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1 Introduction

A planar portrait of a smooth manifold is the image of the manifold through a stable
map into the plane. paired with the curve of critical values. In this article, we present
characterisations of manifold pieces over certain subpieces of planar portraits, which
will be applied to reductions of planar portyaits to simpler ones. By their geometric
nature in 2-dimensional case, a series of tliese $c1_{1c}u\cdot actcrisati_{oI1}s$ are called the bending

and tucking lemma here.

The lemma is based on another characterisation for a special subpiece of a pla-

nar portrait named the cusped fan given in [$K|$ . We state that and give another
application of $t1\iota^{t}att0$ obtain $P^{1\prime}dJ1\dot{e}tI^{\cdot}$ portarits of m\v{c}mifolds in explict styles.

2 Planar portrait

Let $f$ : $\Lambda,f^{n}arrow R^{2}$ be a smooth stable map of a smooth closed manifold $M$ of
dimension $n$ . Denote bv $S_{f}$ the singular points of $f$ .

Definition The pair $P=(f(\Lambda l), f(S_{f}))$ up to self-diffeornorphism of $R^{2}$ is
called a planar $p_{07}Y_{7^{\backslash }}ait$ of $M$ through $f$ .

In Figure 1. we show an example of a planar portrait.

Remark A singular point $p\in S_{I}$ is either a cusp or a fold, as is well known.

A planar $port\iota_{r}^{:}\iota it$. of a manifold is $f’\iota$ geometric $\iota^{\backslash }$

ノ $p_{IC}$sentation of a manifold. One
can find topologi( $;al$ properties of $d^{=},$ $IIla\iota lifoldM$ in its planar portrais. For exaniple,
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Figure 1: A planar portrait of a manifold

the number of cusps have the same parity as the Euler characteristic $\chi(M)$ , by
classical result of Thom. In case the indices of folds are known, one has a chance to
know $\chi(M)$ absolutely, as pointed out in [L]. But it is not clear yet that what kind
of properties can one read from a planar portrait. In the latter half of this article,
we show a loosencss of planar portraits to $111’ffi$lifolds; spinness of a 4-manifold, for
example, are not carried to the portraits. On the other hand, we show soon later
that some planar portraits strongly regulate the cl&ss of admissible source manifolds.

3 Bending and tucking lemma

Let $X$ be a compact manifold with boundarv. We say t,hat $h:Xarrow R^{2}$ is a $fibrew?,s($

cut of a stable map ([K]) if there exist an open manifold $\hat{X}$ which contains $X$ as a
proper submanifold, and a stable map $f$ : $\hat{X}arrow R^{2}$ such that the three conditions
bellow are satisfied:

1. The restriction $f|X$ coincides with $h$ .

2. There exists a finite collection $\lambda_{i)}i=1,$ $\cdots$ , $m$ , of smooth plane arcs such that
the intersections of $\lambda_{i}$ with otlIcr $\lambda_{j}$ and witlt ] $(\iota t_{ff}^{1})\epsilon\prime W^{\cdot}C^{\backslash }$ transverse.

3. $X$ is obtaincd froIn $\hat{X}$ by cutting it along $f^{-1}(\lambda_{1})\cup\cdots Uf^{-1}(\lambda_{m})$ .

For a fibrewise cut of a stable map $h$ , we define $tl$ } $e$ set of singularities by $S_{h}$. $=$

$S_{f}\cap X$ , and call the $pai\iota\cdot(h(X), h(S_{h}))$ the planar portrait of $X$ , as before.

Let $P=(h(X)\tau h(S_{h}’))$ be a planar portrait in $th\epsilon^{\backslash }$ hgure bellow, where $h:Xarrow$

$R^{2}$ is a fibrewise $c\backslash \iota t$ of a stable map.
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Figure 2: Bendings and tuckings in planar portraits

Theorem (Bending and Tucking lemma)

The source manifold $X$ of a planar $port_{I_{C}’}\cdot\iota it$ in Figure 2 is diffeomorphic to

$\bullet$
$\Sigma^{\tau\iota.-1}\cross D^{1}$ (in case of a $,b,$ $c,d$),$\cdot$ or

$\bullet$ $D^{n-1}\cross S^{1}$ or $D^{n-1}\cross S^{1}\sim$ (the non-trivial disc bundlc) (in case of e), or

$\bullet$ $D^{1}\cross S^{1}$ or $D^{1}\cross S^{1}-$ (in case of $f$ , g),

where $\Sigma^{n-1}$ is a homotopy $(n-1)$-sphere of the form $D”-1_{\bigcup_{\varphi}D^{n-1}}$ with $\varphi$ : $\partial D^{n-1}arrow$

$i10^{n-1}$ a self-diffeomorphism.

Conversely, every diffeomorphism types of $X$ listed above can be realised.

Remark It is known that any homotopy $(n-1)$-sphere is of the form $\Sigma^{n-1}$ as
above if $r\iota\geq 8$ , whereas in $n$. $\leq 7$ , any of $\Sigma^{n-1}$ above is thc standard sphere $S^{n-1}$ .

In dim $X=2$ , the theorem says that the planar portraits a $,b,$ $c$ represent bend-
ings of a tub$e$ , and $d$ does tucking of a tube. The planar portraits in Figure 2 ar$e$ the
list of configurations of a connected depth 2 region with two cusps of the condition
that at least one edge abuting $tl_{1t^{Y}.111}$ bounds the $i_{I1lag(}\backslash .$ . up to ccrtain cancelling of
crossings. Here a region of regular values in a planar portrait is of depth 2 if there
exists an arc connecting a point in that region to the outside of the planar portrait
which meets the critical value set transversely at two points.

As an easy application. we can $sc^{\backslash }\iota^{\backslash }$, that the source llallif
$\cdot$

olds of the plariar por-
traits in figure bellow, for example. are all diffeomorphic t,o the total space of a $\Sigma^{n-1}$

bundle over $S^{1}$ .
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$Figur\cdot(\backslash 3:$ Plana\iota $\cdot$ portraits of $\Sigma^{n-1}bu\iota\iota dlcs$ over $S^{1}$

4 A key lemma

To prove the B-T (bending and tucking) lemma. we prepare a lemma for a special
subpiecc of a planar portrait. We call the pair of a compact region and $P^{la\iota 1(}\backslash$, curves
with a cuspidal point as shown in Figure 4 the cusped fan.

Figure 4: The cusped fan

For a stable c.nt $f$ over the cusped fan, we have t,he lcmma bellow:

Lemma [K] $\ovalbox{\tt\small REJECT}$
Let $f$ : $Xarrow R^{2}$ be a stable cut over the cusped fan. Then $f$ is right-left

equivalent to the map $h:D^{a+1}\cross D^{b+1}arrow R^{2}$ defined by $h(x.y)=(|x|^{2}+2\epsilon y_{0}(1-$

$|x|^{2}),$ $|y|^{2}+2\epsilon x_{0}(1-|y|^{2}))$ for some non-negative integers $a,$ $b$ and for $a\iota\iota y$ positive
small constant $\epsilon_{i}$ where $D^{\alpha+1}=\{|x|^{2}\leq 1\}_{:}D^{b+1}=\{|y\underline{|}\leq 1\},$ $x=(x_{())}x_{t}, \cdots , x_{a})$

and $y=(y_{0}, y_{1,}.\cdots, y_{b})$ .

See [K] for the proof and its applications. We notc here only that $h$ above is a
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perturbation of the twice folding projection $(|?i|^{2}, |\cdot lj|^{2})$ : $f_{-}J^{p}\cross D^{q}arrow J\cross I\subset R^{2}$ . In
the 2-dimensional case $n=2$ , what it stands for is easily understood (see the figure
bellow).

Figure 5: Cusped fan and the twice folding projection

Remark $T1_{1}c$ cusp of
$\cdot$

$f\iota$ has the absolute index of $\max\{a, b\}$ , as an easy calicu-
lation shows. The four folds on the edge of the fan has the indices $0,$ $a,$ $a+1,$ $n-l$ ,
lined in this order, for an orientation of the edge (or, $0,$ $b.b+1,$ $n-1$ , in the reversed
orientation).

We give here a sketch of the proof for the Bending and ‘Tlicking lemma. First we
notc that any $CI^{\cdot}ossillg_{\backslash }\backslash \backslash \dot{c}1r(1$ derived frorn indefinite folds $(?t\cdot, |x|^{2})$ , and hence $fib_{1}\cdot c^{\tau}s$

are disconnected near the crossings. This implies that: any of the portrait through a
to $d$ is moved to the union of two cusped fans attac$ed$ along a boundary, by moving
the projection $h$ of the manifold $X$ up to homotopy. In $actua1_{\backslash }$ for a to $c$ , one can
removc the crossings })$\backslash \backslash$ liomotopy to obtain the required style of planar portrait.
For $d$ , we can achieve the move by a twisting (see Figure 6). Similarly, the planar
portraits $f$ and $g$ are moved to $e_{:}$ by homotopy move of $h$ . Therefore we are enough
to study the source $It1\lambda 11if_{()}\iota_{(1}X$ for the two cases.

For the first c\v{c}se, note that $X$ is the union of two [$)^{a+1}\cross lJ^{b+1}$ attached along
$\partial D^{\iota+1}\cross D^{b+1}$ , by the key leInma. On the other hand. Remark to the key lemma
shows that $b=0$, because the crossing is caused by definite folds. The diffeomor-
phism type of $X$ is $her$}( $le_{c.6}\gamma$ in the statement.

For thc second $c_{C}\backslash ,(, ()1’ e$ , not, $\epsilon^{t}$ that $e$ is the union of two cuspcd fans but with a
degeneration. Since the degeneration is caused by a definite fold, it is easy to move
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the projection to $t1\iota 0$ standard cusped fan $pI^{\cdot}ojcctioIl$ similarly as before. $Ht^{\backslash }\iota\iota cc^{\backslash }$ the
source manifold $X$ is the union of two $D^{1}\cross D^{\prime\iota-1}$ attached along $S^{0}\cross D^{7\downarrow-1}$ . The
diffeomorphism type of $X$ is hence as required. Note that for $f$ and $g$ , the dimension
$n$ must be 2, since both side of a cusp are definite folds.

Figure 6: Proof of the B-T lemma

5 Another application of the key lemma

As another application of the key lemma, we present here constructions of planar
portraits in two different manners. See [K] for detail.

1. Liftin$g$ Aforse functions

Thc first manner is $t1\iota t^{\backslash }$ construction by lifting Morse functions. The basic idea
of this is as follows: Note that the twice folding projection $(|x|^{2}, |y|^{2})$ is a lift into
$R^{2}$ of a Morse type critical $p_{t)}i_{11}t_{:}$ as seen by the factorisation bellow:

$(x\cdot, y)\mapsto(|;\gamma\cdot|^{2}, |_{l/}|^{l})rightarrow|x|^{2}\pm|y|^{2}$ , $x\in D^{p},’\tau/\in D^{q}$

The stable cut over a cusped fan is still so (see Figure 7).

We can apply this to take planar portraits.

Example [K]: Lifting of a ! forse function of $kP^{2}$ . $k=R.C$ or H.
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Figure 7: Cusped fans and lifts of $h\cdot f$orse critical points

Let $g:kP^{2}arrow R$ be the AIorse function defined by $g([x:y:z])= \frac{a|x|^{2}+b\{\prime y|^{2}+c|\approx|^{2}}{|x|^{2}+|y|^{2}+|\approx|^{2}}$ ,

where $0<a<b<c$ . It has three critical points $[1 : 0:0]$ ) $[0:1 : 0]$ and $[0;0:1]$ .

We can lift $g$ as follows.

piece 1 $|z|.|x|<|y|$

Figure 8: A lift of a Mors$e$ function of the projective plane

Take a decomposition $kP^{r}\sim$
)

$=H_{0}\cup H_{1}\cup H_{2)}$ where $H_{0)}H_{1},$ $H_{2}$ are neighbourhoods
of $[$ 1 : $0$ : $0],$ $[0$ : 1: $0]a\iota ld[0$ : $0$ : 1 $]$ defined by $\{|y|, |z|\leq|x|\},$ $\{|z|,$ $|x|\leq$

$|y|\}$ and $\{|x|, |y|\leq|z|\}’$. respectively. On these pieces, $g$ has the form $|y|^{2}/|x|^{2}+$

$|z|^{2}/|x|^{2},$ $|z|^{2}/|y|^{2}-|x|^{2}/|y|^{2}a11d-|x|^{2}/|z|^{2}-|y|^{2}/|z|^{2}$ , respectively.

We take $f$ in the key $1_{t^{\backslash }}x\downarrow\tau ma$ on each of the three pieces and place the cusped
$f_{dX1}^{r}$ produced by $f$ so $t,1_{1\dot{c}}.\downarrow t$ it gives a local lift of $g$ in cach piece with respect to a
submersion $R^{2}arrow R$ ( $1^{\cdot}\epsilon\supset.f_{P1}$ . to Figure 8). It is not difficult to check that the three
copies of $f$ can be glued together consistently. Hence we obtain a stable map $\tilde{g}$ of
$kP^{2}$ into $R^{2}$ which is a lift of $g$ , and whose planar portrait is the union of three
$2\pi/3$-angled cusped fans $1^{J\dot{c}t^{t}:\cdot tc^{\backslash }.(1}$ togethcr to forIn a disc.

2. Perttirbation of a $Af\tau 11lap$

Th$e$ stable cut over the eusped fan can be also regarded a perturbation of the
quotient map of the $1inc_{C}^{s.:}u_{1)1}$ oduct actions of $O(p)\oplus O(q)$ to $D^{p}\cross D^{q}$ . We can apply
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Figure 9: (a) image of the moment map, and (b) the planar portrait of a regular
toric surface

this to take planar portraits of a manifold with suitable action of $O(p)\oplus O(q)$ .

Example [K]: Stable pertur$ba$tions of the $m$oment rnaps ofregular toric surfaces

A regular complex toric surface $\Lambda I$ is obtained bv putting k-copies of $D^{2}\cross$

$D^{2}$ together by the $diff_{CO1}norp1_{1}isn$ )$s\tilde{\gamma}_{i}(z, w)=(|)=1,$ $\cdots,$
$k$ for solncl

$\gamma_{1}$ . $\cdots,$ $\gamma_{k}\in Z$ (we remark that $k$ equals to $\chi(Al)$ ). Note that the the twice folding
projection $(|z|^{2}, |w|^{2})$ on each $D^{2}\cross D^{2}$ gives a moment nlap of the toric action
(see Figure 9, left). Now take $f$ of the key $lenlma$ on each piece. The $k$ copies
of

$\cdot$

$\int dl\cdot e$ well-pasted by $\tilde{\gamma}_{i}.,$ $\prime j_{l}=1,$ $\cdots$ , $k$ so that thcy define a global perturbation
of the moment map into a stable map. The planar portrait thus obtained is the
$2\pi/k$-angled cusped fans pasted together to form a disc (see Figure 9, right).

Remark For the complex projective plane, the two maps constructed in the two
cx\v{c}unples are the same onc.

By applying the second construction for Hirzebruch surfaces, we obtain a $cor\infty$

rally on the projection-to-portrait correspondance as follows. The proof of this is
given in [K].

Corollary [K]

Let $M$ be either $S^{2}\cross S^{2}$ or $S^{2}\cross S^{2}-$ , wher$e$ the latter denotes tlie total spac$e$ of the
non-trivial $S^{2}$ bundle over $S^{2}$ . Then there exist stable maps $f_{i}$ : $Marrow R_{J}^{2}.i\in Z_{+}$

with the properties that:

1 They have the samc planar portrait $a\llcorner s$ drawn in Figure 10 in common.

2 Any pair of maps.$/l\dot{c}11ld]_{j}\dot{e}u\cdot c^{\backslash }$ not right-left equiv$Ac^{\backslash }.\iota 1\{.$ , if $i\neq j$ .
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Figure 10: A common planar portrait of Hirzebruch surfaces

Based on the same idea, we can generalise the above corollary as bellow:

Corollary [K] $\ovalbox{\tt\small REJECT}$
Any $S^{p}$ bundle over $S^{q}(p, q\geq 1)$ that adInits a cross-section has the $plaIl’dI$

portrait in Figur$e10$ in common.

The corollary above shows a looseness of $p^{1}jtYtar$ portrait,s to manifolds. We
rcmark that the possible sourcc nanifolds for thc })

$1al1\dot{\epsilon}\mathfrak{U}$. portrait in Figure 10 spread

outside that class of sphere bundles. In actual, $P^{2}\# P^{2}$ admits it as a planar portrait,

as it is realised by coupling two copies of one in Figure 8 and by eliminating a pair

of cusps.
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