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1 Introduction
Theory of cooperative games is quite useful in analyzing decision making situations along
with multiple decision makers who can form coalitions. In an ordinary $\infty operative$ game
(transferable utility game), the results of coalitions are described by worths of coalitions,
which are real numbers. On the contrary, in a multiobjective cooperative game, the worth
of each $\infty alition$ is measured by multiple criteria, and therefore it is given as a set in a
multidimensional real space $[4, 2]$ . This set might be obtained by (Pareto) maXtmization
of an admissible set [7]. Some researchers have studied multiobjective $\infty operative$ games
and discussed solutions, for example the cores, of them [7, 4, 2].

On the other hand, cooperative games with some restrictions on coalitions have been
actively studied recently (for example Bilbao [1] and Slikker and van den Nouweland [6]).
In those cases, the set of feasible coalitions is given as a subset of the power set of the
whole player set, and a new game called a restricted game which reflects the restrictions
on caolitions is defined. Solutions of the original game under the restrictions on coalitions
are obtained as solutions, such as the core or the Shapley value, of the restricted game.

In this paper, we $\infty nsider$ a multiobjective cooperative game with restrictions on
coalitions. We define the restricted game of the original game and discuss its proper-
ties, namely inheritance of superadditivity and $\infty nvexity$ from the original game to the
restricted game. We also study the $\infty re$ of the restricted game.

2 Maximum and minimum of a set in $R^{p}$

In multiobjective optimization we consider sets in the $p$ dimensional objective real space
and maxima $and/or$ minima of those sets. In this paper we use the following notations.
First we distinguish two symbols of set inclusions: $A\subseteq B$ means that $A$ is a subset of
$B$ , and $A\subset B$ implies that $A$ is a proper subset of $B$ . Let $R^{P}$ be the $p$ dimensional real
space and $R_{+}^{p}$ the nonnegative orthant in $R^{P}$ , i.e.,

$R_{+}^{p}=\{x=(x_{1}, \ldots x_{p})\in R^{p}|x_{i}\geq 0, i=1, \ldots p\}$.

We define the sets $Y_{+},$ $Y_{++},$ $Y_{-}$ , and $Y_{--}$ for a set $Y\subseteq R^{p}$ as follows:

$Y+=Y+R_{+}^{p}$ , $Y++=Y+(R_{+}^{p}\backslash \{0\})$ ,
$Y_{-}=Y-R_{+}^{p}$ , Y– $=Y-(R_{+}^{p}\backslash \{0\})$ ,

where $0=$ $(0, \ldots , 0)\in R^{p}$ . In terms of these notations, we can define the minimum and
maximum of a set in $R^{p}$ as $f_{0}nows$ .
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Definition 1 For a set $Y\subseteq R^{p}$ , the minimum and maximum of $Y$ are defined by

Min $Y$ $=\{y\in Y|(Y-y)\cap(-R_{+}^{p})=\{0\}\}=Y\backslash Y++$

Max $Y=\{y\in Y|(Y-y)\cap R_{+}^{p}=\{0\}\}=Y\backslash Y_{--}$ ,

respectively.

Remark 1 If $Y$ is compact, then $Y\subseteq[{\rm Max} Y]_{-}$ and hence $Y_{-}=[{\rm Max} Y]_{-}(Sawam\dot{\wp}$ et
al. [$5J$).

A particular type of sets in $R^{p}$ satisfies the condition that the minimum or the maxi-
mum of a set \infty incid\’e with itself.

Deflnition 2 A set $Y\subseteq R^{p}$ is said to be thin (with respect to $R_{+}^{p}$ ) if one of the folloUtng
equivalent conditions is satisfied:

1) $Y={\rm Min} Y$

2) $Y={\rm Max} Y$

3) $Y_{+}\backslash Y=Y++$

4) $Y_{-}\backslash Y=Y_{--}$

Equivalence of the above four conditions was proved in Tanino et al. [7].

3 Multiobjective cooperative games
An ordinary $c\infty perative$ game (transferable utility game) is a pair of a set of players
$N=\{1, \ldots , n\}$ and a characteristic function $v:2^{N}arrow R$ satisfying $v(\emptyset)=0$. A subset
$S\subseteq N$ is called a $\infty alition$ and $v(S)$ is the worth of $S$ . In a multiobjective $c\infty peratIve$

game this worth should be measured by multiple (say, $p$ throughout this paper) criteria,
and therefore it is specified by a subset of $R^{p}[7,4,2]$ . Thus a multiobjective cooperative
game (MO-game for short) is a pair $(N, V)$ , where $V$ is a set-valued mapping from $2^{N}$

to $R^{p}$ , i.e. $V(S)\subseteq R^{p}$ for any $S\subseteq N$ . We assume that $V(\emptyset)=\{0\}$ and that $V(S)$ is
nonempty, $\infty mpact$ and thin for any $S\subseteq N$ throughout this paper. The last condition
implies that the multidimensional worth $V(S)$ of $S$ is Pareto efficient in the MO-game.
Namely there is no Pareto ordering between two points in $V(S)$ . If $y$ is contained in
$V(S)_{-}$ , then it should not be contained in $V(S)$ .

We can exetnd fundamental properties of $\infty operative$ games to MO-games in straight-
forward and intuitive manners as follows.

Deflnition 3 An MO-game $(N, V)$ is said to be superadd\’itive if
$V(S)+V(T)\subseteq V(S\cup T)_{-}$

for all $S,T\subseteq N$ such that $S\cap T=\emptyset$ .
Remark 2 $fi$}$\cdot om$ the above definition, if an MO-game $(N, V)$ is superadditive, then for
any $S_{k}\subseteq N(k\in K)$ such that $S_{k}\cap S_{k’}=\emptyset$ for $k \neq k’,\sum_{k\in K}V(S_{k})\subseteq V(\bigcup_{k\epsilon K}S_{k})_{-}$ .
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Definition 4 An MO-game $(N, V)\dot{i}$ said to be convex if
$V(S)+V(T)\subseteq[V(S\cup T)+V(S\cap T)]_{-}$

for all $S,T\subseteq N$ .

It is obvious that convexity is a stronger requirement than superadditiveity.

4 Restricted multiobjective cooperative games by par-
tition systems

In fundamental $\infty operative$ games and also in MO-games, it is assumed that an arbitrary
subset $S$ of $N$ can form a coalition, i.e., every $S$ is feasible or admissible. In practical
situations, however, this assumption is not necessarily valid. Some $\infty alitions$ may not
be feasible because of physical or ideological reasons. Those situations are dealt with by
introducing the concept of feasible $\infty alition$ system [1]. A set system is a pair $(N,\mathcal{F})$ , with
$\mathcal{F}\subseteq 2^{N}$ . The sets belonging to $\mathcal{F}$ are caUed feasible coalitions. For any $S\subseteq N$ , maximal
feasible subsets of $S$ are called components of $S$ . In many cases we impose appropriate
combinatorial structures on $(N,\mathcal{F})$ .
Definition 5 ([1J) A partition system is a set system satisfying

1. $\emptyset\in \mathcal{F}$, and $\{i\}\in \mathcal{F}$ for every $i\in N$ , and

2.
$fora.llSofS\subseteq N$

, the components $ofS$, denoted by $\Pi_{\mathcal{F}}(S)=\{T_{1}, \ldots T_{l}\}fom$ a partition

Proposition 1 $([JJ)$ A set system $(N,\mathcal{F})$ which satisfies the first condition of the above
definition is a partition system if and only if $S,T\in \mathcal{F}$ and $S\cap T\neq l$ imply $S\cup T\in \mathcal{F}$ .

A typical example of partition systems is the communication structure by Myerson
[3], which was discussed in detail in Slikker and van den Nouweland [6].

Definition 6 Let $(N, V)$ be an MO-game and let $(N,\mathcal{F})$ be a partition system. The
$\mathcal{F}$-restricted game $(N, V^{F})$ , is defined by

$V^{F}(S)={\rm Max} \sum_{\tau\epsilon n_{\mathcal{F}(S)}}V(T)$
,

where $\Pi_{\mathcal{F}}(S)$ is the collection of the components of $S\subseteq N$ .
Remark 3 Since $V(T)\dot{u}$ compact for any $T\subseteq N,$ $\sum_{T\in \mathbb{R}_{\mathcal{F}}(S)}V(T)$ is $abo$ compact.
However, it is not thin generally and therefore we consider its maximum to define the
restricted game. Thus $V^{F}(S)$ is also compact and thin. If $S\in F$, then $\Pi_{F}(S)=\{S\}$ and
hence $V^{F}(S)=V(S)$ .

Lemma 1 Let $(N,\mathcal{F})$ be a partition system, $S,T\subseteq N$ with $S\cap T=\emptyset,$ $\Pi_{\mathcal{F}}(S)=\{S_{k}\}_{k\epsilon\kappa}$ ,
$\Pi_{\mathcal{F}}(T)=\{T_{l}\}_{l\in L}$ , and $\Pi_{\mathcal{F}}(S\cup T)=\{U_{m}\}_{m\epsilon M}$ . Then $\{S_{k}\}_{k\epsilon\kappa}\cup\{T_{l}\}_{\iota\epsilon\iota}$ is a subpartition
of $\{U_{m}\}_{m\epsilon u}$ .
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(Proof) It is obvious that $\{S_{k}\}_{k\in K}\cup\{T_{l}\}_{l\in L}$ is a partition of $\bigcup_{m\in M}U_{m}=S\cup T$ . For each
$S_{k}$ there exists some $U_{m}$ such that $S_{k}\cap U_{m}\neq\emptyset$ . Then we can prove that $S_{k}\subseteq U_{m}$ . In
fact, otherwise, $U_{m}\subset S_{k}\cup U_{m}\in \mathcal{F}$ since $\mathcal{F}$ is a partition system, which contradicts the
fact that $U_{m}$ is a component of $S\cup T$ . Analogously each $T_{l}$ is $\infty ntaIned$ in a unique $U_{m}$ .
Hence $\{S_{k}\}_{k\in K}\cup\{T_{l}\}_{l\in L}$ is a subpartition of $\{U_{m}\}_{m\in M}$ . $\square$

Due to this lemma we can prove the following theorem which shows the inheritance
of superadditivity of the original game to the $\mathcal{F}$-restricted game.

Theorem 1 Let $(N, V)$ be a superadditive MO-game and $(N,\mathcal{F})$ be a partition system.
Then the $\mathcal{F}$-restricted game $(N, V^{F})$ is also superadditive.

(Proof) Let $\Pi_{F}(S)=\{S_{k}\}_{k\in K},$ $\Pi_{\mathcal{F}}(T)=\{T_{l}\}_{\iota\epsilon\iota}$, and $\Pi_{F}(S\cup T)=\{U_{m}\}_{m\epsilon M}$ . Then
due to Lemma 1 and Remark 2,

$V^{F}(S)+V^{F}(T)$
$={\rm Max} \sum_{k\in K}V(S_{k})+{\rm Max}\sum_{l\in L}V(T_{l})$

$\subseteq$

$\sum V(S_{k})+\sum_{\iota\epsilon\iota}V(T_{l})$

$\subseteq\sum^{k\in K}V(U_{m})_{-}$

$=[ \sum_{m\epsilon M}^{m\epsilon M}V(U_{m})]_{-}$

$=[{\rm Max} \sum_{m\epsilon M}V(U_{m})]_{-}$

$=V^{\mathcal{F}}(S\cup T)_{-}$

The $se\infty nd$ last equality follows since
$\sum_{m\epsilon M}V(U_{m})$

is compact. This comPletes the Proof.
口

5 Inheritance of convexity
In this section we consider a more special type of feasible coalition systems called in-
tersecting systems, and prove the inheritance of $\infty nvexity$ to the restricted games by
intersecting systems.

Definition 7 A partition system $(N,\mathcal{F})$ is called an intersecting system iffor all $S,T\in \mathcal{F}$

utth $S\cap T\neq\emptyset$ we have $S\cap T\in F$ .

Remark 4 In Bilbao [1/, a set system $(N,\mathcal{F})$ is called an intersecting family if for all
$S,T\in \mathcal{F}$ with $S\cap T\neq\emptyset$ we have $S\cap T\in \mathcal{F}$ and $S\cup T\in \mathcal{F}$ . Therefore an intersecting
system is an intersecting family satisfying the first condition, $\emptyset\in \mathcal{F}$ and $\{i\}\in \mathcal{F}$, of the
partition system.

Theorem 2 Let $(N, V)$ be a convex MO-game and $(N,\mathcal{F})$ be an intersecting system.
Then the restricted game $(N, V^{F})$ is $abo$ convex.
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(Proof) Let $S,T\subseteq N$ . If $S\cap T=\emptyset$ , convexity reduces to superadditiveity and therefore
holds obviously. Hence we assume that $S\cap T\neq\emptyset$ in the proof. Let

$\Pi_{F}(S)=\{S_{1}, \ldots , S_{l}\}$ , and $\Pi_{F}(T)=\{T_{1}, \ldots T_{m}\}$ .

We prove the theorem by induction both in $l$ and in $m$.
a) First let $l=1$ , i.e., suppose that $\Pi_{F}(S)=\{S\}$ and therefore $V^{F}(S)=V(S)$ . We

prove the relation

$V(S)+V(T)\subseteq[V(S\cup T)+V(S\cap T)]_{-}$

by induction with respect to $m$. Thus we first $\infty nsider$ the case $m=1$ . Then $\Pi_{F}(T)=$

$\{T\}$ and $V^{\mathcal{F}}(T)=V(T)$ . Since $S,T\in \mathcal{F}$ and $(N,\mathcal{F})$ is an intersecting system, $S\cup T,S\cap$

$T\in \mathcal{F}$ . Then

$V^{F}(S)+V^{F}(T)$ $=V(S)+V(T)$
$\subseteq$ $[V(S\cup T)+V(S\cap T)]_{-}$

$=$ $[V^{\mathcal{F}}(S\cup T)+V^{F}(S\cap T)]_{-}$ ,

since $(N, V)$ is convex. Thus we have proved the case $m=1$ . Next suppose that the result
holds for $m=1,$ $\ldots k-1(l=1)$ and prove the case $m=k$ . Let $\Pi_{F}(T)=\{T_{1}, \ldots T_{k}\}$

and we assume without loss of generality that $S\cap T_{k}\neq\emptyset$ . Thus $S\cup T_{k},$ $S\cap T_{k}\in \mathcal{F}$. Let
$T’=T_{1}\cup\ldots\cup T_{k-1}$ . Then $\Pi_{F}(T’)=\{T_{1}, \ldots , T_{k-1}\}$ .

$V^{\mathcal{F}}(S)+V^{F}(T)=V^{F}(S)+{\rm Max} \sum_{m=1}^{k}V(T_{m})$

$\subseteq$ $V^{F}(S)+ \sum_{m=1}^{k}V(T_{m})$

$V^{\mathcal{F}}(S)+V^{F}(T_{k})+ \sum_{m=1}^{k-1}V(T_{m})$

$\subseteq$ $V^{\mathcal{F}}(S\cup T_{k})+V^{F}(S\cap T_{k})+V^{\mathcal{F}}(T’)-R_{+}^{p}$

$\subseteq$ $V^{\mathcal{F}}(S\cup T_{k}\cup T’)+V^{F}((S\cup T_{k})\cap T’)+V^{F}(S\cap T_{k})-R_{+}^{p}$

$=V^{\mathcal{F}}(S\cup T)+V^{F}(S\cap T’)+V^{F}(S\cap T_{k})-R_{+}^{p}$

$\subseteq V^{F}(S\cup T)+V^{F}((S\cap T’)\cup(S\cap T_{k}))-R_{+}^{p}$

$=$ $[V^{F}(S\cup T)+V^{F}(S\cap T)]_{-}$ .
Thus the $th\infty rem$ is proved for $l=1$ and $m=1,2,$ $\ldots$ .

b) Now we soppose that the result is valid for $l=1,$ $\ldots k-1$ and $m=1,2,$ $\ldots$ and
prove the case $l=k$ and $m$ is arbitrary. In this case $\Pi_{\mathcal{F}}(S)=\{S_{1}, \ldots , S_{k}\}$ . We assume
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without loss of generality that $S_{k}\cap T\neq\emptyset$ and let$S’=S_{1}\cup\ldots\cup S_{k-1}$ . Then

$V^{F}(S)+V^{F}(T)$ $={\rm Max} \sum_{l=1}^{k}V(S_{k})+V^{\mathcal{F}}(T)$

$\subseteq\sum_{l=1}^{k}V(S_{k})+V^{F}(T)$

$= \sum_{l=1}^{k-1}V(S_{l})+V(S_{k})+V^{F}(T)$

$\subseteq V^{F}(S’)+V^{F}(S_{k})+V^{F}(T)-R_{+}^{p}$

$\subseteq V^{F}(S’)+V^{F}(S_{k}\cup T)+V^{F}(S_{k}\cap T)-R_{+}^{p}$

$\subseteq$ $V^{F}(S’\cup S_{k}\cup T)+V^{\mathcal{F}}(S’\cap(S_{k}\cup T))+V^{\mathcal{F}}(S_{k}\cap T)-R_{+}^{p}$

$=V^{\mathcal{F}}(S\cup T)+V^{\mathcal{F}}(S’\cap T)+V^{F}(S_{k}\cap T)-R_{+}^{p}$

$\subseteq V^{F}(S\cup T)+V^{F}((S’\cap T)\cup(S_{k}\cap T))-R_{+}^{p}$

$=$ $[V^{F}(S\cup T)+V^{F}(S\cap T)]_{-}$ .
$\backslash This$ completes the proof of the $th\infty rem$ . $\square$

6 The core of restricted games
In a cooperative game, allocation scheme of the profit among the players is regarded as
a solution of the game. For an MO-game, this allocation is described by $np$ dimensional
vector $x=$ $(x^{1}, \ldots , x^{n})$ , where $e$ach $x^{i}(i=1, \ldots , n)$ is a $p$ dimensional vector repreaenting
a payoff vector received by player $i$ .

Core is a fundamental solution $\infty noept$ not only in cooperative games, but also in
MO-games [7, 4, 2]. It is characterized by two types of requirements: group rationality
and coalition rationality.

Deflnition 8 The core of an MO-game $(N, V)$ is defined by

$C(V)=$ { $x \in R^{\mathfrak{n}p}|\sum_{:\epsilon N}x^{:}\in V(N),$ $\sum_{i\in S}x^{i}\in V(S)_{+}for$ all $S\subset N$}.

Theorem 3 Let $(N, V)$ be an MO-game and let $(N,\mathcal{F})$ be a partition system such that
$V(N)=V^{F}(N)$ , which is true when $N\in \mathcal{F}$ . Then

$C(V^{F}) \subseteq\{x\in R^{np}|\sum_{i\epsilon N}x^{i}\in V(N), \sum_{:\epsilon s}x^{i}\in V(S)_{+}for dlS\in \mathcal{F}\}$

Moreover, if $\sum_{\tau\epsilon n_{\mathcal{F}(S)}}V(T)$ is thin for any $S\subseteq N$ , then the equality hods in the above
relation, and therefore $C(V)\subseteq C(V^{\mathcal{F}})$ .

(Proof) First let $x\in C(V^{\mathcal{F}})$ . Then $\sum_{:\epsilon N}x^{i}\in V^{F}(N)=V(N)$ and $\sum_{i\epsilon s}x^{:}\in V^{F}(S)_{+}=$

$V(S)_{+}$ for any $S\in \mathcal{F}$. Conversly, assume the thinness $\infty ndition$ and suppose that $\sum_{i\in N}x^{i}\in$
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$V(N)=V^{F}(N)$ and $\sum_{i\in S}x^{i}\in V(S)_{+}=V^{F}(S)_{+}$ for all $S\in \mathcal{F}$. Take $S\not\in \mathcal{F}$ and let

$\Pi_{\mathcal{F}}(S)=\{S_{k}\}_{k\in K}$. Then

$\sum_{i\in S}x^{i}=\sum_{k\epsilon K}\sum_{1\epsilon s_{k}}x^{i}\in\sum_{k\epsilon\kappa}V(S_{k})_{+}=[\sum_{k\epsilon K}V(S_{k})]_{+}=[{\rm Max}\sum_{k\epsilon K}V(S_{k})]_{+}=V^{F}(S)_{+}$ .

Hence $x\in C(V^{F})$ , as was to be proved. $\square$

7 Conclusion
We have defined the $\mathcal{F}$-restricted game $(N, V^{\mathcal{F}})$ for a multiobjective cooperative game
$(N,V)$ and a partition system $(N,\mathcal{F})$ . It is shown that superadditivity is inherited from
$(N,V)$ to $(N, V^{F})$ . Inheritance of convexity is guaranteed when $(N,\mathcal{F})$ is an intersecting
system. We have also considered the core of $(N, V^{F})$ and proved that it can be specified
by the original game $(N, V)$ under some condition.
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