*\epsilon_{y})$
.

If $x\in K$ , we write $x*A$ or $A*X$ instead of $\{x\}*A$ or $A*\{x\}$ respectively.
A non-empty closed subset $H$ of $K$ is called a subhypergroup if $H*H=H=$

$H^{-}$ , where $H^{-}=\{x\in K:x^{-}\in H\}$ . A subhypergroup $H$ is said to be normal if
$x*H=H*X$, and supemormal if $x^{-}*H*x\subset H$ for all $x\in K$ .
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Let $(K, *)$ and $(L, 0)$ be two hypergroups with units $e_{K}$ and $e_{L}$ respectively.
A continuous mapping $\varphi$ : $Karrow L$ is said to be a hypergroup homomorphism if
$\varphi(e_{K})=e_{L}$ and

$\epsilon_{\varphi(x)0}\epsilon_{\varphi(y)}=\varphi(\epsilon_{x}*\epsilon_{\nu})$

whenever $x,y\in K$ . A hypergroup homomorphism $\varphi$ : $Karrow L$ is said to be an
isomorphism if $\varphi$ is a homeomorphism. If $\iota:Harrow K$ is an injective hypergroup
homomorphism and $p:Karrow L$ is a surjective hypergroup homomorphism such
that $\iota(H)=p^{-1}(L)$ , one says that the sequence

$1arrow Harrow Karrow Larrow 1$

is exact and that $K$ is an extension of $L$ by $H$ . We note that the quotient $K/H$

does not necessarily have a hypergroup structure in this situation.
Here we shall recall some facts on quotient hypergroups. Let $p:Karrow L$ be an

open and surjective hypergroup homomorphism. Then $H:=p^{-1}(L)$ is a normal
subhypergroup of $K,$ $K/H:=\{x*H : x\in K\}$ is a locally compact space with
respect to the quotient topology, and the formula

$\epsilon_{x*H}*\epsilon_{y*H}:=\int_{K}\epsilon_{z\cdot H}(\epsilon_{x}*\epsilon_{y})(dz)$ $(*)$

for all $x,$ $y\in K$ defines a hypergroup structure on $K/H$ such that $K/H$ is iso-
morphic to $L$ , where $(*)$ is understood as an equality of linear functionals on
$C_{c}(K/H)$ . Conversely, if $H$ is a normal subhypergroup of $K$ such that $(*)$ defines
a hypergroup structure, then the mapping $xrightarrow x*H$ from $K$ onto $K/H$ is an
open hypergroup homomorphism. This statement is especially available if $H$ is a
compact normal subhypergroup. Moreover, if $H$ is supernormal in $K$ or a closed
subgroup in $K$ or if $H$ is contained in a compact subgroup in $K$ , then $K/H$ is
always a hypergroup. For details see [R] and $[\mathrm{V}\mathrm{r}_{2}]$ .

Next we shall review the notion of substitution introduced by Voit in $[\mathrm{V}_{2}]$ . Let
$H$ and $M$ be hypergroups and $\pi$ : $Harrow M$ be a proper and open hypergroup
homomorphism. We put $Q:=\pi(H)\subset M$ and $L:=M/Q$ . Then Voit in $[\mathrm{V}_{2}]$

established a hypergroup $S(M, Qarrow H):=(H\cup(M\backslash Q), *)$ by substituting the
open subhypergroup $Q$ in $M$ to $H$ via $\pi$ which is an extension of $L$ by $H$. It is
clear that the hypergroup join $H\vee L$ of a compact hypergroup $H$ and a discrete
hypergroup $L$ coincides with the substitution $S(L, \{e_{L}\}arrow H)$ when the unit $e_{L}$

of $L$ is replaced by $H$ and $\pi$ : $Harrow\{e_{L}\}\subset L$ is the trivial hypergroup homo-
morphism. Both the substitution and the join will serve as motivating examples
for the extensions to be discussed in this work.

Now we shall describe some facts from the duality theory of commutative hy-
pergroups. Let $K$ be a commutative hypergroup. For a Borel measurable function
$f$ on $K$ and $x,y\in K$ we write

$f(x*y):= \int_{K}f(z)d(\epsilon_{x}*\epsilon_{y})(z)$
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if this integral exists. For each $x\in K$ the translation $T^{x}$ on such functions $f$ and
on measures $\mu$ is defined by

$(T^{x}f)(y)=f(x*y)(y\in K)$ and $(T^{x}\mu)(f)=\mu(T^{x}f)$ .

A measure $\omega\neq 0$ is called a Haar measure of $K$ if it satisfies that $T^{x}\omega=\omega$ for all
$x\in K$ . It is known that every commutative hypergroup $K$ has a Haar measure
$\omega_{K}$ which is unique up to a positive multiplicative constant. If $K$ is compact, $\omega_{K}$

is finite and hence can be normalized to become a probability measure.
A complex-valued function $\chi$ on $K$ is called a character of $K$ if $\chi$ is a bounded

continuous function on $K$ satisfying

$\chi(e)=1,$ $\chi(x*y)=\chi(x)\chi(y)$ , and $\chi(x^{-})=\overline{\chi(x)}$

for all $x,$ $y\in K$ . The set $\hat{K}$ of all characters of $K$ becomes a locally compact
space with respect to the topology of uniform convergence on compact sets. One
calls $\hat{K}$ the dual of $K$ . In general the dual $\hat{K}$ is not necesarily a hypergroup. If
$(\hat{K}, *)\wedge$ becomes a hypergroup with respect to a $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}*\wedge$ which is defined by
the product of characters on $K$ , then $K$ is said to be a strong hypergroup. In this
case $\hat{\hat{K}}:=\overline{(\hat{K})}$ is also defined as a locally compact space. If $\hat{\hat{K}}$ is a hypergroup
and is isomorphic to $K$ , then $K$ is called a Pontryagin hypergroup.

3 Fields of compact subhypergroups
Let $H=(H, *)$ and $L=(L, *)$ be commutative hypergroups with units $e_{H}$ and

$e_{L}$ respectively. We assume that each connected component of $L$ is an open set.

Deflnition A family $\{H(\ell) : p\in L\}$ of subsets of $H$ will be called a field of
compact subhype$7ymups$ of $H$ based on $L$ and denoted by $\varphi:L\ni\ellrightarrow H(\ell)\subset H$

if it satisfies the following conditions :

(1) Each $H(\ell)$ is a compact subhypergroup of $H$ with $H(e_{L})=\{e_{H}\}$ and
$H(\ell-)=H(\ell)(\ell\in L)$ .

(2) For $\ell_{1},\ell_{2}$ , and $\ell\in L$ such that $\ell\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\epsilon_{\ell_{1}}*\mathcal{E}\ell_{2})$ we have $[H(\ell_{1})*H(\ell_{2})]\supset$

$H(\ell)$ , where $[H(\ell_{1})*H(\ell_{2})]$ is the closed hypergroup generated by $H(\ell_{1})$

and $H(\ell_{2})$ .

(3) For $p_{1}$ and $\ell_{2}$ contained in a connected component of $L,$ $H(\ell_{1})=H(\ell_{2})$ holds.

Let $\omega(\ell)$ denote the normalized Haar measure of $H(\ell)$ . Then condition (2) is
equivalent to

(4) $\omega(\ell_{1})*\omega(\ell_{2})=\omega(\ell_{1})*\omega(\ell_{2})*\omega(\ell)$ whenever $\ell\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\epsilon_{\ell_{1}}*\epsilon_{\ell_{2}})$ .
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Now let $Q(\ell)$ denote the quotient hypergroup $H/H(\ell)$ , and let $K$ denote the
disjoint union of the hypergroups $Q(\ell)(\ell\in L)$ , i.e.

$K:= \bigcup_{\ell\in\iota}Q(\ell)=\{(h*H(l), \ell) : h\in H,\ell\in L\}$ .

The topology of $K$ is induced by the canonical mapping

$\pi:H\cross L\ni(h, \ell)rightarrow(h*H(\ell), \ell)\in K$.

It is easy to deduce from conditions (1) to (3) that $K$ is a locally compact space.
The Dirac measure of an element $(h*H(\ell), \ell)\in K$ is given as the measure

$(\epsilon_{h}*\omega(\ell)\otimes\epsilon_{\ell}\in M_{b}(H)\otimes M_{b}(L)$,

and the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}*_{\varphi}$ in $M_{b}(H)\otimes M_{b}(L)$ is well-defined by

$((\epsilon_{h_{1}}*\omega(\ell_{1}))\otimes\epsilon_{\ell_{1}})*_{\varphi}((\epsilon_{h_{2}}*\omega(\ell_{2}))\Theta\epsilon_{\ell_{2}})=(\epsilon_{h_{1}}*\epsilon_{h_{2}}*\omega(l_{1})*\omega(\ell_{2}))\otimes\epsilon_{\ell_{1}}*\epsilon_{\ell_{2}}$ .

The set $K$ together with the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}*_{\varphi}$ associated with the field
$\varphi:L\ni\ellrightarrow H(\ell)\subset H$ will be denoted by $K(H, \varphi, L)$ . We get the following

$\mathrm{T}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{m}3.1$ . Let $H$ and $L$ be commutative hypergroups such that every
connected component of $L$ is an open set, and let $\varphi$ : $L\ni\ellrightarrow H(\ell)\subset H$ be a field
of compact subhypergroups of $H$ based on $L$ . Then $K(H, \varphi, L)$ is a commutative
hypergroup and an extension of $L$ by $H$ .

4 Duality of fields and hypergroups
Let $H$ and $L$ be strong hypergroups such that every connected component of

both $L$ and the dual $\hat{H}$ of $H$ is an open set, and let $\varphi:L\ni\ellrightarrow H(\ell)\subset H$ be a
field of compact subhypergroups of $H$ based on $L$ . Then for each $\ell\in L$ we choose
$X(\ell)$ to be the annihilator $A(\hat{H}, H(P)):=$ { $\chi\in\hat{H}$ : $\chi(x)=1$ for all $x\in H(\ell))$ } of
$H(\ell)$ in the dual $\hat{H}$ of $H$ .

Next, for each $\chi\in\hat{H}$ set

$\mathrm{Y}(\chi)=\{\ell\in L : \chi\in X(l)\}$ .

Finally, for each $\chi\in\hat{H}$ we introduce

$Z(\chi)=A(\hat{L},\mathrm{Y}(\chi))$

and obtain the following
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$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}4.1$. $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{f}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{l}\mathrm{y}\{Z(\chi)\subset\hat{L}:\chi\in\hat{H}\}\mathrm{g}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{s}\mathrm{r}\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{t}\mathrm{o}\mathrm{a}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{l}\mathrm{d}$

$\hat{\varphi}$ : $\hat{H}\ni\chirightarrow Z(\chi)\subset\hat{L}$ of compact subhypergroups of $\hat{L}$ based on $\hat{H}$ .

We call the field $\hat{\varphi}$ : $\hat{H}\ni\chirightarrow Z(\chi)\subset\hat{L}$ the dual field of $\varphi$ : $L\ni$

$Prightarrow H(l)\subset H$ . Associated with the dual field $\hat{\varphi}$ one can construct an extension
$K(\hat{L},\hat{\varphi},\hat{H})$ of $\hat{H}$ by $\hat{L}$ . We arrive at the following duality theorem.

Theorem 4.4. Let $\varphi$ : $L\ni Prightarrow H(P)\subset H$ be a field of compact subhy-
pergroups of a strong hypergroup $H$ based on a strong hypergroup $L$ such that all
connected components of $L$ and $H$ are open sets. Then

(1) $K(\hat{L},\hat{\varphi},\hat{H})\cong\hat{K}(H, \varphi, L)$ .
Moreover, if both $H$ and $L$ are Pontryagin hypergroups, then $K(H, \varphi, L)$ is

also a Pontryagin hypergroup and
(2) $\hat{K}(\hat{L},\hat{\varphi},\hat{H})\cong K(H,\varphi, L)$ .

5 Splitting extensions
Let $H=(H, *)$ and $L=(L, \circ)$ be commutative hypergroups, and let $K$ be an

extension of $L$ by $H$ , i.e., the sequence

$1arrow Harrow Karrow Larrow 1$

is exact. We say that the extension $K$ of $L$ by $H$ splits or that $K$ is a splitting
extension if $K$ satisfies the following conditions:

There exits a proper and continuous injective mapping $\phi$ from $L$ into $K$ such
that

(1) $\phi(e_{L})=e_{K}$ and $\phi(\ell-)=\phi(\ell)^{-}$ .

(2) The sets $H(P)=\{h\in H:\epsilon_{h}*\epsilon_{\phi(\ell)}=\epsilon_{\phi\{\ell\rangle}\}$ are compact subhypergroups of
$H$ with $H(p-)=H(\ell)$ .

(3) $\epsilon_{\phi(\ell_{1})}*\epsilon_{\phi(\ell_{2})}=\phi(\epsilon_{\ell_{1}}\circ\epsilon_{\ell_{2}})*\omega(p_{1})*\omega(\ell_{2})$ for $\ell_{1}$ and $\ell_{2}\in L$ , where $\omega(\ell)$ denotes
the normalized Haar measure of $H(\ell)$ .

(4) $\omega(p_{1})*\omega(\ell_{2})*\omega(\ell)=\omega(\ell_{1})*\omega(\ell_{2})$ for $\ell_{1},$ $p_{2}$ , and $P\in L$ such that
$\ell\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\epsilon\ell_{1}\circ\epsilon_{\ell_{2}})$.

(5) $K=$ {$h*\phi(P)$ : $h\in H$ and $\ell\in L$ } and $H\cap\phi(L)=\{e_{K}\}$ .
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The subsequent result provides a characterization of extensions associated with
a field of hypergroups as splitting extensions.

Theorem 5.1. Let $H$ and $L$ be commutative hypergroups such that every
connected component of $L$ is an open set. Then the extension $K(H, \varphi, L)$ asso-
ciated with a field $\varphi$ : $L\ni P\mapsto H(\ell)\subset H$ splits. Conversely, if $L$ is a discrete
commutative hypergroup, then all splitting extensions of $L$ by $H$ are obtained in
this way.

6 Relationship between substitution and exten-
sions

Let $H$ be a compact commutative hypergroup, and let $L$ be a discrete com-
mutative hypergroup. Then the hypergroup join $H\vee L$ is canonically defined and
appears as a typical extension of $H$ by $L$ . In $[\mathrm{V}_{2}]$ , Voit developed the notion of
substitution as a generalization of the hypergroup join. From the point of view
of extension of hypergroups one can reformulate the notion of substitution in the
following way.

For two exact sequences

$1arrow Warrow Harrow Qarrow 1$

and

$1arrow Qarrow Marrow Larrow 1$

the substitution $K=S(M, Qarrow H)=(H\cup(M\backslash Q), 0)$ is defined. $K$ is called
the $hy\mathrm{P}^{e7}y|vup$ obtained by substitution $Q$ in $M$ by $H$ via $\pi$ : $Harrow Q\subset M$ , and
it satisfies the exact sequences

$1arrow Harrow Karrow Larrow 1$

and

$1arrow Warrow Karrow Marrow 1$ .

This extension $K$ of $L$ by $H$ strongly depends on $M$ . Our method to con-
struct extensions associated with a field is different from the notion of substitution.
However, there is some relationship between substitution and extension as shown
below.

Case 1. If $M$ is given as $K$ ($Q$ , Cb, $L$) for some field Cb : $L\ni\ellrightarrow Q(\ell)\subset Q$ ,
the associated field $\varphi$ : $L\ni\ellrightarrow H(\ell)\subset H$ is canonically defined by $H(\ell)=$

$\pi^{-1}(Q(\ell))$ , and we see that

$S$ ( $K$ ($Q$ , Cb, $L$), $Qarrow H$ ) $=K(H, \varphi, L)$ .
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Case 2. For a field $\varphi$ : $L\ni\ell\mapsto H(\ell)\subset H$ of compact subhypergroups of
$H$ based on $L$ , take the common compact subhypergroup $W$ of $H(\ell)$ for all $\ell\in L$

except $\ell=e_{L}$ , for example,

$W= \bigcap_{\ell\in L\backslash \{\epsilon_{L}\}}H(\ell)$
.

Setting $Q=H/W$ and $Q(\ell)=H(\ell)/W\subset Q$ we obtain a field Cb : $L\ni prightarrow$

$Q(\ell)\subset Q$ . In this case we can take $M$ as $K$ ( $Q$ , Cb, $L$), and we see that

$K(H, \varphi, L)=S$( $K$ ( $Q$ , th, $L$), $Qarrow H$).

If for each $\ell\in L$ except for $P=e_{L},$ $H(\ell)$ is equal to the fixed compact subhyper-
group $W$ of $H$ , then

$K(H, \varphi, L)=S(Q\mathrm{x}L,Qarrow H)$ .

Remark Here we note the triviality of substitution. If $W=\{e_{H}\}$ , we see
that $Q=H$ and $S(M, Qarrow H)=M$ . This is the trivial substitution. For
$k\in S(M, Qarrow H)$ such that $k\not\in H$ ,

$H\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\epsilon_{k}*\epsilon_{k}-)\supset W$

always holds. Therefore, if the condition

$H\cap \mathrm{s}\mathrm{u}\mathrm{P}\mathrm{p}(\epsilon_{k}*\epsilon_{k-})=\{e_{H}\}$

holds for some $k\in S(M, Qarrow H)$ with $k\not\in H$ , the substitution must be trivial.
If for an extension $K$ of $L$ by $H$ the condition

$H\cap \mathrm{s}\mathrm{u}\mathrm{P}\mathrm{p}(\epsilon_{k}*\epsilon_{k}-)=\{e_{K}\}$

holds for some $k\in K$ with $k\not\in H,$ $K$ does not arise from non-trivial substitution.
Consequently, $K(H, \varphi, L)$ does not arise from non-trivial substitution if $H(\ell)=$

$\{e_{H}\}$ for some $\ell\in L(\ell\neq e_{L})$ . We note that this situation often occurs as will be
shown in the next section.

7 Applications and examples
In the category of commutative hypergroups there are only few Pontryagin

hypergroups which are not of group-theoretic origin in the sense that they do
not arise from orbital actions and Gelfand pairs. Applying the method of fields
of hypergroups one can provide many new examples of Pontryagin hypergroups.
These examples show the strength of the method of fields of hypergroups and
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indicate the possibility of further investigations on the structure of commutative
hypergroups.

Before describing our examples we prepare some well-known simple facts.
Let $A$ be the smallest non-trivial hypergroup with

$A=\{\ell_{0},\ell_{1}\},$ $p_{1}^{2}=pp_{0}+(1-p)p_{1}$ ,

where $\ell_{0}$ is the unit, $0<p\leq 1$ , and we write $p_{j}\ell_{j}$ instead of $\epsilon\ell_{i}*\mathit{6}\ell_{j}$ .
Let $B$ be $\mathbb{Z}_{2}\mathrm{x}\mathbb{Z}_{2}$ , namely,

$B=\{\ell_{0},p_{1},p_{\mathit{2}},p_{3}\}$ ,

$p_{1}^{2}=\ell_{2}^{2}=\ell_{3}^{2}=\ell_{0},$ $p_{1}p_{2}=\ell_{\theta},$ $p_{1}\ell_{\theta}=\ell_{2},$ $P_{2}\ell_{S}=\ell_{1}$ .

Let $C$ denote the simplest compact hypergroup which is given as an orbital
hypergroup of the one-dimensional torus $\mathrm{T}$ by the action of $\mathbb{Z}_{2}$ , i.e.

$C=([-1,1], *)$ ,

$\epsilon_{\mathrm{c}\mathrm{o}\mathrm{e}\theta_{1}}*\epsilon_{\mathrm{C}\mathrm{O}6\theta_{2}}=\frac{1}{2}\epsilon_{\cos(\theta_{1}+\theta_{2})}+\frac{1}{2}\epsilon_{\mathrm{c}\infty(\theta_{1}\theta_{2})}-\cdot$

Finally, let $D$ denote the simplest discrete hypergroup which arises from a
random walk on $\mathbb{Z}$ , i.e.

$D=\{\ell_{0},\ell_{1},\ell_{2},\ldots,p_{n},\ldots\}$,

$p_{m} \ell_{n}=\frac{1}{2}p_{|m-n|}+\frac{1}{2}\ell_{m+n}$ $(m,n=0,1,2, \ldots)$ .

Here we note that $A$ and $B$ are self-dual and $\hat{D}\cong C,\hat{C}\cong D$ . These facts imply
that $A,$ $B,C$ , and $D$ are all Pontryagin hypergroups.

For a natural number $a,$ $D(a)$ and $F(a)$ denote the subhypergroups of $D$ and
$C$ which are defined by

$D(a)=\{\ell_{an} : n=0,1,2, \ldots\}$

and

$F(a)= \{\cos\frac{2k^{\wedge}\pi}{a} : k=0,1,2, \ldots, a-1\}$

respectively.
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Observe that

$F(a)=A(C, D(a)),$ $D(a)=A(D, F(a))$ .

We denote the quotient hypergroup $C/F(a)$ by $C(a)$ and write it

$C(a)=([ \cos\frac{\pi}{a} , 1], *)$ .

Example 7.1. Let $H$ be a compact Pontryagin hypergroup and let $L=A=$
$\{p_{0},p_{1}\}$ . Take any closed subhypergr$o\mathrm{u}\mathrm{p}W$ of $H$ and denote $H/W$ by $Q$ . Then
we obtain a field $\varphi$ : $L\ni P\mapsto H(\ell)\subset H$ , where $H(P_{0})=\{e_{H}\}$ and $H(P_{1})=W$ .
This field $\varphi$ gives rise to an extension of $L$ by $H$ of the form

$K(H, \varphi, L)=S(Q\mathrm{x}L, Qarrow H)$ .
If we choose $H=C$ and $W=F(a)$ , we get the concrete model

$K(a)= \{[-1,1]\cup[\cos\frac{\pi}{a}, 1], *\}$

with a parameter $a$ from the set of natural numbers.

Example 7.2. Let $W_{1}$ and $W_{2}$ be two compact subhypergroups of a compact
Pontryagin hypergroup $H$ and let $L=B=\{p_{0}, p_{1},p_{2},p_{3}\}$ . When we put

$H(P_{0})=\{e_{H}\},$ $H(\ell_{1})=W_{1},$ $H(P_{2})=W_{\mathit{2}},$ $H(P_{S})=[W_{1}*W_{2}]$ ,

we obtain a field $\varphi$ : $L\ni\ellrightarrow H(\ell)\subset H$ and an extension $K(H, \varphi, L)$ of $L$ by $H$ .
With the choice $H=C$ and $W_{1}=F(a),$ $W_{2}=F(b)$ we see that $[W_{1}*W_{2}]=F(c)$

for a natural number $c$ which is the least common multiple of $a$ and $b$ . Hence, we
arrive at an extension $K=K(a, b)$ which is concretely represented as

$K(a,b)=([-1,1] \cup[\cos\frac{\pi}{a}, 1]\cup[\cos\frac{\pi}{b}, 1]\cup[\mathrm{c}o\mathrm{s}\frac{\pi}{c}, 1],$ $*)$ .

In a similar way one can get the extensions $K_{n}=K(H, \varphi_{n}, L_{n})$ for $L_{n}=$

$B\mathrm{x}B\mathrm{x}\cdots \mathrm{x}B$ and $K_{\infty}=K(H, \varphi_{\infty},L_{\infty})$ with $L_{\infty}=B\mathrm{x}B\mathrm{x}\cdots \mathrm{x}B\mathrm{x}\cdots$ . We
note that $L_{\infty}$ is the inductive limit of the sequence $\{L_{n} : n=1,2, \ldots\}$ and $K_{\infty}$

is the inductive limit of the sequence $\{K_{n} : n=1,2, \ldots\}$ .

Example 7.3. Let $W_{1}$ and $W_{2}$ be two compact subhypergroups of a compact
Pontryagin hypergroup $H$ , and let $L=D=\{\ell_{0},p_{1},p_{\mathit{2}}, \ldots,\ell_{n}, \ldots\}$ . Putting

$H(P_{0})=\{e_{H}\},$ $H(P_{1})=[W_{1}*W_{2}],$ $H(\ell_{2})=W_{1}$ ,

$H(\ell_{3})=W_{\mathit{2}},$ $H(\ell_{4})=W_{1},$ $H(P_{5})=[W_{1}*W_{\mathit{2}}],$ $H(p_{6})=W_{1}\cap W_{\mathit{2}}$
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and

$H(\ell_{n})=H(\ell_{k})$ ($n\equiv k$ (mod 6), $n\neq 0$ and $k=1,2,3,4,5,6$)

we obtain a field $\varphi$ : $L\ni Prightarrow H(P)\subset H$ and an extension $K(H, \varphi, L)$ of $L$ by
$H$ . If $H=C,$ $W_{1}=F(a)$ , and $W_{2}=F(b)$ , we see that as above $[W_{1}*W_{2}]=$

$F(\mathrm{c})$ for a natural number $c$ which is the least common multiple of $a$ and $b$ , and
$W_{1}\cap W_{2}=F(d)$ for a natural number $d$ which is the greatest common divisor
of $a$ and $b$ . Thus we have an extension $K=K(a, b)$ , where $a$ and $b$ are natural
numbers.

It is easy to see that the dual hypergroup of $K(a, b)$ can be concretely described
by the dual field $\hat{\varphi}$ : $\hat{H}\ni\chirightarrow Z(\chi)\subset$ L. We give the description in the case
that $1<d<a<b<c$ .

$\hat{H}=\{\chi_{0}, \chi_{1}, \chi_{2}, \cdots, \chi_{n}, \cdots\}\cong D$ and $\hat{L}\cong C=([-1,1], *)$ ,
$Z(\chi_{n})=F(1)$ for $n\equiv 0$ (mod $c$),

$Z(\chi_{n})=F(2)$ for $n\equiv 0$ (mod $a$) except $n\equiv 0$ (mod $b$),

$Z(\chi_{n})=F(3)$ for $n\equiv 0$ (mod $b$) except $n\equiv 0$ (mod $a$),

$Z(\chi_{n})=F(6)$ for $n\equiv 0$ (mod $d$) except $n\equiv 0$ (mod $a$) and $n\equiv 0$ (mod $b$),
$Z(\chi_{n})=\hat{L}$ for othewise $n$ .

We list further properties of the Pontryagin hypergroup $K(a, b)$ .

(1) $K(a_{1},b_{1})\cong K(a_{2}, b_{\mathit{2}})$ if and only if $a_{1}=a_{2}$ and $b_{1}=b_{2}$ .

(2) $K(1,1)\underline{\simeq}o\mathrm{x}D$ .

(3) $K(a,a)=S(C(a)\mathrm{x}D, C(a)arrow C)$ .

(4) $K(a, b)$ is self-dual if and only if $a=2$ and $b=3$.

(5) For the greatest common divisor $d$ of $a$ and $b$ ,

$K(a, b)=S(M(d), C(d)arrow C)$ for $M(d)=K$($C(d)$ , th, $D$).

(6) If $a$ and $b$ are coprime, $K(a, b)$ does not arise from non-trivial substitution.
This follows from the facts that $H(P_{6})=F(1)=\{e_{H}\}$ and
$H\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}((\epsilon_{\epsilon_{H}}\otimes\epsilon_{\ell\epsilon})^{-}*_{\varphi}(\epsilon_{e_{H}}\otimes\epsilon_{\ell_{6}}))=\{e_{K}\}$ .
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