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Abstract

When so-called Tyndall figure in a single ice crystal is refrozen, a vapor bubble
in the figure remains in ice, and it is transformed to a hexagonal disk which is
called negative crystal or vapor figure. Under some assumptions, this transformation
process will be simulated by aPplication of an $area_{r}\cdot preserving$ crystalline curvature
flow, i.e., an area-preserving gradient flow of total interfacial energy.
Key Words: single ice crystal, internal melting, Tyndall figure, negative crystal,
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1 Introduction
When a block of ice is exposed to solar beams of other radiation, internal melting of ice
occurs. That is, internal melting starts from some interior points of ice without melting
the exterior portions, and each water region forms a flower of six petals, which is called
“Tyndall figure” (Figure 1 (left)). And Figure 1 (right) indicates that Tyndall figures are
alInost two dimensional figures.

The figure is filled with water excePt for a vapor bubble. This phenomenon was first
observed by Tyndall (1858). When Tyndall figure is refrozen, the vapor bubble remains
in the ice as a hexagonal disk (see Figure 2). This hexagonal disk is filled with water
vapor saturated at that temperature and surrounded by ice. McConnel found these disks
in the ice of Davos lake [9]. Nakaya called this hexagonal disk “vapor figure (空像)” and
investigated its Properties precisely[10]. Adams and Lewis (1934) called it “negative
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Figure 1: (Left) Tyndall figures seen from the direction of 45’ to c-axis [10, No.17]; (right)
Tyndall figures seen from the direction of 90’ to c-axis [10, No. 18].

Figure 2: Natural vapor figures in an ice single crystal [10, No.1].

crystal (負結晶).” (Although Nakaya said “this term does not seem adequate” with a
certain reason, hereafter we use the term negative crystal for avoiding confusion.)

Negative crystal is useful to determine the structure and orientation of ice or solids.
Because, within a single ice crystal, all negative crystals are similarly oriented, that is,
corresponding edges of hexagon are parallel each other (see Figure 3). lturukawa and

Figure 3: A cluster of minute vapor figures [10, No.53 (magnified)].

Kohata made hexagonal prisms experimentally in a single ice crystal, and investigated
the habit change of negative crystals with respect to the temperatures and the evaporation
mechanisms of ice surfaces [3].

To the best of author’s knowledge, after the Furukawa and Kohata’s experimental
research, there have been no published results on negative crystals, and there are no
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dynamical model equations describing the process of formation of negative crystals. In
this paper, we will focus on the process of formation of negative crystals after Tyndall
figures are refrozen, and propose a model equation of interfacial motion which tracks the
deformation of negative crystals in time.

2 Formation of negative crystals

Figure 4 indicates aftereffect of freezing of Tyndall figures from the initial stage of refrozen
process to the final stage of the formation of negative crystals. The aim of this talk i8 to

Figure 4: From left to right, upper to lower: (a) Start of freezing, $t=Omin$ . $(b)$ Freezing
proceeds, $t=3 \min$ . $(c)$ Freezing proceeds further, $t=1lmin$. $(d)$ The bubble is separated,
$t=17 \min$ . $(e)$ The separated liquid film migrates, $t=28 \min$ . $(f)$ After freezing, cloudy
layers and a vapor figure are left, $t=1 hr21\min$ . [ $10$ , No. $52a-52f$].

propose a model equation, revealed the process in Figure 4 from (d) to (f). This process
may be described as the following:

Negative crystal changes the shape from an oval to the hexagon.

Thus, our model will be assumed the followings.

(A1) water vapor region is simply connected and bounded region in the plane $\mathbb{R}^{2}$ (we
denote it by $\Omega$);

(A2) $\Omega$ is surrounded by a single ice crystal (i.e., a single ice region is included in $R^{2}\backslash \Omega$);

(A3) moving boundary $\partial\Omega$ is interface of the water vapor region and the single ice crystal;
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(A4) the crystallographic c-axis (main axis) of the single ice crystal is perpendicular to
the plane;

(A5) $\Omega$ is filled with water vapor saturated at that temperature, and the temperature is
a constant (i.e., there is no thermal gradient);

(A6) the initIal figure of negative crystal (we denote it by $\Omega_{0}$ ) is strictly convex set with
a smooth boundary.

Remark: Under (A5), the thickness of negative crystal is regarded as constant in de
formation process. In this sense, (A1) is a natural assumption. Meaning of (A2) and
(A3) is that after the bubble in Tyndall flgure is captured in ice phase, there is no water
region between the bubble and the ice, and they are separated each other by a sharp
boundary interface curve. (A4) means that we observe figures from the direction of main
axis in structure of single ice crystal. To observe effect of interfacial energy, we assume
(A5). Shape of the bubble in Tyndall figure is circle by virtue of surface tension. Hence
immediately after the bubble is captured in ice phase, the shape can be regarded as a
circle or a convex set, and this follows (A6). The primary idea of our assumptions can be
found in [8].

The evolution law of moving interface is similar to the growth of snow crystal, since
deformation of negative crystal is regarded as crystal growth in the air. As a model of snow
crystal, we refer the Yokoyama-Kuroda model [15], which is based on the diffusion process
and the surface kinetic process by Burton-Cabrera-Rank (BCF) theory [2]. Meanwhile, we
assume the existence of interfacial energy (density) on the boundary $\partial\Omega$ . The equilibrium
shape of negative crystal is a regular hexagon, and if the region $\Omega$ is very close to a regular
hexagon, then the evolution process may be described as a gradient flow of total interfacial
energy subject to a fixed enclosed area. Under (A5), the diffusion process and the surface
kinetic process will not give so much effect on deformation of negative crystal. Nakaya
explained the transformation of an apparently circular form into a hexagon (Figure 4
(d)(e)(f) or Figure 5) by “the principle of minimum surface – to find the shape which
has the minimum circumference for the given area” [10, section 24].

In this paper, we win explain the deformation process by using an are&pr\infty erving
gradient flow of total interfacial energy. Figure 6 is a numerical example by an area.
preserving crystalline curvature flow. We can observe that the initial shape converges to
a regular hexagon.

In the next section, we will introduce an area-preserving crystalline curvature flow,
and show known mathematical results. In the last section, we will summarize and discuss
$futu\acute{r}e$ works.
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Figure 5: Transformation of a circular figure into a hexagon [10, No.93]; from left to right:
a) $t=0,$ $b$) $t=2.5,$ $c$) $t=5,$ $d$) $t=39 \min$ . Although Nakaya did not mention on thermal
gradient in this process, it seems that (A5) is not satisfied.

Figure 6: Transformation of a circular figure (the initial 36-sided regular polygon (far left))
into a hexagon (far right). Numerical computation is based on the scheme in Ushijima
and Yazaki [14].

3 Area-preserving crystalline curvature flow
$\bm{t}$ this aection, crystalllne curvature flow and its are&pr\’eerving version will be $intrc\succ$

duoed, and known mathematical results $wiU$ be shown. Crystalline curvature flow is very
singular weighted curvature flow, and it wa6 proposed by J. E. Taylor, and S. Angenent
$\bm{t}d$ M. E. Gurtin at the end of $1980’ s$ . We refer the reader to the pioneer works Taylor
$[11, 12]$ and Angenent and Gurtin [1], and the surveys by Taylor, CAn and Handwerker
[13] and Giga [5], $\bm{t}d$ the books by Gurtin [6] for agmmetric and physical background.
In what $foUows$ , we will introduce an area-preserving crystalline curvature flow for convex
polygon in the plte.

Polygons. Let $\mathcal{P}$ be an $N$-sided convex polygon in the plane $\mathbb{R}^{2}$ , and label the position
vector of vertic\’e $p_{i}(i=1,2, \ldots, N)$ in an anticlockwise order: $P= \bigcup_{i=1}^{N}$ Si, where
$S_{1}=[p_{i},p_{i+1}]$ is the i-th edge $(p_{N+1}=p_{1})$ . The length of $S_{i}$ is $d_{i}=|p_{i+1}-p_{i}|$ , and
then the $i$-th unit tangent vector is $t_{i}=(p_{i+1}-p_{i})/d_{i}$ and the i-th unit outward normal
vector is $n_{i}=-t_{1}^{\perp}$ , where $(a, b)^{\perp}=(-b, a)$ . We define aset of normal vectors of $\mathcal{P}$ by
$N=\{n_{1}, n_{2}, \ldots, n_{N}\}$ . Let $\theta_{i}$ be the exterior normal angle of $S_{*}$ such as $n_{i}=\mathfrak{n}(\theta_{i})$ and
$t_{t}=t(\theta_{i})$ , where $n(\theta)=(\cos\theta,\sin\theta)$ and $t(\theta)=(-\sin\theta,\cos\theta)$ . We define the i-th hight
function $h_{i}=p_{1}\cdot n_{i}=p_{i+1}\cdot n_{i}$. By using $N$-tuple $h=(h_{1}, h_{2}, \ldots, h_{N}),$ $d_{1}$ is daecribed as
fofows:

$d_{i}[h]=-(\cot\theta_{i}+\cot\theta:+1)h_{\iota}+k_{-1}$ cosec $\theta_{:}+h_{1+1}$ cosec $\theta_{:+1}$ , (3.1)

where $\theta_{:}=\theta_{i}-\theta_{i-1}$ for $i=1,2,$ $\ldots,$
$N$. Note that $0<\theta_{:}<\pi$ holds for all $i$ .
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Interfacial energy. In the field of material sciences and crystagography, we $need$ to
explain the anisotropy: phenomenon of interface motion which depends on the normal
direction $n$ . To explain the anisotropy, it is convenient to define an interfacial enery
on the interface or the curve which has line density $\gamma(n)>0$ . The function $\gamma(n)$ ct
be extended to the function $x\in \mathbb{R}^{2}$ by putting $\gamma(x)=|x|\gamma(x/|x|)$ if $x\neq 0$ , otherwise
$\gamma(0)=0$ . This extension is caUed the extension of positively $homogen\infty us$ of degree 1,
since $\gamma(\lambda x)=\lambda\gamma(x)$ holds for $\lambda\geq 0$ and $x\in \mathbb{R}^{2}.$ We $wi\mathbb{I}$ use the same notation $\gamma$ for
the extended function. To observe the characteristic of $\gamma$ , the following Frank diagram is
useful: $\mathcal{F}_{\gamma}=\{n(\theta)/\gamma(n(\theta));\theta\in S^{1}\}=\{x\in \mathbb{R}^{2};\gamma(x)=1\}.$ If the Rank $diagram\mathcal{F}_{\gamma}$ is
aconvex polygon, $\gamma$ is called crystalline energy. When $\mathcal{F}_{\gamma}$ is a $J$-sided convex polygon,
there exists aset $of_{\bm{t}}gles\{\phi_{i}|\phi_{1}<\phi_{2}<\cdots<\phi_{J}<\phi_{1}+2\pi\}$ such that the position
vectors of vertices are labeled $n(\phi_{i})/\gamma(n(\phi_{i}))$ in an rticlockwise order $(\phi_{J+1}=\phi_{1}):\mathcal{F}_{\gamma}=$

$\bigcup_{i=1}^{J}[\xi:,\xi_{i+1}],$ $\xi_{i}=\nu_{i}/\gamma(\nu_{1})$ . Here $\bm{t}d$ hereafter, we denote $\nu_{i}=n(\phi_{i})$ for $i=1,2,$ $\ldots,$
$J$

$(\nu_{J+1}=\nu_{1})$ . In this $ca\epsilon e$ , the Wulff shape $\mathcal{W}_{\gamma}=\bigcap_{\theta\in S^{1}}\{x\in \mathbb{R}^{2};x\cdot n(\theta)\leq\gamma(n(\theta))\}$

is $ako$ aJ-sided convex Polygon with the outward normal vector of the i-th edge being
$\nu::\mathcal{W}_{\gamma}=\bigcap_{1=1}^{J}\{x\in \mathbb{R}^{2};x\cdot\nu_{i}\leq\gamma(\nu_{i})\}$ . We define aset of normal vectors of $\mathcal{W}_{\gamma}$ by
$\mathcal{N}_{\gamma}=\{\nu_{1}, \nu_{2}, \ldots, \nu_{J}\}$ .

Admissibility. Following [7], we call $\mathcal{P}\mathcal{W}_{\gamma}$ -essentially admissible if $\bm{t}d$ only if the
cooecutive outward unit normal vectors $n_{i},$ $n_{i+1}\in \mathcal{N}(n_{N+1}=n_{1})satis\infty\eta/|\eta|\not\in \mathcal{N}_{\gamma}$,
where $\eta=(1-\lambda)n_{i}+\lambda n_{i+1}$ for $\lambda\in(0,1)$ and $i=1,2,$ $\ldots$ , N. Note that $\mathcal{P}$ i8a
$\mathcal{W}_{\gamma^{-}}essentially$ admissible convex polygon if $\bm{t}d$ only if $N\supseteq \mathcal{N}_{\gamma}$ holds. We $caU\mathcal{P}\mathcal{W}_{\gamma^{-}}$

admissible if $\bm{t}d$ only if $\mathcal{P}$ is a $\mathcal{W}_{\gamma}$-essentially admissible polygon and $N=\mathcal{N}_{\gamma}$ holds.
In other words, $\mathcal{P}$ is a $\mathcal{W}_{\gamma}$-admissible convex polygon if $\bm{t}d$ only if $n_{i}=\nu_{1}$ holds for all
$i=1,2,$ $\ldots,$ $N=J$.

Gradient of the total interfacial energy. Let $\mathcal{P}$ be a $\mathcal{W}_{\gamma^{-}}\text{\’{e}} sentiaUy$ admissible
N-sided convex polygm with the $N$-tuple of hight functions $h=(h_{1}, h_{2}, \ldots, h_{N})$ . Then
the total interfacial $(crystm_{ne})e$nergy on $\mathcal{P}$ is $\mathcal{E}_{\gamma}[h]=\sum_{i=1}^{N}\gamma(n_{i})d_{i}[h]$ . For two N-tupl\’e
$\varphi=$ $(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}),$ $\psi=(\psi_{1}, \psi_{2}, \ldots, \psi_{N})\in \mathbb{R}^{N}$, let us define the inner product on $\mathcal{P}$

as $( \varphi, \psi)_{2}=\sum_{i=1}^{N}\varphi_{i}\psi_{i}\phi[h].$ ffirthermore, we define the rate of variation of $\mathcal{E}_{\gamma}[h]$ in the
direction $\varphi$ and the first variation $\delta \mathcal{E}_{\gamma}[h]/\delta h$ as follows:

$\frac{\delta \mathcal{E}_{\gamma}[h]}{\delta\varphi}=\frac{d}{d\epsilon}\mathcal{E}_{\gamma}[h+\varphi]|_{\epsilon=0}=grad\mathcal{E}_{\gamma}[h]\bullet\varphi=(\frac{\delta \mathcal{E}_{\gamma}[h]}{\delta h},$$\varphi)_{2}$ .

Crystalline curvature. The first variation of $\mathcal{E}_{\gamma}[h]$ of $\mathcal{P}$ at $S_{1}$ is

$\frac{\delta \mathcal{E}_{\gamma}[h]}{\delta\varphi}=\sum_{i=1}^{N}\gamma_{i}d_{i}[\varphi]=\sum_{1=1}^{N}d_{i}[\gamma]\varphi_{1}=\sum_{i\approx 1}^{N}\frac{d_{i}[\gamma]}{d_{i}[h]}\varphi_{i}d:[h]$ , $\gamma=(\gamma_{1},\gamma_{2}, \ldots,\gamma_{N})$ ,

where $\gamma_{1}=\gamma(n_{i})$ for all $i$ . Hence we have $(\delta \mathcal{E}_{\gamma}[h]/\delta h)_{i}=d_{1}[\gamma]/d_{i}[h]$ for all $i$ in this metric
$(\cdot, \cdot)_{2}$ . This quantity is called crystalline curvature on the i-th edge $S_{1}$ , and we denote it
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by $\Lambda_{\gamma}(n_{i})=d_{i}[\gamma]/d_{i}[h]$ . The numerator $d_{i}[\gamma]$ is described as $d_{i}[\gamma]=l_{\gamma}(n_{i})$ , where $l_{\gamma}(n)$

is the length of the j-th edge of $\mathcal{W}_{\gamma}$ if $n=\nu_{j}$ for some $j$ , otherwise $l_{\gamma}(n)=0$ . Therefore
if $\mathcal{P}=\mathcal{W}_{\gamma}$ , then the crystalline curvature is 1.

An area-preserving motion by crystalline curvature. The enclosed area $\mathcal{A}$ of $\mathcal{P}$

is given by $\mathcal{A}[h]=\sum_{i=1}^{N}h_{i}d_{i}[h]/2$ . Then the rate of variation of $A[h]$ in the direction $\varphi$ is

$\frac{\delta \mathcal{A}[h]}{\delta\varphi}=\frac{d}{d\epsilon}\mathcal{A}[h+\varphi]|_{\epsilon=0}=\sum_{i=1}^{N}\varphi_{i}d_{i}[h]$ .

By taking $\varphi_{i}=-(\delta \mathcal{E}_{\gamma}[h]/\delta h)_{i}=-\Lambda_{\gamma}(n_{i})$ , we have $\delta \mathcal{A}[h]/\delta\varphi=-\sum_{:=1}^{N}\Lambda_{\gamma}(n_{i})d_{i}[h]$.
Hence by taking $\varphi_{i}=\overline{\Lambda}_{\gamma}-\Lambda_{\gamma}(n_{i})$ , we have $\delta \mathcal{A}[h]/\delta\varphi=0$ . Here

$\overline{\Lambda}_{\gamma}=\frac{\sum_{i=1}^{N}\Lambda_{\gamma}(n_{1})d_{i}[h]}{\sum_{k=1}^{N}d_{k}}=\frac{\sum_{1=1}^{N}l_{\gamma}(n_{1})}{\mathcal{L}}$

is the average of the crystalline curvature, and $\mathcal{L}$ is the total length of $\mathcal{P}$ , i.e., $\mathcal{L}=\sum_{1=1}^{N}4$ .
Thus we have the gradient flow of $\mathcal{E}_{\gamma}$ along $\mathcal{P}$ which encloses a fixed area:

$V_{1}=\overline{\Lambda}_{\gamma}-\Lambda_{\gamma}(n_{i})$ , $i=1,2,$ $\ldots,$
$N$, (3.2)

where $V_{1}(t)=\dot{h}_{:}(t)$ is the normal velocity on $S_{i}$ in the direction $n_{i}$ at the time $t$ . Here
and hereafter, we denote $\dot{u}$ by $du/dt$ . From (3.1), the time derivative of $d_{1}(t)=d_{i}[h]$ is
given by

$\dot{\phi}=-(\cot\theta_{i}+\cot\theta_{i+1})V_{1}+V_{i-1}$ cosec $\theta_{:}+V_{1+1}$ cosec $\theta_{i+1}$ (3.3)

for $i=1,2,$ $\ldots$ , $N$ . Note that (3.2) and (3.3) are equivalent each other.
Negative polygons. Applying the arebpreserving crystalline curvature flow to de

formation of negative crystals, we will introduce the concept of negative polygons. En-
closed region of $\mathcal{W}_{\gamma}$-admissible convex polygon $\mathcal{P}$ is crystal, and then normal vector $n$

is direction from ice to gas, i.e., $\mathcal{P}$ is convex to $-n$ direction and crystailline curvature
$\Lambda_{\gamma}(n)$ is positive everywhere. We define negative polygon of $\mathcal{P}$ by $-\mathcal{P}$ , and we denote
it by $\overline{\mathcal{P}}$ Then vertices of negative polygon フヲ are labeled clockwise, フシ is concave to
$-n$ direction, and crystalline curvature $\Lambda_{\gamma}(n)$ is negative everywhere. If $\mathcal{P}$ is a regular
polygon, then $\mathcal{P}=$ フヲ. In this sense, the negative Wulff shape $\overline{\mathcal{W}}_{\gamma}=-\mathcal{W}_{\gamma}$ is defined as
$\overline{\mathcal{W}}_{\gamma}=\bigcap_{j\approx 1}^{J}\{x\in \mathbb{R}^{2};x\cdot(-\nu_{j})\leq\gamma(\nu_{j})\}$. See Figure 7.

Known results. The problem is stated as follows.

Problem 1 For a given $\mathcal{W}_{\gamma}$-essentially admissible closed curve $\mathcal{P}_{0}$ , find a family of $\mathcal{W}_{\gamma^{-}}$

essentially admissible curves $\{P(t)\}_{0\leq t<T}$ satisfying (3.2) (or (3.3)) with $\mathcal{P}(0)=\mathcal{P}_{0}$ . Since
(3.3) are the syst$em$ of ordinary differential equations, the maximal existence time is
positive $T>0$ .
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Figure 7: From left to right: $\mathcal{W}_{\gamma}$-essentially admissible polygon, the Wulff shape $\mathcal{W}_{\gamma}$ ,
$\overline{\mathcal{W}}_{\gamma}$-essentially admissible negative polygon, and the negative Wulff shape $\overline{\mathcal{W}}_{\gamma}$

What might happen to $\mathcal{P}(t)$ as $t$ tends to $T\leq\infty$?For this question, we have the
following three results. The first result is the case where motion is isotropic and polygon
is admissible.

Theorem A Let the interfacial energy be isotropic $\gamma\equiv 1$ . Assume the initial polygon $\mathcal{P}_{0}$

is an N-sided $\mathcal{W}_{\gamma}$-admissible convex polygon. Then a solution $\mathcal{W}_{\gamma}$-admissible polygon $\mathcal{P}(t)$

of Problem 1 exists globally in time keeping the area enclosed by the polygon constant
$\mathcal{A}$ , and $\mathcal{P}(t)$ converges to the shape of the boundary of the Wulff shape $\partial \mathcal{W}_{\gamma}$. in the
Hausdorff metric as $t$ tends to infinity, where $\gamma_{r}(n_{i})\equiv\sqrt{2\mathcal{A}/\sum_{k=1}^{N}l_{1}(n_{k})}$ is constant.
In particular, if $\mathcal{P}_{0}$ is centrally symmetric with respect to the origin, then we have an
exponential rate of convergence.

This theorem is proved by Yazaki [16] by using the isoperimetric inequality and the $th\infty ry$

of dynamical systems. We note that $\partial \mathcal{W}_{\gamma}$. is the circumscribed polygon of a circle with
radius $\gamma.$ , and then this result is a semidiscrete version of Gage [4].

The second result is the case where motion is anisotropic and polygon is admissible.

Theorem B Let the crystalline energy be $\gamma>0$ . Assume the initial polygon $\mathcal{P}_{0}$ is an
N-sided $\mathcal{W}_{\gamma}$-admissible convex polygon. Then a solution $\mathcal{W}_{\gamma}$-admissible polygon $\mathcal{P}(t)$

of Problem 1 exists globally in time keeping the area enclosed by the polygon constant
$\mathcal{A}$, and $\mathcal{P}(t)$ converges to the shape of the boundary of the Wulff shape $\partial \mathcal{W}_{\gamma}$. in the
Hausdorff metric as $t$ tends to infinity, where $\gamma_{*}(n_{i})=\gamma(n_{i})/W,$ $W=\sqrt{|\mathcal{W}_{\gamma}|}/\mathcal{A}$ for all
$i=1,2,$ $\ldots,$

$N$ and $| \mathcal{W}_{\gamma}|=\sum_{k=1}^{N}\gamma(n_{k})l_{\gamma}(n_{k})/2$ is enclosed area of $\mathcal{W}_{\gamma}$ .

This theorem is proved in Yazaki [17, Part I] by using the anisoperimetric inequality $or$

Br\"unn and Minkowski’s inequality and the theory of dynamical systems which is a similar
technique as in Yazaki [16].

The last result is the case where motion is anisotropic and polygon is $\mathcal{W}_{\gamma}$-essentially
admissible. The next theorem is proved in Yazaki [19].

Theorem C Let the crystalline energy be $\gamma>0$ . Assume the initial polygon $\mathcal{P}_{0}$ is an
N-sided $\mathcal{W}_{\gamma}$-essentially admissible convex polygon. If the maximal existence time of a
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solution $\mathcal{W}_{\gamma}$-essentially admissible polygon $\mathcal{P}(t)$ of Problem 1 is finite $T<\infty$ , then there
exists the i-th edge $S_{i}$ such that $\lim_{tarrow T}d_{i}(t)=0$ and $l_{\gamma}(n_{i})=0$ hold. That is, the
normal vector of vanishing edge does not belong to $\mathcal{N}_{\gamma}$ , and $\inf_{0<t<T}d_{k}(t)>0$ holds for
all $n_{k}\in \mathcal{N}_{\gamma}$ .

4 Conclusion
We will show our main results $\bm{t}d$ discuss future works.

Main results. By Theorem $B,$ any $\overline{\mathcal{W}}_{\gamma}$-admissible negative polygon converg\’e to
the negat.ive Wulff shaPe $\overline{\mathcal{W}}_{\gamma}$ as time tends to infinity. Figure 6shows convergence of
$\overline{\mathcal{W}}_{\gamma^{-}}aesentiafy$ admissible negative Polygon (36-sided regular polygon) to the negative
Wulff shaPe $\overline{\mathcal{W}}_{\gamma}$ in the case where $\overline{\mathcal{W}}_{\Gamma}$ is a $re_{1^{1ar}}$ hexagon. However, this numerical
r\’eult is an open problem: For any $\mathcal{W}_{\gamma}$-essentially admissible convex polygon $\mathcal{P}_{0}$ , is $T$ a
finite value? If the answer of this question is yes, then we have the finite time sequence
$T_{1}<T_{2}<\cdots<T_{M}$ such that $\mathcal{P}(T_{i})$ is $\mathcal{W}_{\gamma^{-}}essent;_{a}g_{y}$ admissible for $i=1,2,$ $\ldots,$ $M-1$
and $\mathcal{P}(T_{M})$ is $\mathcal{W}_{\gamma}$-admissible. In the general case where $V_{1}=g(n_{i}, \Lambda_{\gamma}(n_{i}))$ for all $i$ under
certain conditions of $g$ , the answer of the above question is yae. Sae Yazaki [18]. Note
that $g$ doe8not include $\overline{\Lambda}_{\gamma}$ .

Discussion. The initial shape of negative crystal is $\bm{t}$ apparently circular form.
Nahya $a\epsilon serted$ that the boundary is stepped structure rather than asmooth curve [10,
Figure 26]. This corresponds to the cave where the initial $\mathcal{P}_{0}$ is $\mathcal{W}_{\gamma}$-admissible non-strictly-
convex polygon, when $\mathcal{W}_{\gamma}$ is aregular hexagon. Although we ct compute evolution of
$\mathcal{W}_{\gamma^{-}}essen.tiaUy$ admissible polygonal curves, the mathematical justification is our on-going
raeearch. Rrthermore, in our future research, the assumptions (A1) and (A5) wig be re-
moved, $i.e.$ , We will consider influence of temperature in deformation of thrae dimensional
negative crystak. Then they will be filled with super- or sub-saturated water vapor, $d\triangleright$

pending on the position, $\bm{t}d$ we will $n\infty d$ evolution equations which d\’ecribe the diffision
procaes and the surface kinetic process.
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