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This article reviews recent results on the asymptotic behavior of solutions of the
Cauchy problem for Hamilton-Jacobi equations and describe briefly some results ob-
tained in [26].

1 Introduction.
We are concemed with the Cauchy problem for Hamilton-Jacobi equations:

$\{$

$u_{t}+H(x, Du(x,t))$ $=0$ in $\Omega\cross(0, \infty)$ , (1.1)
$u(\cdot, 0)$ $=u_{0}$ in $\Omega$ ,

where $\Omega$ is a domain of $\mathbb{R}^{n},$ $H=H(x,p)$ is a function: $\Omega\cross \mathbb{R}^{n}arrow \mathbb{R}$, which is assumed
to be coercive and convex in the variable $p,$ $u$ : $\Omega\cross[0, \infty$ ) $arrow \mathbb{R}$ is the unknown function,
$u_{t}=\partial u/\partial t,$ $Du=$ $(\partial u/\partial x_{1}, \ldots , \partial u/\partial x_{n})$ , and $u_{0}$ : $\Omegaarrow \mathbb{R}$ is a given initial data. The
function $H$ will be called the Hamiltonian.

In recent years, many researchers have investigated in the large-time behavior of
the solution $u(x, t)$ of (1.1) as $tarrow\infty$ and established convergence results which claim
under appropriate hypotheses that there exist a constant $c$ and a solution $v\in C(\Omega)$ of
$H(x, Du)=c$ in $\Omega$ such that

$u(x, t)+ct-v(x)arrow 0$ locally uniformly for $x\in\Omega$ as $tarrow\infty$ . (1.2)

In this paper, we consider (1.1) with state constraints and establish a convergence result.
Associated with the Cauchy problem (C) is the additive eigenvalue problem for $H$ :

$H(x, Du(x))=a$ in $\Omega$ . (1.3)

Here one seeks for a pair $(u, a)$ of $u\in C(\overline{\Omega})$ and $a\in \mathbb{R}$ such that $u$ is a solution
of (1.3). If $(u, a)$ is such a pair, we call $u$ an additive eigenfunction and $a$ an additive
eigenvatue.
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A simple observation related to this is that, for any $(v, c)\in C(\Omega\cross \mathbb{R})$ , the function
$v(x)-ct$ is a solution of (1.1) if and only if $(v, c)$ is a solution of the additive eigenvalue
problem for $H$ . We call such a function $v(x)-ct$ an asymptotic solution of (1.1) provided
$(v, c)$ is a solution of the additive eigenvalue problem for $H$ .

The following classical theorem solves the additive eigenvalue problem for $H$ which
is periodic in $x$ .

Theorem 1.1 (LIons-Papanicolaoll-Varadhan[24]). Let $\Omega=\mathbb{R}^{n}$ and $H\in C(\Omega\cross \mathbb{R}^{n})$

be coercive and periodic in $x$ . Then for any $p\in \mathbb{R}^{n_{J}}$

$H(x,p+Du)=a$ in $\Omega$

has a solution $(v, c)\in C(\Omega)\cross \mathbb{R}$ and the constant $c$ is unique.

Next we look back on a short history of asymptotic problems. This study goes back
to the works of Kru\v{z}kov [22], Lions [23] and Barles [1], who studied the $ca_{\iota}se$ where
$\Omega=\mathbb{R}^{n}$ and $H=H(p)$ does not depend on $x$ variable.

In the case where $H=H(x,p)$ depends both on $x$ and $p$ , the first general results
were obtained by Namah-Roquejoffre [28] and Fathi $[11, 12]$ :

Theorem 1.2. Let $M$ be a compact manifold without boundary. Let $H$ : $M\cross \mathbb{R}^{n}arrow \mathbb{R}$

be smooth, superlinear and stnctly convex. Then for any $u_{0}\in C(M)$ and a solution $u$

of (1.1), there emsts a solution $(v, c)$ of (1.3) such that the convergence (1.2) holds.

Afterwaxds $Ro$quejoffre [30] and Davini-Siconolfi [9] Improved the above $approa\iota h$ .
By tother approaA based on the $th\infty ry$ of pMial differentlal eqllations $\bm{t}d$ vis-

cosity solutions, this type of results have been obtained by Namah-Roquejoffre [28] and
$Barles- Sollganidis[4]$ .

More recently the large-time asymptotic problem of the same kind has been studied
in the case where $\Omega=\mathbb{R}^{n}$ by Fujita-Ishii-Loreti [14], Barles-Roquejoffie [3], Ishii [18],
and Ichihara-Ishii [16].

On the other htd, there are not mry $res\iota 1lts$ on the $large- t\ddagger mea_{\iota}symptotic$ problem
which treat Hamilton-Jacobi $eq_{11}ations$ with $b_{011}ndary$ conditions. Hamilton-Jacobi
$eq_{l1}ations$ on $n$-dimensional torus can be also considered to be set on $\mathbb{R}^{n}$ with the
periodIc boundary. The periodic boundary conditIon Is $th\tau lS$ covered by the $res\tau 1lts$

$q_{l1}oted$ above. As far $a_{\iota}s$ the author knows, only the periodic $b_{011}ndary$ condition and
the Dirichlet $bound_{\mathfrak{N}}y$ condition are treated for the large-time asymptotic problem.

We here study the $a_{\iota}symptotic$ problem for Hamilton-Jacobi equations with state
constraints or, in other words, with the state constraint $bo\tau idary$ condition:

(C) $\{\begin{array}{ll}u_{t}+H(x, Du(x, t))\leq 0 in \Omega\cross(0, \ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}), (1.4)u_{t}+H(x, Du(x, t))\geq 0 in \overline{\Omega}\cross(0, \infty), (1.5)u(\cdot, 0)=u_{0} on \overline{\Omega}. (1.6)\end{array}$

State constraint problems arise naturally in optimal control, and their dynamic
programming equations have the form $(1.4)-(1.5)$ , where the boundary condition is
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implicit in the fact that inequality (1.5) is required on the closure S2. This formulation,
In terms of PDE, of state constraint problems $ha_{\iota}s$ been introduced by Soner [31]. Pairs
of inequalities such as $(1.4)-(1.5)$ are referred as Hamilton-Jacobi equations with state
constraints or the state constraint problem for Hamilton-Jacobi equations.

The additive eigenvalue problem with state constraints is formulated as follows:

$(E)_{a}$ $\{\begin{array}{ll}H(x, Du(x))\leq a in \Omega, (1.7)H(x, Du(x))\geq a on \overline{\Omega}. (1.8)\end{array}$

The additive eigenvalue problem for $H$ gives the “stationary states” for solutions of
(C) as our main result shows. We call a function $v(x)-ct$ an asymptotic solution of
(C) provided $(v, c)$ is a solution of (1.7) and (1.8).

Our main purpose of this paper is to show that under appropriate hypotheses on $H$

and $\Omega$ any solution $u(x, t)$ of (C) converges to an asymptotic solution $v(x)-ct$ in $C(\Omega\gamma$

as $tarrow\infty$ . That is, as $tarrow\infty$ ,

$u(x, t)+ct-v(x)arrow 0$ uniformly for $x\in\overline{\Omega}$.

2 Assumptions.
Let $A\subset \mathbb{R}^{k},$ $B\subset \mathbb{R}^{l}$ for some $k,$ $l\in N$ and $r>0$ . Write $U(x, r)=\{y\in \mathbb{R}^{n}||x-y|<r\}$ .
We denote by $C(A, B),$ $C^{0,1}(A, B)$ and $LSC(A, B)$ the sets of continuous, Lipschitz
continuous and lower semicontinuous functions on $A$ with values in $B$ , respectively. We
denote by $W^{1,\infty}(A, B)$ the set of functions on $A$ with values in $B$ which is differentiable
and the distributional first derivatives are bounded almost everywhere on $A$ . When
the set $B$ is clear by the context, we may omit writing $B$ in the above notation: for
instance, we may write $C(A)$ for $C(A, B)$ . We also use the symbol $AC([a, b], B)$ to
denot$e$ the set of absolutely continuous fimctions on $[a, b]$ with values in $B$ .

We call a function $m$ : $[0, \infty$ ) $arrow[0, \infty$ ) a modulus if it is continuous an$d$ nonde-
creasing on $[0, \infty$ ) and if $m(O)=0$.

We make the following assumptions on the Hamiltonian $H$ , the initial data $\tau\ovalbox{\tt\small REJECT}$ and
the domain $\Omega$ :

(H1) $H\in C(\overline{\Omega}\cross \mathbb{R}^{n})$ .

(H2) The function $parrow H(x,p)$ is strict convex for each $x\in\overline{\Omega}$ .

(H3) The function $H$ is coercive, i.e.

$\lim_{farrow\infty}\inf\{H(x,p)|x\in\overline{\Omega},p\in \mathbb{R}^{n}\backslash U(0,r)\}=\infty$ .

(u1) $u_{0}\in C(\overline{\Omega})\cap W^{1,\infty}(\Omega)$ .
(B1) The domain $\Omega$ is bounded and a H\"older domain with exponent $\alpha>2/3$ .
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Remark 2.1. In fact, we can remove the restriction that $u_{0}\in W^{1,\infty}(\Omega)$ . See Section 7
in [26].

Remark 2.2. An equivalent formulation of (B1) is that there exists a constant $2/3<$
$\alpha\leq 1$ such that for any $z\in\partial\Omega$ and for some $\eta_{z}\in \mathbb{R}^{n}$ and $b_{z}>0$ ,

$\pi_{\cap U(z,b_{*})}\bigcup_{x\in}\bigcup_{0<\ell<b_{*}}x+s^{\alpha_{7}}lz\cdot$

3 Solutions of (C).
Now we give a comparison result for (C).

Theorem 3.1 (Theorem 2.1 in [26]). Let $T>0$ , and let $u\in C(\overline{\Omega}\cross[o, \eta)$ and $v\in$

$LSC(\overline{\Omega}\cross[0, T])$ satisfy $v_{\ell}+H(x, Du)\leq 0$ in $\Omega\cross(0, T)$ and $v_{t}+H(x, Dv)\geq 0$ on
$\overline{\Omega}\cross(0, T)$ in the vzscosity sense, respectively. Then, if $u\leq v$ on $\overline{\Omega}\cross\{0\},$ $u\leq v$ on
$\overline{\Omega}\cross[0, T)$ .

For a proof, we refer to the reader [26, Section 4]. Uniqueness of solutIons of (C)
follows from the above theorem. It Is worth pointing out that in the literature on
(C) or its stationary version, it is usually assumed for uniqueness of solutions that
$\Omega$ is a Lipschitz domain. Here we take advantage of assumption (H3) to $re$duce the
standard Lipschitz regularity of $\Omega$ to the H\"older regularity (B1), which seems to be
a new observation. This new generality of domains $\Omega$ is obtained with help of the
coercivity assumption (H3) on $H$ .

We consider the flmction $u$ : S72 $\cross[0, \infty$ ) $arrow R$ defined by

$u(x, t)$ $:= \inf\{\int_{0}^{t}L(\gamma(s),\dot{\gamma}(s))ds+u_{0}(\gamma(0))|\gamma\in C(x;t)\}$, (3.1)

where $L$ is the Lagrangian of $H,$ $i.e,$ $L(x,p);= \sup_{\xi\in R^{n}}\{p\cdot\xi-H(x,\xi)\}$ and $C(x;t)$

denotes the set of all trajectories $\gamma\in AC([0, t],\Omega\gamma$ such that $\gamma(t)=x$ .
The regularity and continuity of $u$ is obtained by our next theorem.

Theorem 3.2. Let $u$ be the junction defined by (3.1). Then

(a) $u\in C^{0,1}(\Omega\cross[0, \infty))\cap C(\overline{\Omega}\cross[0, \infty))$ ;

(b) There is a constant $C>0such$ that $|Du(x, t)|+|u_{t}(x, t)|\leq Ca.e$. $(x, t)\in$

$\Omega\cross(0, \infty)$ ;

(c) $u$ is $a$ (unique) solution of (C).
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4 Additive eigenvalue problems.
We define the constant $c_{H}$ by

$c_{H}$ $:= \inf${ $a\in \mathbb{R}|(1.7)$ has a solution}, (4.1)

and consider the following inequalities:

$H(x, Du(x))\leq c_{H}$ in $\Omega$ , (4.2)

$H(x, Du(x))\geq c_{H}$ on $\overline{\Omega}$. (4.3)

The following theorem ensures the existence of the additive eigenvalue problem and
the uniqueness of the constant.

Theorem 4.1. Problem $(E)_{a}$ has a solution $v\in C(\Omega\gamma$ if and only if $a=c_{H}$ .

Using Theorem 3.1 and Theorem 4.1, we see that the functim $u(x, t)+c_{H}t$ is bounded
on $\overline{\Omega}\cross[0, \infty$), where $u$ is the solution of (C).

Proposition 4.2. There $e$ vists a constant $C>0$ such that

$|u(x, t)+c_{H}t|\leq C$ on $5\cross[0, \infty$ ).

We assume that $c_{H}=0$ by replacing $H$ by $H-c_{H}$ .
The following lemma is important for our proof of Theorem 5.2.

Lemma 4.3 (Theorem 8.1 in [26]). Let $x\in\overline{\Omega}$ and $\phi\in C(\overline{\Omega})$ be a viscosity solution
of $(E)_{0}$ . Then there exists a curve $\gamma\in C((-\infty, 0$], $\overline{\Omega}$) such that $\gamma(0)=x$ and for any
$[a, b]\subset(-\infty, 0]_{f}$

$\gamma\in AC([a, b],\overline{\Omega})$ and $\int_{a}^{b}L(\gamma(s),\dot{\gamma}(s))+c_{H}ds=\phi(\gamma(b))-\phi(\gamma(a))$ . (4.4)

Following $[30, 18]$ , we call curves satisfying (4.4) extremal curves for $\phi$ and here-
inafter we write $\mathcal{E}(\phi)$ to denote the set of all extremal curves for $\phi$ .

5 Convergence.
Let $u(x, t)$ be the unique viscosity solution of (C).

Lemma 5.1 (Proposition 8.2 in [26]). There enist a constant $\delta\in(0,1)$ and a modulus
$\omega$ for which if $u_{0}\in C(\overline{\Omega}),$ $\phi$ is a solution of $(E)_{0},$ $\gamma\in \mathcal{E}(\phi),$ $T>\tau\geq 0$ $and\mapsto^{\tau-\tau}\leq\delta$,
then

-. $( \gamma(0), T)-u(\gamma(-T), \tau)\leq\phi(\gamma(0))-\phi(\gamma(-T))+\frac{\tau T}{T-\tau}\omega(\frac{\tau}{T-\tau})$ .
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Lemma 5.1 is a variant of [18, Proposition 7.1]. We remark that the “strict” convex-
ity of $H$ is only needed in Lemma 5.1 in our approach to Theorem 5.2. We here note
that it is known that there are some examples of Hamilton-Jacobi equations to show
that the HanliltonIan is not strict convex but convex and the convergence (1.2) is not
true. We refer the reader to [1, 15, 4, 5, 19].

We state our main theorem:

Theorem 5.2 (Theorem 2.2 in [26]). For any $u_{0}$ there exists a solution $(v, c)\in C(\overline{\Omega})\cross \mathbb{R}$

of the additive eigenvalue problem for $H$ such that if $u\in C(\overline{\Omega}\cross[0, \infty))$ is the viscosity
solution of (C), then, as $tarrow\infty_{f}$

$u(x, t)+ct-v(x)arrow 0$ uniformly on St.
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