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Existence and Nonexistence of the Global Solutions
for a Reaction-Diffusion System
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1. INTRODUCTION

We consider the Cauchy problem for the reaction-diffusion system:

(1.1) u — Au = |z|7* uPro®, re RN, t>0,
(1.2) v — Av = |z|7?uP2u®, re RY, t>0,
u(z,0) = uo(z) > 0,# 0, r € RV,
v(z,0) = vo(z) > 0,# 0, rze€ R,

where p;, ¢; 2 0,0; 20 (j = 1,2), and py,q # 1.

Our aim is to find conditions on the exponents a;, p;, ¢; (j = 1,2)
for the existence and the nonexistence of global solutions to the system
(1.1)—(1.2).

At first we focus on the single equation : u; —Au = uP. Let N be the
space dimension. In [5], Fujita proved the existence of global solutions
to the equation if p > 1 + 2/N for exponential decaying small initial
data. The author also proved the nonexistence of the global solutions
if p <1+ 2/N. In the critial case, p = 1 + 2/N, the nonexistence is
proved in Hayakawa [6], Kobayashi, Sirao and Tanaka [7] and Weissler
[11]. On the other hand, in. the sublinear case, i.e. 0 < p < 1, it is
shown by Aguirre and Escobedo [1] that every solution for the eqﬁation
exists globally in time.

There are various extensions of these results. For example, in [10]
Pinsky showed the existence and nonexistence for the equation: u; —
Au = a(z)uP, where p > 1 and a(z) behaves like |z|™ for large |z|.
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Next, we introduce the extended results to the system of the equa-

tions:

us — Au = Fi(u,v),
vy — Av = Fy(u, v).

Escobedo and Herrero [3] studied the system with the nonlinear teams
F, = v? and F; = u? for nonnegative, continuous and bounded initial
data, where p, ¢ > 0. The situation is divided into three cases: (i)
pq > 1 and (max{p, ¢}+1)/(pg—1) < N/2, (ii) pg > 1 and (max{p, ¢}+
1)/(pg — 1) > N/2, (iii) pg < 1. When pg > 1 and (max{p,q} +
1)/(pg — 1) < N/2, for small initial data there exist global solutions.
For large data, there exist blowing up solutions. When pg > 1 and
(max{p, ¢} +1)/(pg — 1) > N/2, there exist no global solutions. When
pq < 1, every solution exists globally in time.

Now, we introduce two extenteded results of [3]. One is the result
for the system with nonlinear teams F; = |z|°'v? and Fy = |z|”?u?
(p,g>1,0< érj < N(pj +g; — 1), j = 1,2). In [9], Mochizuki and
Huang showed the existence and nonexistence result and the assymp-
totic behavior of the solution. ;

Another is for the system with F; = uPiv%, where pj,q; > 0, 0 <
P+ ¢ < p2+ ¢qo for each 57 = 1,2. In [4], the situation is divided
into two cases, 0 < p; < 1 and p; > 1. In the former case, growth
of the solutions by the interaction between two equation is stronger
than self-growth of the solutions. In the latter case, self-growth of the
solutions is stronger. These are understood from the following results:
Puta = (g1 —q2+1)/{p2as —(1-p1)(1— @)}, B = (» —p2+1)/{p2q: —
(1-p1)(1 - )}

(i) Let py < 1. If 0 < max{ca, 8} < N/2, then global solution exists for
small initial data. If max{c, 8} < 0, then every solution exists globally
in time.

(ii) Let p1 > 1. If p; + ¢ > 1+ 2/N, then global solution exists for
small initial data.

In (i), the condition for blowing up of the solutions consists of the ex-
ponents in both two equations. On the other hand, in (ii) the condition
for consists of only the exponents in one equation.
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We study (1.1)—(1.2) as an extention of these systems. Since our
problem includes the sublinear case, p; or g; < 1, the contraction ar-
gument does not work to showing the global existence. In this paper,
we show it by iteration argument in weighted L*° function space.

To show nonexistence theorems, the iteration argument of [4] is of-
ten used for reaction-diffusion systems. However, the method does not
seem applicable for our problem because the nonlinear terms have the
variable coefficients |z|°/. In this paper, we improve the argument in
[9] and apply it to our problem. The argument in [9] is to transform the
system of PDEs into the ordinary differential inequalities. In our prob-
lem, multiplying the equation by negative power of unknown function
makes the transformation possible.

REMARK 1.1. In (3], [4], [9], [6], [7], [10] and [11], the authors show
that the solution blows up in critical case. This critical blow-up also

occurs in our system (1.1)-(1.2).

2. MAIN RESULTS

For simplicity, let

_ (o2 +2)+ (1 —g)(01+2)

(21) 15— ) S m e
\ 2{p2qs — (1 —p1)(1 —q2)} ’

(. qo+(1—gq)oy

5 - ’
Y pe — (L=p1)(L—g2)
5, = 2% + (1 —p1)os

L - Q-1 —q)

For a € R, we define the function spaces:

(2.2)

SN\

I* = {w € C(RY); w(z) > 0, limsup |z|°w(z) < oo},

|2|—o0

L% = {w is measurable function on R";

w(z) 2 0, [[w]leo,a = || ()" w(z)lleo < o0},
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where (z) = (1 + |z[2)"/?. We also define
Er = {(u,v); [0,T] — L x Lg;, ||(u,v)|lEr < o0},
where

N 0)lize = sup ([u®lloos, + [0() looss)-
t€[0,T)

Now, we state our main results. We assume that the initial data
(UO,'U()) € 161 X _[52.

THEOREM 2.1. Letp; <1, g2 < 1.

(i) If max(a,B8) > N/2, then no nontrivial global solutions of (1.1)-
(1.2) exist.

(ii) If 0 < max(e, B) < N/2, then there exist global solutions of (1.1)-
(1.2) for small initial data, and there exist no global solutions for large
initial data.

(iii) If max(c, B) < 0, then every solution of (1.1)-(1.2) exists globally
n time.

THEOREM 2.2. Letp;, > 1, g3 < 1.
(i) Ifa> N/2 orpi +q <1+ (2+0,)/N, then no nontrivial global
solutions of (1.1)-(1.2) exist.
(i) If « < N/2 and py +q1 > 1+ (2 + 01)/N, then there exist global
solutions of (1.1)—(1.2) for small initial data, and there exist no global
solutions for large initial data.

THEOREM 2.3. Letp; > 1, g2 > 1.
Q) Ifpr+¢ <14+ (2+01)/N orps+ g <1+ (2+ 02)/N, then no
nontrivial global solutions of (1.1)-(1.2) exist.
(i) If p1+aq1 > 1+ (2401)/N and pa+q2 > 1+(2+02)/N, then there
exist global solutions of (1.1)-(1.2) for small initial data, and there
exist no global solutions for large initial data.

We can also rewrite the theorems into the way in Escobedo-Levine
[4].

COROLLARY 2.4. Assume that
+@a—1 _ pa+g—1
2. <
( 3) o1+ 2 - o2 + 2

)
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and let p; < 1, qu # 1.
(1) If max(a,3) > N/2, then there exist no global solutions for large

initial data.

(ii) If 0 < max(a, B) < N/2, then there exist global solutions for small
initial data, and there ezist no global solutions for large initial data.
(iii) If max(a, B) < 0, every solutions exists globally in time.

COROLLARY 2.5. Assume (2.3), and let p; > 1, g2 # 1.
() If p1+q1 < 1+ (2+401)/N, then no nontrivial global solutions exist.
(i) If p1+q1 > 14+ (2+01)/N, then no global solutions exist for large
data. ' :

3. PROOF OF THEOREMS 2.1-2.3 : GLOBAL EXISTENCE
First, we show the local existence of classical solutions of (1.1)—(1.2).

THEOREM 3.1. Let §; and &, be defined in (2.2). Assume that (up, o) €
I% x I%2. Then there exist classical solutions (u(t),v(t)) € Er for the
system (1.1)—(1.2) for some T > 0.

PROOF. See Theorem 3.1 in [2]. | g

Next, we introduce a comparison theorem and the existence of super-

solutions.

COMPARISON PRINCIPLE

PROPOSITION 3.2. Let f(u,v) and g(u,v) be strictly monotone in-
creasing in u and v for u, v > 0. Assume that 4, U, u, v are non-

negative and satisfy,

(ﬂt — Ag > |z|° f (1, D),
b, — AT > o2 (5 & :
Ut vz kcl g(u” ’U) in RN X (O, T),
% — Au < |z|™ f(y, 2),

\yt - A..‘Q S |x|029(_y’ .’Q)a

;

) ﬂ(x,O)—y(w,O)ZO,¢O, xGRN.

| 9(2,0) — (z,0) 2 0,#0.

Then we have 4(z,t) > uw(z,t) and o(z,t) > v(z,t) on RN x (0,7).
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PROOF. See Proposition 4.1 in [2]. O
EXISTENCE OF SUPER-SOLUTIONS

PROPOSITION 3.3. (i) Letp; > 1, gg > 1 orpagn —(1—p1)(1—g2) > 0,
and let p1 + q1 > 1, ps + g2 > 1. Assume that one of the following
conditions is satisfied:

(A py@e>1, p+q>1+2+01)/N,p2+q>1+(2+02)/N.
(BYpr>1>q, ;+aq >1+(2+01)/N, a < N/2.

C)p1,2 <1, p2q1 —(1—p1)(1 —q2) >0, o, 8 < N/2.

Then there exist Cy ,Cs, ay, B1 > 0, tg > 1 such that

(31) | 'L_t(.’l/‘, t) = 01 (t + to)al—% exp (—Z(—t%) y
. 2
(32) 17(33, t) = C2(t + tp)ﬁl_% exp (—Z-(_t%t—o_)-)

are super-solutions of (1.1)—(1.2).

(i) Letpy > 1,q2 > 1 orpaqi —(1—p1)(1—g2) > 0. Andletpy+q1 > 1,
D2 + g2 < 1. Assume that one of the following conditions is satisfied:
(D) P1>1>q,p1+q1 > 1+(2+0’1)/N, o <N/2,

(B) pr,¢2 <1, poqn — (1 = p1)(1 — q2) >0, o, B < N/2.

Then there exist Cy ,Cq, oy, 51 >0, to > 1, a > 0 such that

, 2
(3.3) iz, t) = C1(t + t0)°“"€rr exp (-—-4@'—?:—55) )
(3.4) U(z,t) = Co(t + to)ﬁl'%—a exp (—ZE%IE%-)—) ,

are super-solutions of (1.1)<(1.2).
(49) Let p1 < 1, ¢ < 1 and pogi — (1 — p1)(1 — ¢2) < 0. Then there
exist C; ,Cy, k, a > 0 such th_at

(3.5) a(z, t).= Cy ()~ exp (kt),
(3.6) o(z,t) = Cp(x) 22 exp (akt),

are super-solutions of (1.1)—(1.2).
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Proof of Proposition 3.3 (i) Put

N xr 2
(38.7) U(z,t) = C1(t +10)™ ™7 exp (‘Z@H?J) ’
(3.8) | o(z,t) = Co(t + to)ﬂl‘%" exp (—Z@'—%) ,

where C; ,Ca, a1, B1 > 0, to > 1. We can see that (@, o) are global
super-solutions for small C;, C; > 0 and large ¢, > 1, provided that

(3.9)
{a1 —N/2—-1>p(a1 — N/2)+ q (61 — N/2) — 01/2, and

,31 — N/2 —-1> p2(0!1 - N/2) <+ qz(ﬂl - N/2) - 02/2,
which (3.9) is equivalent to

(310) (p1 — 1)0!1 + Q161 < (p1 +q — 1)N/2 — (0'1 + 2)/2, and
(3.11) P20y + (Qz - 1),31 < (pz + q2 — 1)N/2 — (0‘2 -+ 2)/2

Now, we shall show the existence of a;, 5; > 0 on the (¢, §;)-plane in’
each case of Proposition 3.3. |

Case (A):p1,¢2 > 1, ;+a@1 > 1+(2401)/N,p2+q2 > 14+ (2+03)/N.
Since the right hand sides of (3.10) and (3.11) are positive, we can take
small a;, B; > 0 satisfying (3.10) and (3.11).

Case B):p1>1>¢,pi+@ >1+(2+01)/N, a < N/2.

We remark that the intersection of (3.10) and (3.11) is (e4,61) =
(N/2 — a,N/2 — 3). From the assumption, we can see that the in-
tersection lies above the a;-axis and that the boundary of (3.10) lies
above the origin. For €1,¢5 > 0, put (a1, 81) = (e1, {(p1 + @1 —1)N/2 -
(01 + 2)/2} /g1 + €2). Then there exist small constants €1,e2 > 0 such
that (o, 51) satisfy (3.10) and (3.11).

Case (C): p1,¢2 <1, poqn — (1 —=p1)(1 —q2) >0, o, B < NJ/2.
From the assumption, we can see that the intersection lies in the first
quadrant. Since p;,¢2 < 1 and pag1 — (1 — p1)(1 — ¢1) > 0, we have
(1 —p1)/a1 < p2/(1 — ¢2), that is, the angular coefficient of (3.11) is
larger than that of (3.10). Hence, there exist small constants 1,62 > 0
such that (01,6:1) = (N/2 — a — &1, N/2 — B — &) satisfy (3.10) and
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(3.11). O

Proof of Proposition 3.3 (ii) Case (D): p1 > 1 > ¢, ;1 + @1 >
14+ (2+01)/N,a < N/2. -
Put a > 0 such that

. (l-pl)N+(01+2) D2
(3.12) max {0, N <a<g—— -

In fact, since g2 < 1, pagi — (1 —p1)(1 — ¢2) > 0 and o < N/2, we have

p2_ (1=pi)N+ (01 +2)
1—¢q aN

- Ny e = N1 - )1 —p) = (1~ @2)(o1 + D}
_ 2, — (1 —p)(1 - @)} {_1\[ _ (1—g2)(o1+2) }
Ng:i(1— g2) 2 2(paqs — (1 —p1)(1 —q))
2€{pep —(1—p1)A— @)} (N _
2 Nar(1 — g3) (? a)

> 0.

Therefore we can take a > 0 satysfying (3.12). Let

(313) ﬁ(z’t) = Cl(t + to)al_% exXp ( 4(t + t0)>
2
(314)  8(z,t) = Calt + o)~ 7 exp ( 4(:Iilto )

where C; ,Ca, a1, 1 > 0, to > 1. We can see that (i,7) are global
super-solutions provided that

(3.15)
o3 — N/2—1>pi(aqa — N/2) + (b1 — Na/2) — 01/2, and
ﬂl —_ Na/2—— 1> pz(d!l — N/2) +Q2(ﬁ1 — Na/2) — 0'2/2,

for small C;,C> > 0 and large tp > 1. And (3.15) is equivalent to

(3.16) (p1— Doy + @b < (pr+aq — 1)N/2 — (01 +2)/2, and
(817)  pecy + (g2 — 1)1 < (P2 +age — a)N/2 — (02 + 2)/2.
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We remark that the intersection of

(p1 — Dou + @11 = (pr + aqs — 1)N/2 = (01 + 2)/2, and

p2oy + (g2 — 1)B1 = (p2 + ag2 — a)N/2 — (02 + 2)/2.
is (a1,B1) = (N/2 — o, Na/2 — ). From the assumption a < N/2,
we see that the intersection lies above the a;-axis. From a > {(1 —
p1)N + (03 + 2)}/1 N, we can easily see that the boundary of (3.16)

lies above the origin. Hence, we can prove the existence of (a1, ;)
satisfying (3.16) and (3.17) in the same way as in Case (B).

Case (E): p1,¢2 < 1, po1 — (1 = p1)(1 —2) > 0, &, B8 < N/2
Putting a > 0 satisfying

(3.18) ma,x{l—'—zll— 2—@}<a< Pz_
1—-¢qo

qQ1 N

we can prove in the same way as in Case (C). In fact, since g2 < 1,
p2q1 — (1 — p1)(1 — g2) > 0 and a < N/2, we have
P2 3,3_
1-— d2 N
_peN{pear — (1 = p1)(1 = @)} = (1 = p1)pa(01 +2) = (1 = p1)(1 ~ @) (02 + 2)
(1—-g){peqs — (1 —p1)(1 — @2)}
_ p2N{pagi — (1 —p1)(1 — @)} — (1 = p1)p2(01 + 2) — P2 (02 + 2)
(1 —g@){r2q1 — (1 —p1)(1 - g2)}

paqi(02 +2) — (1 —p1)(1 — g2)(02 +2) -

(1—-@){peen — (1 —m)1 —a2)}

2p2N N o9 + 2
T 1-g (E—Q) N 1-¢
> 0, |

-+

and since p1, g2 < 1, p2gr — (1 —p1)(1 — g2) > 0, we have (1 —p1)/q1 <
p2/(1 — gz). Therefore, we can take a > 0 satisfying (3.18). O

Proof of Proposition 3.3 (iii) Let a = ?1-*2—*;—2. Put

(3.19) a(z,t) = Ci{z) " exp (kt),

(3.20) 5(x, t) = Co(z) 2 exp (akt) ,
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where C; ,Cs, k > 0. We can see that (%, ¥) are global super-solutions
for large k > 0.

We are now in a position to prove the global existence theorems.

Proof of Theorems 2.1(i), 2.2 and 2.3. Let 7™ be the maximal
existence time of the classical solutions for (1.1)—(1.2). From the local
existence theorem in Section 3, it is clear that T* # 0. Assume T* < .
If the initial data (ug, o) are sufficiently small, then the solutions (u, v)
are estimated above by the super-solutions in Proposition 3.3. Using
Theorem 3.1, we can extend the solutions (u,v) with new initial data
(w(T™*),v(T*)) to time T** > T*. This contradicts the maximality of
T*. Hence T = o0. O

Proof of Theorem 2.1 (ii). The constants C; and C> > 0 in

Proposition 3.3 (iii) have no restriction. Hence, the argument as above
works for arbitrary initial data in 1% x I%. O

4. PRELIMINARIES TO NONEXISTENCE THEOREMS

In this section, we prepare several estimates for the solutions. To
show them, we introduce the system of integral equations associated
to (1.1) and (1.2):

(4.1) u(t) = S(t)up + /:S(t — )| - [Ttu(s)Pv(s)"ds,
(4.2) v(t) = S(t)vo + /ot S(t — s)| - |72u(s)?v(s)%ds,

where

, &P (— lz = y|2) f(y)dy.

S@®)1() = rty ¥ [ =

R

The following lemma is a well-known estimate for the heat equations.
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LEMMA 4.1. Let u and v be solutions of the system (1.1) and (1.2).
There exists C > 0 such that

. 2

w(z,t) > C(1+1)"7 exp (_!%_) , (t > 0),
2

v(z,t) > C(1+) % exp (—'—"”;'7) , (t>0).

Moreover, we can add logarithmic growth to the bounds in the crit-
ical case. |

LEMMA 4.2. ([4]) Let u and v be solutions of the system (1.1) and
(1.2). Assume that | |

u(z,t) > Ci(1 +t)_¥ exp (—-'Etﬁ) , (t > 0),
v(z,t) > Co(1 +t)™ exp (- Caiﬂz) , (t > to),

where Cy, Cy, C3>0,t >0 and m € R. If m and o, satisfy

N 2 N
_..__...pl + maq + o1 + =——, 01 > max(—2, —N), .
2 2 2
then there exist constants Cy, Cs > 0 and t; > to such that
2\
w(z,t) > Ca(l+ 1)~ 7 log(1 + t) exp (—-gsltil) : (t > t1).
PROOF. See Proposition 1 in [4]. O

The following two lemmas are for the sublinear case.
LEMMA 4.3. Let 0 < ¢2 < 1, 02 > max(—2, —N) and define
~ oo+2
(z, t) = CtT=w (S(t)uo(z)) T .

for 5, e>0.If C and € are sufficiently small, then (z,t) is a subso-
lution for the problem: '

v — Av = |z|2uP 0%, ze RN, t>0,

v(z, 0) = vo(x), r e RV,
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PROOF. Let k > max{(c2 + N)/N,1} and 0 < € < min(1,p2/{(1 —
g2)k}). It suffices to prove that

3(z,t) < /0 CS(t — 5)|z|* (S(8)uo(x))7 B(z, s)ds.
By Jensen’s inequality, we have
/0 " S(t = 5)[al” (S(s)uo()) 3(, s)ds
(43)  >0m /0 B 5 o)l (S(6)uo(a)?) T ds.

~ Using the inverse Holder inequality and Jensen’s inequality aga.iri, we
have for k£ > 1,

S(t - 8)|zl7* (S(s)uo(@)*) =

> {S(t — 5)|z| T PE{S(t — ) (S(5)uo(z)?) - }*

> {Ci(t — 8)TETYIRLS(t — 5) (S(s)uo(2)°)} -
(4-4) = CI*(t — 5)F (S(t)uo(z)*) e .

Substituting (4.4) into (4.3), we obtain
t
/ S(t — 5)|2]7? (S(s)uo(z)) §(z, s)%ds
0 B
~ t o o
> GRC* (S(t)u(2)F) T / s (t — 5)Fds
0

> CuC+Cyt i (S(t)uo(z)?) o

for sufficiently small C > 0. This completes the proof. O

LEMMA 4.4. Let 0< gy <1, and gy > (=2,—N) and let u and v be
solutions of the system (1.1) and (1.2). Then there exist constants Ci,
C3 > 0 such that

o P 2
v(z,t) > C’1t211—225 (1+ t)_zrz_l—J:zS exp (-— Czixl ) , (t > 0).
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PROOF. Fix arbitrary s > 0, and apply Lemma 4.3 to U(t) = u(t+s)
and V(t) = v(t +s). Then, we have
V(z,t) > Ctlica (S(t)U(x, 0)°) o .
Putting s = ¢t and using Lemma 4.1, we obtain
o(z, 2t) > Ctitam (S(t)u(z, t)F) T |
> Gt (1 + 1) {(47rt)_.1; /exp ('_ z—y[* stIZ) dy}?ﬁ"—“@

4t 2t
- 2\
2> Ct? = 1+ t)‘z’f-’;’z exp (— C'l;cl ) .

This completes the proof. O

5. PROOF OF THEOREM 2.1 : NONEXISTENCE

In this section we prove Theorem 2.1 (i). For Theorem 2.1 (ii) and
(iii), see [12] .

NECESSARY CONDITION FOR THE GLOBAL EXISTENCE Assume
that (u,v) are global solutions for (1.1) and (1.2). Since p; < 1, ¢ < 1
and p2g; — (1 — p1)(1 — ¢2) > 0, we can take a positive constant & > 0
such that (1—¢2)/p2 < k < q1/(1—p1). For this k, fix positive constants
T1, T2 > 0 satisfying

ro = kry,
ry <min{l —p1, po},"
ro < mm{l — g2, ql},

N(q — k(1 — py))
k b
N(kps — (1 — g5))
- .

™Mo <

o0 <
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For € > 0, define the cut off function

. N 1 -1
o= 7o (i) 0=
- 0 (2] > e4),
and set
(5.1) Fi(t) = / w(z, 8)7 pe (x)d,
RN
(5.2) Ge(t)=/ v(z, 1) p(z)dz.
RN

Then the following inequalities hold.

LEMMA 5.1. Letp; <1, ga <1 and o; > —N (j = 1,2). Then there
exist constants Cy, Ca, C3, Cy > 0 such that

_—21.__.1

= G (t)'z

_qz)_ 2

(5.4) GL(t) = —C3eG.(t) +Ce™ 7 F, (t) nGe(t)”

(5.3)  Fl(t) > —CieFe(t) + Coe™ F Fu(t)”

PROOF. Mult1ply1ng (1.1) by u™~1p,, and integrating over RY with
respect to z, we obtain the desired inequality (5.3). Indeed, integration
by parts implies that

/RNpe T udx——}-iF(t)

/ peu™  Audr > — Ve - u " WVude
RN RN

I Ve - V(u™)dz

™ RN

1
= — u" Apdx

RN

> _QEF ®).

Here, we have used the property of p, that there exists a constant
C > 0 depending only on N such that Ap, > —Cep,. The normal and
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inverse Holder inequalities also imply that

/ pelz|7tun Pyt g
RN

a ro=—q

' ™ rgoy ra(ri—=(1-p1)) 2
o rq1—(1— 2
2 ( / 1 psv“d:v) < / Pelz|2mru” 2@ dz)
|z|<e™ 2 |z|<e‘§

' n=Qa-p1) _na-ra(-p1)
4a 1 _ . rrac r1rg
>gh peudz pe|z|”FTE-R D dgy
J|z|<e~ ¥ |zj<e— %

= Ce PR TR G5,

Multiplying (1.2) by v™2~1p,., and integrating over RY with respect
to z, we can also get (5.4). O

Setting
~ i-py
Fs(t) - Fe 1 (t),
—_ 1-qp
Ge(t) = Ge 2 (t),
we simplify the inequalities (5.3) and (5.4).

LEMMA 5.2. Letp1 <1, ¢ <1 ando; > —N (j = 1,2). Then there
exist constants Cs, Cgs, C7, Cg > 0 such that

Fi (t) > —CseFi(t) + Coe™ F G (t) ™5,
G. (t) > —CreGa(t) + Cac~ FFL(t) ™5 .

From the phase field argument in [9], we get upper bounds of F¢(t)
and G¢(t) as follows:

PROPOSITION 5.3. Letpy <1, g2 <1 ando; > —N (j =1,2).
(i) There exist constants A > 0 and B > 0 such that

(5.5) F(t) < AeoCP0),
(5.6) G.(t) < BePU-a),
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for all t > 0 and € > 0, where o and B are defined in (2.1).
(ii) (upperbounds) There ezist constants A > 0 and B > 0 such that

(57) FE(t) S Asarla
(5.8) G.(t) < BeP™,

forallt >0 and e > 0.

PROOF OF THEOREM 2.1(i). = We consider the case a > N/2.
Lemmas 4.1, 4.2, 4.4, and the definition of F; in (5.1) give lower bounds
of F.(e7!):

(5.9) F(eY) > {05”1’ (> 3),

Coe'T log(1+&71), (a=%).
Indeed, in the critical case o = N/2, we have
N |z[?
u(z,t) K C(1+t) 7 exp -~ ) (t > 0),

‘ oo+2—p 2
v(z,t) < O(1+t) 50 exp (—C'f' ) , (t > 1)

from Lemmas 4.1 and 4.4. Applying Lemma 4.2, we have
2
(5.10)  u(z,t) < C(1+1)~7 log(l + t) exp ( |= tl ) . (t>1p)

for some to > 1. Substituting (5.10) into (5.1), we obtain (5.9). This
contradicts (5.7) for small € > 0. This completes the proof.(]

6. PROOFS OF THEOREMS 2.2 AND 2.3 : NONEXISTENCE

In this section we prove Theorems 2.2 (i) and 2.3 (i). In order to
prove the theorems, it suffices to show the following propositions.

PROPOSITION 6.1. Letpy > 1, ¢; < 1. If o > N/2, then no nontriv-
tal global solutions exist.

PROPOSITION 6.2. Letpy > 1. If p1+¢q1 < 1+(2+ 01)/N, then no
nontrivial global solutions exist.



74

| NECESSARY CONDITION FOR THE GLOBAL EXISTENCE Assume
that (u,v) are global solutions for (1.1) and (1.2). For € > 0, define

(6.1) | | F.(t) ZLN u(z, t)"pe(z)dz,

where r > 0 satisfying ro; < P 11\_r_ 7. :
Multiplying (1.1) by p.(z)u""! and integrating by parts, we have

a o ) - r -
F(t) > —~CieFu(t) + Coe Pt Far ™ f() ™22 > ¢,

where C; and Cy > 0. Indeed, from the inverse Holder inequality and
Lemma 4.4,

RN

r+p1—1 1-py

s roy ra v
> ( / peu*dx) ( / pelxll-mvl-mdm)
RN RN

r4pq—1 _oy au(oa+2)-paqy N
> ()58 . e F e MHEHE

Putting

~ )+ (1-g2)(e7 +2)—
Fi(s) = SRS p gy,

s = €t,
yields the following inequality:
F.(s) > —CF.(s) + czs”‘”z%*fi—;%”%”i(s)i’r‘i (s >1).
A comparison argument and the global existence of E(s) imply that
F.() <K,
where K > 0 is independent of 0 < € < 1. Hence,
(6.2) Fu(e™)) < Ko~ M 2aasanany-ants

for0<e<1.
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PROOF OF PROPOSITION 6.1. Lemmas 4.1 and 4.2, and the defi-
nition of F. in (6.1) give lower bounds of F.(e™!):

C36ﬁ2£, (OC > %))

F.(e™!) > .
) C4sNT log(l+¢7!), (a= %r—),

which contradicts (6.2) for small & > 0. Indeed, one can see that o > ¥
is equivalent to
_qi(o2+2)+ (1= ga)(01+2) —pen ¥
21 -p)(1—-gq)
This completes the proof. []

v

N
3

PROOF OF PROPOSITION 6.2.  Using Lemma 4.1 instead of Lemma
4.4 for the estimate of v(z, t), we can prove Proposition 6.2 in the same
way as the proof of Proposition 6.1. [J
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