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Asymptotic solutions of Hamilton-Jacobi equations
with state constraints
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‘This article reviews recent results on the asymptotic behavior of solutions of the
Cauchy problem for Hamilton-Jacobi equations and describe briefly some results ob-
tained in [26].

1 Intro_duction.

We are concerned with the Cauchy problem for Hamilton-Jacobi equations:

[ us+ H(z,Du(z,t)) = 0 in Q x (0,00), :
{ u(,0) = uw i 9 (1)

where (2 is a domain of R*, H = H(z,p) is a function:  x R® — R, which is assumed
to be coercive and convex in the variable p, u : Q x [0, 00) — R is the unknown function,
ug = Ou/0t, Du = (8u/Bz1,...,0u/dz,), and up : 2 — R is a given initial data. The
function H will be called the Hamiltonian.

In recent years, many researchers have investigated in the large-time behavior of
the solution u(z,t) of (1.1) as t — oo and established convergence results which claim
under appropriate hypotheses that there exist a constant ¢ and a solution v € C(R2) of
H(z, Du) = c in Q such that

u(z,t) +ct —v(z) — 0 locally uniformly for z € §2 as t — oo. (1.2)

In this paper, we consider (1.1) with state constraints and establish a convergence result.
Associated with the Cauchy problem (C) is the additive eigenvalue problem for H:

H(z,Du(z)) =a in Q. - (1.3)

Here one seeks for a pair (u,a) of u € C(2) and a € R such that u is a solution
of (1.3). If (u,a) is such a pair, we call u an additive eigenfunction and a an additive

eigenvalue.
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A simple observation related to this is that, for any (v,c) € C(Q2 x R), the function
v(z) — ct is a solution of (1.1) if and only if (v, ¢) is a solution of the additive eigenvalue
problem for H. We call such a function v(z)—ct an asymptotic solution of (1.1) provided
(v, ¢) is a solution of the additive eigenvalue problem for H.

The following classical theorem solves the additive eigenvalue problem for H which
is periodic in z. '

Theorem 1.1 (Lions-Papanicolaou-Varadhan [24]). Let Q@ = R” and H € C(2 x R")
be coercive and periodic in x. Then for any p € R,

H(z,p+ Du)=a inQ
has a solution (v,c) € C(R?) x R and the constant c is unique.

Next we look back on a short history of asymptotic problems. This study goes back
to the works of Kruzkov [22], Lions [23] and Barles {1], who studied the case where
Q2 =R" and H = H(p) does not depend on z variable.

In the case where H = H(z,p) depends both on z and p, the first general results

were obtained by Namah-Roquejoffre [28] and Fathi [11, 12]:

Theorem 1.2. Let M be a compact manifold without boundary. Let H : M x R® - R
be smooth, superlinear and strictly conver. Then for any ug € C(M) and a solution u
of (1.1), there exists a solution (v,c) of (1.3) such that the convergence (1.2) holds.

Afterwards Roquejoffre [30] and Davini-Siconolfi [9] improved the above approach.

By another approach based on the theory of partial differential equations and vis-
cosity solutions, this type of results have been obtained by Namah-Roquejoffre [28] and
Barles-Souganidis [4].

More recently the large-time asymptotic problem of the same kind has been studied
in the case where Q = R™ by Fujita-Ishii-Loreti [14], Barles-Roquejofire [3], Ishii [18],
and Ichihara-Ishii [16].

On the other hand, there are not many results on the large-time asymptotic problem
which treat Hamilton-Jacobi equations with boundary conditions. Hamilton-Jacobi
equations on n-dimensional torus can be also considered to be set on R™ with the
periodic boundary. The periodic boundary condition is thus covered by the results
quoted above. As far as the author knows, only the periodic boundary condition and
the Dirichlet boundary condition are treated for the large-time asymptotic problem.

We here study the asymptotic problem for Hamilton-Jacobi equations with state
constraints or, in other words, with the state constraint boundary condition:

u + H(z, Du(z,t)) <0  in Q x (0, 00), - (1.4)
(C) {ut + H(z, Du(z,t)) >0 in Q x (0, 00), (1.5)
u(-,0) = ug on Q. (1.6)

State constraint problems arise naturally in optimal control, and their dynamic -
programming equations have the form (1.4)-(1.5), where the boundary condition is
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implicit in the fact that inequality (1.5) is required on the closure Q2. This formulation,
in terms of PDE, of state constraint problems has been introduced by Soner [31]. Pairs -
of inequalities such as (1.4)—(1.5) are referred as Hamilton-Jacobi equations with state
constraints or the state constraint problem for Hamilton-Jacobi equations.

The additive eigenvalue problem with state constraints is formulated as follows:

{ H(z,Du(z)) <a in{, (1.7)

(E)a H(z,Du(z)) >a on{l (1.8) -

The additive eigenvalue problem for H gives the “stationary states” for solutions of
(C) as our main result shows. We call a function v(z) — ct an asymptotic solution of

(C) provided (v, ¢) is a solution of (1.7) and (1.8).
Our main purpose of this paper is to show that under appropriate hypotheses on H

and Q any solution u(z, t) of (C) converges to an asymptotic solution v(m) ct in C(2)
as t — oo. That is, as t — o0,

u(z,t) + ct —v(z) = 0 uniformly for z € Q.

2 Assumptions.

Let A C R¥, B c R! for some k,! € Nandr > 0. Write U(z,r) = {y € R | |z—y| < r}.
We denote by C(A, B), C‘”(A B) and LSC(A, B) the sets of continuous, Lipschitz
continuous and lower semicontinuous functions on A with values in B, respectively. We
denote by W1 (A, B) the set of functions on A with values in B which is differentiable
and the distributional first derivatives are bounded almost everywhere on A. When
the set B is clear by the context, we may omit writing B in the above notation: for
instance, we may write C(A) for C(A4, B). We also use the symbol AC([a,b], B) to
denote the set of absolutely continuous functions on [a, b] with values in B.

We call a function m : [0,00) — [0,00) a modulus if it is continuous and nonde-

creasing on [0, c0) and if m(0) = 0.
We make the following assumptions on the Hamiltonian H, the initial data uo and

the domain :

(H1) H € C(Q2 x R?).

(H2) The function p — H(z,p) is strict convex for each z e .
(H3) The function H is coercive, i.e.

rl_i_'rgoinf{H(m,p) lzeQ,pe R*\U(0,7)} = oo.

(ul) up € C(Q) N Wh=(R).
(B1) The domain Q2 is bounded and a Holder domain with exponent a > 2/3.
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Remark 2.1. In fact, we can remove the restriction that ug € W1°(2). See Section 7
in {26].

Remark 2.2. An equivalent formulation of (B1) is that there exists a constant 2/3 <
a < 1 such that for any 2 € 82 and for some 1, € R™ and b, > 0,

U U U(z + s%n;, sb;) C Q.

z€0NU(2,b;) 0<8<bs

3 Solutions of (C).

Now we give a comparison result for (C).

Theorem 3.1 (Theorem 2.1 in [26]). Let T' > 0, and let u € C(2 x [0,T)) and v €
LSC(Q x [0,T]) satisfy ws + H(z,Du) < 0 in Q x (0,T) and v; + H(z, Dv) > 0 on
Q x (0,7T) in the viscosity sense, respectively. Then, if u < v on Q x {0}, u < v on
Qx[0,7).

For a proof, we refer to the reader [26, Section 4]. Uniqueness of solutions of (C)
follows from the above theorem. It is worth pointing out that in the literature on
(C) or its stationary version, it is usually assumed for uniqueness of solutions that
2 is a Lipschitz domain. Here we take advantage of assumption (H3) to reduce the

standard Lipschitz regularity of Q to the Holder regularity (B1), which seems to be
. a new observation. This new generality of domains €2 is obtained with help of the

coercivity assumption (H3) on H.
We consider the function u : 2 x [0, 00) — R defined by

ulayt) o= int{ L(v(s), 4(8)) ds + uo(1(0)) | 7 € C(z:8)}, (3.1)

where L is the Lagrangian of H, i.e, L(z,p) := supeegn{p-{ — H (x, £)} and C(z;t)
denotes the set of all trajectories v € AC([0,t], Q) such that v(t) = z.
The regularity and continuity of u is obtained by our next theorem.

Theorem 3.2. Let u be the function defined by (3.1). Then
(8) u e C™(Q x [0,00)) NC(Q x [0,00));

(b) There is a constant C > 0 such that |Du(z,t)| + |w(z,t)] < C a.e. (z,t) €
Q x (0,00);

(¢) u is a (unique) solution of (C).
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4 Additive eigenvalue problems.
We define the constant cy by |
cy = inf{a € R | (1.7) has a solution}, (4.1)
and consider the follbwing inequalities:
H(z,Du(z)) < cy inQ, (4.2)

H(z,Du(z)) > cy on{l. | (4.3)

The following theorem ensures the existence of the additive eigenvalue problem and
the uniqueness of the constant.

Theorem 4.1. Problem (E), has a solution v € C(Q) if and only if a = cq.

Using Theorem 3.1 and Theorem 4.1, we see that the function u(z, t)+cyt is bounded
on ) x [0, 00), where u is the solution of (C).

Proposition 4.2. There ezists a constant C > 0 such that
lu(z,t) +cut| < C  onQ x [0, 00).

We assume that cg = 0 by replacing H by H — cy.
The following lemma is important for our proof of Theorem 5.2.

Lemma 4.3 (Theorem 8.1 in [26]). Let z € Q and ¢ € C(Q) be a viscosity solution
of (E)o. Then there exists a curve y € C((—00,0],82) such that ¥(0) = z and for any
[a,b] C (—o0,0],

b
v € AC([a,],Q) and / L(v(s),%(s)) + cr ds = (v(b)) — $(7(a))-  (44)

Following [30, 18], we call curves satisfying (4.4) eztremal curves for ¢ and here-
inafter we write £(¢) to denote the set of all extremal curves for ¢.

5 Convergence.

Let u(z,t) be the unique viscosity solution of (C).

Lemma 5.1 (Proposition 8.2 in [26]). There ezxist a constant § € (0,1) and a modulus
w for which if uo € C(Q), ¢ is a solution of (E)o, vy € £(¢), T > 7 >0 and 5= < 4,
then

w(¥(0),T) = u(V(~T),7) < $(1(0)) — S(H(~T) + ().
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Lemma 5.1 is a variant of [18, Proposition 7.1]. We remark that the “strict” convex-
ity of H is only needed in Lemma 5.1 in our approach to Theorem 5.2. We here note
that it is known that there are some examples of Hamilton-Jacobi equations to show
that the Hamiltonian is not strict convex but convex and the convergence (1.2) is not
true. We refer the reader to (1, 15, 4, 5, 19].

We state our main theorem:

Theorem 5.2 (Theorem 2.2 in [26]). For anyuq there ezists a solution (v,c) € C(Q) xR
of the additive eigenvalue problem for H such that if u € C(§2 X [0, 00)) is the viscosity
solution of (C), then, ast — oo,

u(z,t) + ct — v(z) = 0 uniformly on Q.
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