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1. INTRODUCTION

In a lake or the ocean where density stratification is well developed, not only
internal long-period waves, $e.g$ . internal seiches and tides, but also internal
short-period waves can be observed; the sources of the latter include
bottom topography and interfacial instability. Such internal waves exchange
their energy among components over a wide wave-frequency band, with
strong nonlinearity especially when they reach shallow water regions.

The nonlinearity and dispersivity of internal waves, however, have been
closely studied for only internal long waves, where internal-long-wave
equations were derived to evaluate interface profiles without disturbance or
mixing due to numerical errors. For example, on a perturbation basis,
Matsuno2) proposed internal-wave equations for arbitrary aspect ratios with
weak nonlinearity and strong dispersivity. Choi and Camassa3) derived two
sets of internal-wave equations considering full nonlinearity of internal
waves in a two-layer system, where we choose one set of equations to treat a
shallow layer whether it lies on another shallow layer with weak dispersivity
or a deep layer with intermediate dispersivity. The horizontally two-dimen-
sional resonance of internal solitons are numerically simulated by Tsuji and
$Oikawa^{4)}$ with mild dependence on motion in the direction of y-axis, as well
as weak nonlinearity and weak dispers ivity.

On the othcr hand, Kakinuma5) did not use any assumption on non-
linearity, as well as dispersivity, of internal waves in the derivation process
of a set of nonlinear internal-wave equations based on a three-dimensional
variational principle of multilayer-fluid motion. For this reason the appli-
cation of this model is theoretically free from limitations concerning the
relative thickness of fluid layers or the frequency band of strongly nonlinear
and strongly dispersive $surface/internal$ waves. In the present paper, several
numerical results of this set of equations are shown for internal waves of a
two-layer system in the vertically two-dimensional plane.
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Fig. 1 Multilayer fluid system.

2. FULLY NONLINEAR EQUATIONS FOR $SURFACE/INTERNAL$
WAVES

2.1 Multilayer fluids
Inviscid and incompressible fluids are assumed to be stable in still water, as
shown in Fig. 1, where these fluids are represented as $i$ $(i=1,2, , I)$ from
top to bottom. The i-layer thickness in still water is denoted by $h_{j}(x)$ . None
of the fluids mix even with motion. The density $\rho_{i}$ is spatially uniform and
temporally constant in each layer, where $\rho_{1}<\rho_{2}<$ $<\rho_{J}$ . Surface tension
and capillary action are neglected.

Fluid motion is assumed to be irrotational, resulting in the existence of
velocity potential $\phi_{j}$ defined as

$u_{j}=\nabla\phi_{j}$ and $w_{l}=\partial\phi_{i}/\partial z$, (1)

where $\nabla$ is a partial differential operator in the horizontal plane, $i.e.$ ,
$\nabla=(\partial/\ ,\partial/\phi)$ .

(2)

2.2 Functional for the variational problem
The pressure on $z=\eta_{i.0},$ $i.e.$ , the lower interface of the i-layer, is written by
$p_{i}(x, t)$ . In the i-layer, if both the elevation of one interface, $z=\eta_{i,1- j}(x, t)(i$

$=0$ or 1), and the pressure on the other interface, $p_{i- j}(x, t)$ , are known, then
the unknown variables are the velocity potential $\phi_{i}(x, z, t)$ and Interface
elevation $\eta_{ij}(x, t)$ such that the functional for the variational problem in the
i-layer, $F_{i}$ , is determined by

$F_{i}[ \phi_{i},\eta_{t.j}]=\int_{0}^{l_{1}}\int\int_{A}\int_{l_{l}.0}^{\eta_{l.l}}\{\frac{\partial\phi_{i}}{\partial t}+\frac{1}{2}(\nabla\phi_{j})^{2}+\frac{1}{2}(\frac{\partial\phi_{i}}{\partial z})^{2}+gz+\frac{p_{i-j}+P_{i}}{\rho_{i}}\}\ d4dt$,

where $P_{i}= \sum_{\iota\underline{-}1}^{j-1}(\rho_{i}-\rho_{k})gh_{k}$ ; $g$ is gravitational acceleration; the plane $A$ ,
$)$

which is the orthogonal projection of the object domain onto the x-y plane, is
assumed to be independent of time.

In comparison with the functional referred to in Luke6) for rotational
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motion, Eq. (2) has an additional term of the interfacial pressure without the
terms relating to vorticity.

2.3 Vertically distributed functions
In order to derive a set of equations whose type is horizontally two-
dimensional, vertical integration is performed analytically. In a manner
similar to that for the fully nonlinear surface-wave model,7) the velocity
potential $\phi_{j}$ is expanded into a series in terms of a given set of vertically
distributed functions $Z_{i,a}$ multiplied by their weightings $f_{i,a}$ , i.e.,

$\phi_{i}(x,z,t)=\sum_{a\Leftrightarrow 0}^{N-1}Z_{i.\alpha}(z,h_{i}(x))f_{i,\alpha}(x,t)\equiv Z_{\iota,a}f_{l\beta}$ , (3)

where $N$ is the number of vertically distributed functions and the sum rule of
product is adopted for subscript $\alpha$ .

2.4 Euler-Lagrange equations under variational principle
We substitute Eq. (3) into Eq. (2), after which the functional $F_{l}$ is integrated
vertically. Then the variational principle is aPplied to obtain the following

$Euler- Lagrange_{5)}equations,$
$i.e.$ , the fully nonlinear equations for surface and

internal waves:

$Z_{i\beta}^{\eta_{t.1}} \frac{\partial\eta_{i,1}}{\partial t}-Z_{i.\alpha}^{\eta_{j0}}\frac{\partial\eta_{i.0}}{\partial t}+\nabla(\int_{\eta_{l0}}^{\eta_{l.1}}.Z_{i\rho}Z_{l.\beta}\ \nabla f_{i,\beta})-\int_{\eta_{0}}^{\eta_{j.1}}.\frac{\partial Z_{t\rho}}{\partial z}\frac{\partial Z_{i.\beta}}{\partial z}dzf_{i,\beta}=0$, (4)

$Z_{i^{J}}^{\eta_{/}}j \frac{\partial f_{i.\beta}}{\partial t}+\frac{1}{2}Z^{\eta,}tp^{J}.r^{J}$

where $a=0$ , 1, 2, ’ $N-1$ ; $Z_{l.a}^{\eta,\prime}\approx\sim Z_{\beta}\overline{|}_{\approx\eta_{1}}.$. ( $e=0$ or 1); $\partial Z_{l\beta}^{\eta_{1_{d}}}/\partial z$

$\overline{\Rightarrow}\partial Z_{\alpha}/\partial z|_{z\cdot\eta_{\iota./}}$ .

3. Two-layer problems between horizontal plates

3.1 Nonlinear two-layer equations
We consider two-layer problems between two fixed horizontal plates, where
$\eta_{1.1}=0$ and $\eta_{2,0}=-(h_{1}+h_{2})\equiv-D$ . The set of nonlinear equations for
$surface/internal$ waves are reduced to a set of nonlinear two-layer equations,
after which several numerical results are shown for interface. displacements
and horizontal velocities.

The interface profile is described by $z=\eta(x, t)$ , where $\eta=\eta_{1,0}=\eta_{2,1}$ . In
this paper the vertically distributed function $Z_{i,a}$ is determined by
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(6)$z_{\iota,a}=\{(l-h_{k}$ .

[l-layer]
In the l-layer, $i.e.$ , the upper layer, $i=1$ and $j=0$ . We introduce $\zeta$

defined as

$\zeta=\frac{\eta+h}{h}$ , (7)

after which Eq. (6) is substituted into Eqs. (4) and (5), resulting in

$\zeta^{\alpha}\frac{\partial\zeta}{\partial t}+\frac{1}{a+\beta+1}\nabla\{(\zeta^{a+\beta+1}-1)\nabla f_{t,\beta}\}-\frac{1}{h_{\iota}^{2}}\frac{\alpha\beta}{a+\beta-1}(\zeta^{\alpha+\beta-1}-1)f_{1,\beta}=0$ , (8)

$\zeta^{\beta}\frac{\partial f_{1.\beta}}{\partial t}+\frac{1}{2}\zeta^{\beta+\gamma}\nabla f_{1.\beta}\nabla f_{1.\gamma}+\frac{1}{2}\frac{\beta\gamma}{h^{2}}\zeta^{\beta+\gamma-2}f_{1.\beta}f_{1.\gamma}+g\eta+\frac{p_{1}}{p_{1}}=0$ . (9)

[2-1ayer]
In the 2-1ayer, $i.e.$ , the lower layer, $i=2$ and $j=1$ . We introduce $\xi$

defined as

$\xi=\frac{\eta+h}{h}$ , (10)

after which Eq. (6) is substituted into Eqs. (4) and (5), leading to

$\xi^{\alpha}\frac{\partial\xi}{\partial t}+\frac{1}{\alpha+\beta+1}\nabla\{[\xi^{\alpha+\beta+1}-(-1)^{\alpha+\beta+1}]\nabla f_{2.\beta}\}$

(11)
$- \frac{1}{h_{2}^{2}}\frac{\alpha\beta}{\alpha+\beta-1}\{\xi^{a+\beta-1}-(-1)^{a+\beta-1}\}f_{2.\beta}=0$,

$\xi^{\beta}\frac{\partial f_{2.\beta}}{\partial t}+\frac{1}{2}\xi^{\beta+\gamma}\nabla f_{2.\beta}\nabla f_{2,\gamma}+\frac{1}{2}\frac{\beta\gamma}{h_{2}^{2}}\xi^{\beta+\gamma-2}f_{2.\beta}f_{2,\gamma}$

(12)
$+g \eta+\frac{p_{1}+(p_{2}-\rho_{1})gh_{\iota}}{\rho_{2}}=0$ .

Eqs. (8), (9), (11), and (12) can be solved using a finite difference
method presented by Kakinuma and $Nakayama$ ), the results of which are
shown in the following subsections.

3.2 Numerical simulation of long waves
Two-layer problems are solved in vertically two-dimensional cases. Horn $et$
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(a) Dimensions of the laboratory
tank.9)

(b) Initial condition of calculation.
The interface is inclined with the
angle 9 in the horizontal tank.

Fig. 2 Schematic of tanks.

$al^{9)}$ performed hydraulic experiments using a tank, whose length $L$ , depth $D$ ,
and width $W$ were 6.0 $m,$ $0.29m$ , and 0.3 $m$ , respectively, as shown in Fig.
2(a). Three ultra-sonic wave gauges were set at the positions marked $A,$ $B$ ,

and C. This tank was filled with a two-layer stratification, where $h_{1}/D=0.8$ ,

after which it was rotated very slowly through 9 around the axis of rotation.
At the beginning of the experiments, this tilted tank was returned to a
horizontal position very quickly. In the initial condition of numerical
computations, the tank is horizontal and the interface is inclined linearly as
shown in Fig. 2(b).

The grid width $\Delta x$ and time-step interval $\Delta t$ are equal to 0.06 $m$ and 0.02 $s$ ,
respectively, throughout every computation performed in the present study.

In Figs. 3–5, the experimental and calculation results are compared for the
time series of interface displacements at the position marked $C$ in Fig. 2(a),

where the density ratio $p_{2}/\rho_{1}$ and the tilt angle $\theta$ are equal to 1.019 and
$0.4\bm{6}17^{o}$ , respectively. Fig. 3 shows the experimental result measured by the
wave gauge at position C. Fig. 4 shows the corresponding calculation result
through a Boussinesq-type model (BT), whose fundamental equations are
written in APPENDIX. Fig. 5 shows the calculation results obtained using
the proposed fully nonlinear model (FN) including the cases where the
number of vertlcally distributed functions for velocity potential, $N$, is equal
to 1, 2, 3, 4, and 5.

When $N=1$ , the set of fully nonlinear internal-wave equations, $i.e.$ . Eqs.
(8), (9), (11), and (12), reduces to a set of nonlinear and non-dispersive
internal-wave equations, which shows extreme disintegration around the
wave crests as shown in Fig. 5, without dispersivity balancing with non-
linearity.

When $N=2$ , the FN takes into account linear and uniform distributions of
$u_{i}$ and $w_{j}$ in the direction of $z$ , respectively, such that the balance between the
nonlinearity and dispersivity is considered, leading to the more accurate
result than that when $N=1$ .
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Fig. 3 Time series of interface displace-
ment measured by the wave
gauge at position $C$ in the hy-
draulic experiment.

Fig. 4 Time series of interface displace-
ment obtained by the Boussinesq-
type model corresponding to that
in Fig. 3.

Fig. 5 Time series of interface displace-
ments obtained by the present
nonlinear model corresponding to
that in Fig. 3. The results are
shown for different numbers of
vertically distributed functions

Fig. 6 Interface profiles obtained by the in velocity potential, $N$.
present nonlinear model, where $N$

$=4$ , and the Boussinesq-type
model when $r=280s$ .

When $N=3$ , the interface displacement evaluated by the FN is closer to
that in Fig. 4 obtained by the BT, where the parabolic distribution of $u_{j}$ in
the direction of $z$ is considered in both the FN and BT. It should be noted
that though the effect due to the linear distribution of $w_{j}$ in the direction of $z$

is considered both in the FN and BT, the FN estimates the wave period, or
the wave number, more accurately by solving the contribution of each order
without perturbation, while the wave period through the BT is longer than
that of the experimental data.

The interface displacements obtained by the FN hardly show difference
between the cases where $N=4$ and 5. Although both the FN and BT do not
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include dissipation effects due to friction, which results to larger wave
heights than the experimental data, the harmony of results between the FN
and BT indicates the high accuracy of results calculated by the FN in this
long-wave condition. The interface profiles obtained using the FN, where $N=$

$4$ , and the BT when $t=280$ $s$ are shown in Fig. 6, according to which the
aspect ratio, $i.e.$ , the representative ratio of water depth to wavelength, $h_{2}/\lambda$ ,
is about 0.06. The FN estimates the wave heights larger and the wavelengths
shorter with higher nonlinearity than the BT.

3.3 Numerical simulation of intermediate waves
A deeper case, where the representative ratio $h_{2}/\lambda$ is around 0.3, is treated in
numerical computations. The length $L$ and depth $D$ of the tank shown in Fig.
2(b) are 3.0 $m$ and 1.5 $m$ , respectively. The density ratio $p_{2}/p_{1}$ is 1.02, while
the still water depth ratio $h_{1}/D$ is 0.8 also in this case. In the initial condition
of calculation, the tilt angle 9 is equal to $5.0^{o}$ .

Figs. 7 and 8 show the time series of interface displacements at the center
of the tank, the former of which was obtained using the BT, while the latter
was evaluated by the FN when $N=1,2,3$ , or 4. In this intermediate-wave
case, the results show much difference between the BT and FN, which
suggests that the BT is not applicable because the set of Boussinesq-type
equations was derived on the basis of a perturbation around the long-wave
condition with only weak dispersivity, as well as weak nonlinearity.

When $N=1$ , see Fig. 8, the internal waves of the FN show forward leans
of their wave profiles, which are restrained when $N$ is larger than one.

It should be noted that even when $N=1$ or 2, the FN evaluates the
internal-wave periods shorter than those calculated by the BT, which
estimates the wave period longer than that of the actual intermediate waves
as if the internal waves were long waves.

Fig. 9 shows the vertical distributions of horizontal velocity $u_{2}$ in the
lower layer below an internal-wave crest, where $x=1.6m$ when $t=20s$ . The
result was obtained using the FN when $N=4$ and drawn in the figure for each
case where the components up to $0,1,2$ , or 3 of $\alpha$ are added together.
Although below the internal-wave crest the difference between $u_{2}’ s$ on the
interface and bottom is about 5.0 % of $u_{2}$ on the bottom, the difference could
be important to evaluate internal-wave profiles accurately considering the
dispersivity of intermediate waves.
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Fig. 7 Time series of interface displace-
ment obtained by the Boussinesq-
type model for the intermediate-
waves.

Fig. 9 Vertical distributions of horizon-
tal velocity in the lower layer, $u_{2}$ ,
where $x=1.6m$ when $t=20s$ .
The result was obtained using the
present nonlinear model when $N$

$=4$ . Each line shows the velocity Fig. 8 Time series of interface displace-
distribution where the compo- ments obtained by the present
nents are added together up to 0, nonlinear model corresponding to
1, 2, or 3 of $\alpha$ . that in Fig. 7. The results are

shown for different numbers of
vertically distributed functions
in velocity potential, $N$.

4. CONCLUSIONS
The internal waves in a two-layer system have been simulated using the set
of fully nonlinear internal-wave equations. The computational results of
interface displacements up to each order on the vertical length scale of
motion were compared with the corresponding calculation results obtained
using the Boussinesq-type internal-wave model or the existing experimental
data.

In the long-wave case, the interface displacements estimated by the
Proposed model with more than three vertically distributed functions of
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velocity potential were in harmony with that through the Boussinesq-type
model, as well as the experimental result especially in the wave number.

In the intermediate-wave case, the proposed model showed different
results from those by the Boussinesq-type model, which should not be
applied to this case without enough consideration of wave dispersivity.

In computations using the proposed fully nonlinear model with enough
number of vertically distributed functions of velocity potential, the weight-
ings of components are evaluated based on the variational principle without
assumptions on nonlinearity and dispersivity of waves, such that this model
is expected to be applied to multilayer systems including waves of various
frequencies over topographies to investigate, for example, generation
mechanisms of internal short-period waves from long-period waves such as
$surface/internal$ tides.
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APPENDIX BOUSSINESQ-TYPE EQUATIONS FOR INTERNAL
WAVES

The Boussinesq-type equations, several results of which have been shown in
this Paper, are
[l-layer]

$\frac{\partial\zeta}{\partial t}+\nabla\{(\zeta-1)\nabla\phi_{1}\}=0$ , (13)

$\frac{\partial\phi_{1}}{\partial t}+\frac{1}{2}(\nabla\phi_{1})^{2}-\frac{1}{3}h_{1}^{2}\frac{\partial^{3}\phi_{1}}{\partial t\partial x^{2}}+g\eta+\frac{p_{1}}{\rho_{1}}=0$ , (14)

[2-1ayer]

$\frac{\partial\xi}{\partial t}+\nabla\{(\xi+1)\nabla\phi_{2}\}=0$ , (15)

$\frac{\partial\phi_{2}}{\partial t}+\frac{1}{2}(\nabla\phi_{2})^{2}-\frac{1}{3}h_{2}^{2}\frac{\partial^{3}\phi_{2}}{\partial t\partial x^{2}}+g\eta+\frac{p_{1}+(p_{2}-\rho_{1})gh_{1}}{\rho_{2}}=0$, (16)

where $\phi_{1}$ and $\phi_{2}$ are velocity potentials in the upper and lower layers,
respectively.
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