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1 lntroduction
Throughout this paper, let $E$ be a real Banach space with norm $||\cdot\Vert$ and let $N$ be the set

of all positive integers. Let $C$ be a nonempty closed convex subset of $E$ . Then, a mapping
$T:Carrow C$ is called nonexpansive if

$||Tx-Ty\Vert\leq\Vert x-y||$

for all $x,$ $y\in C$ . Browder [4] considered a sequence $\{x_{n}\}$ as follows:

$x\in C$, $x_{n}=\alpha_{n}x+(1-\alpha_{n})Tx_{n}$ $(\forall n\in N)$ , (1.1)

where $\{\alpha_{n}\}\subset(0,1)$ and he proved the first strong convergence theorem in the framework of a
Hilbert space. Later, Reich [29], TakahashI and Ueda [51], Shioji and Takahashi [39], Nakajo
[21] and others also proved strong convergence theorems of Browder’s type in Hilbert spases or
Banach spaces. On the other hand, Halpern [9] considered the following process: $x_{1}=x\in C$

and

$x_{n+1}=\alpha_{n}x+(1-\alpha_{n})Tx_{n}$ $(\forall n\in N)$ , (1.2)

where $\{\alpha_{n}\}\subset[0,1$). Wittmann [52] proved a strong convergence $th\infty rem$ of Halpern’s type
in the framework of a Hilbert space and then, several authors [2, 10, 11, 12, 13, 14, 17, 21,
33, 35, 38, 39, 40, 50] proved strong convergence theorems of Halpern’s type in Hilbert spaces
or Banach spaces. Recently, Moudafi [20] and Xu [53] considered the following process by the
viscosity approximation method: $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}f(x_{n})+(1-\alpha_{n})Tx_{n}$ $(\forall n\in N)$ , (1.3)

where $\{\alpha_{n}\}\subset[0,1$ ) and $f$ : $Carrow C$ is a contraction.
In this article, for an infinite family $\{T_{n}\}$ of nonexpansive mappings of $C$ into itself such

that $\emptyset\neq\bigcap_{n=1}^{\infty}F(T_{n})$ , we consider a sequence $\{x_{n}\}$ generated by

$x_{n}=\alpha_{n}f(x_{n})+(1-\alpha_{n})T_{n}x_{n}$ $(\forall n\in N)$ ,
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where $\{\alpha_{n}\}\subset(0,1)$ and $f$ : $Carrow C$ is a contraction. Then, we give the conditions of $\{\alpha_{n}\}$

and $\{T_{n}\}$ under which $\{x_{n}\}$ converges strongly to a common fixed point of $\bigcap_{n=1}^{\infty}F(T_{n})$ . We
also consider a sequence $\{x_{n}\}$ generated by

$x_{1}=x\in C$, $x_{n+1}=\alpha_{n}f(x_{n})+(1-\alpha_{n})T_{n}x_{n}$ $(\forall n\in N)$ ,

where $\{\alpha_{n}\}\subset[0,1$ ) and $f$ : $Carrow C$ is a contraction. Then, we give the conditions of $\{\alpha_{n}\}$

and $\{T_{n}\}$ under which $\{x_{n}\}$ converges strongly to a common fixed point of $\bigcap_{n=1}^{\infty}F(T_{n})$ . Using
these results, we improve and extend well-known strong convergence theorems.

2 Preliminaries
Let $E$ be a real Banach space with norm $\Vert$ . Il and let $E^{*}$ denote the dual of $E$ . We denote

the value of $y^{*}\in E^{*}$ at $x\in E$ by $\langle x,y^{*}\rangle$ . The duality mapping $J$ from $E$ into $2^{E}$ is defined
by

$Jx=\{x^{*}\in E^{*} : \langle x,x^{*}\rangle=||x||^{2}=||x^{*}||^{2}\}$

for every $x\in E$ . Let $U=\{x\in E : ||x||=1\}$ . The norm of $E$ is said to be G\^ateaux
differentiable if for each $x,$ $y\in U$ , the limit

$\lim_{tarrow 0}\frac{||x+ty\Vert-\Vert x\Vert}{t}$ (2.1)

exists. In the case, $E$ is called smooth. The norm of $E$ is said to be uniformly G\^ateaux
differentiable if for each $y\in U$ , the limit (2.1) is attained uniformly for $x\in U$ . We know
that if $E$ is smooth, then the duality mapping $J$ is single valued. Further, if the norm of $E$

is uniformly G\^ateaux differentiable, then $J$ is norm to weak* uniformly continuous on each
bounded subset of $E$ . Let $C$ be a closed convex subset of $E$ . A mapping $T$ : $Carrow C$ is said
to be nonexpan8ive if $\Vert$Tx–Ty$||\leq||x-y||$ for all $x,y\in C$ . We denote by $F(T)$ the set
of all fixed points of $T$ . Let $I$ denote the identity operator on $E$ . An operator $A\subset E\cross E$

with domain $D(A)=\{x\in E:Az\neq\emptyset\}$ and range $R(A)=\cup\{Az : z\in D(A)\}$ is said to be
accretive if for each $x_{i}\in D(A)$ and $y_{i}\in Ax_{i},$ $i=1,2$ , there exists $j\in J(x_{1}-x_{2})$ such that
$\langle y_{1}-y_{2},j\rangle\geq 0$ . If $A$ is accretive, then we have

$\Vert x_{1}-x_{2}||\leq||x_{1}-x_{2}+r(y_{1}-y_{2})||$

for all $r>0$ and $y_{i}\in Ax_{i},$ $i=1,2$. If $A$ is accretive, then we can define, for each $r>0$ ,
a nonexpansive single valued mapping $J_{r}$ : $R(I+rA)arrow D(A)$ by $J_{r}=(I+rA)^{-1}$ . It is
called the resolvent of $A$ . We also define the Yosida approximation $A_{r}$ by $A_{r}=(I-J_{r})/r$ .
We know that $A_{r}x\in AJ_{r}x$ for all $x\in R(I+rA)$ and $\Vert A_{r}x\Vert\leq\inf\{\Vert y|| : y\in Ax\}$ for all
$x\in D(A)\cap R(I+rA)$ . We also know that for an accretive operator $A,$ $A^{-1}0=F(J_{r})$ for all
$r>0$, where $A^{-1}0=\{u\in E:O\in Au\}$ . An accretive operator $A$ is said to be m-accretive if
$R(I+rA)=E$ for all $r>0$ . A closed convex subset $C$ of a Banach space $E$ is said to have
normal structure if for each bounded closed convex subset of $K$ of $C$ which contains at least
two points, there exists an element $x$ of $K$ which is not a diametral point of $K$, i.e.,

$\sup\{||x-y|| : y\in K\}<\delta(K)$ ,

where $\delta(K)$ is the diameter of $K$ . It is well known that a closed convex subset of a uniformly
convex Banach space has normal structure and a compact convex subset of a Banach space
has normal structure; see [44] for more details. The following result was proved by Kirk [18].
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Theorem 2.1 (Kirk [18]). Let $E$ be a reflerive Banach space and let $C$ be a nonempty
bounded closed convex subset of $E$ which has nornal structure. Let $T$ be a nonerp ansive
mapping of $C$ into itself. Then $F(T)$ is nonempty.

A closed convex subset $C$ of a Banach space $E$ is said to have the fixed point property for
nonexpansive mappings if every nonexpansive mapping of a nonempty bounded closed convex
subset of $K$ of $C$ into itself has a fixed point in $K$ . If $C$ is a closed convex subset of a reflexive
Banach space which has normal structure, from Theorem 2.1, $C$ has the fixed point property
for nonexpansive mappings.

We denote by $N$ the set of all natural numbers and let $\mu$ be a mean on $N$ , i.e., a continuous
linear functional on $\ell\infty$ satisfying $\Vert\mu\Vert=1=\mu(1)$ . We know that $\mu$ is a mean on $N$ if and
only if

$\inf_{n\in N}a_{n}\leq\mu(f)\leq\sup_{n\in N}a_{n}$

for each $f=(a_{1}, a_{2}, \ldots)\in\ell\infty$ . Occasionally, we use $\mu_{n}(a_{n})$ instead of $\mu(f)$ . Let $f=$
$(a_{1},a_{2}, \ldots)\in\ell\infty$ with $a_{n}arrow a$ and let $\mu$ be a Banach limit on N. Then, $\mu(f)=\mu_{n}(a_{n})=a$ ;
see [44] for more details. $R\iota rther$ , we know the following result [51].

Theorem 2.2 (Takahashi and Ueda [51]). Let $C$ be a nonempty closed convex subset of a
Banach space $E$ with a uniformly G\^ateaux diffemtiable norm, let $\{x_{n}\}$ be a bounded sequence
of $E$ and let $\mu$ be a mean on N. Let $z\in C$ . Then

$\mu_{n}\Vert x_{n}-z\Vert^{2}=\min_{y\in C}\mu_{n}\Vert x_{n}-y\Vert^{2}$

if and only if $\mu_{n}\langle y-z, J(x_{n}-z)\rangle\leq 0$ for all $y\in C$ , where $J$ is the $du$ality mapping of $E$ .
Let $C$ be a nonempty subset of a Banach space $E$ . Let $D$ be a subset of $C$ and let $P$ be a

retraction of $C$ onto $D$ , i.e., $Px=x$ for each $x\in D$ . Then $P$ is said to be sunny [28] if for
each $x\in C$ and $t\geq 0$ with $Px+t(x-Px)\in C$,

$P(Px+t(x-Px))=Px$.
A subset $D$ of $C$ is said to be a sunny nonexpansive retract of $C$ if there exists a sunny
nonexpansive retraction $P$ of $C$ onto $D$ . We know that if $E$ is smooth and $P$ is a retraction
of $C$ onto $D$ , then $P$ is sunny and nonexpansive if and only if for each $x\in C$ and $z\in D$ ,

\langle x--Px, $J(z-Px)\rangle$ $\leq 0$ . (2.2)

For more details, see [44].

3 Conditions for infinite families
Let $E$ be a Banach space and let $C$ be a nonempty closed convex subset of $E$ . Let $\{T_{n}\}$ and

$\mathcal{T}$ be families of nonexpansive mappings of $C$ into itself such that $\emptyset\neq F(\mathcal{T})=\bigcap_{n=1}^{\infty}F(T_{\mathfrak{n}})$ ,
where $F(T_{n})$ is the set of all fixed points of $T_{n}$ and $F(\mathcal{T})$ is the set of all common fixed points
of $\mathcal{T}$ . Then, $\{T_{n}\}$ is said to satisfy the condition (I) with $\mathcal{T}$ if for each bounded sequence $\{z_{n}\}$

in $C$ ,
$\lim_{narrow\infty}||z_{n}-T_{n}z_{n}||=0$
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implies that $\lim_{narrow\infty}\Vert z_{n}-Tz_{n}||=0$ for all $T\in \mathcal{T}$ . In particular, if $\mathcal{T}=\{T\}$ , i.e., $\mathcal{T}$ consists
of one mapping $T$, then $\{T_{n}\}$ is said to satisfy the condition (I) with T. $\{T_{n}\}$ is said to satisfy
the condition (II) if for each bounded sequence $\{z_{n}\}\subset C$ ,

$\lim_{narrow\infty}\Vert z_{n+1}-T_{n}z_{n}||=0$

implies that $\lim_{narrow\infty}||z_{n}-T_{m}z_{n}||=0$ for all $m\in N$ . $\{T_{n}\}$ is said to satisfy the condition (III)
if for every bounded subset $B$ of $C$ ,

$\sum_{n=1}^{\infty}\sup\{\Vert T_{n}x-T_{n+1}x\Vert : x\in B\}<\infty$ .

Proposition 3.1. Let $C$ be a nonempty closed convex subset of a Banach space $E$ and let $T$

be a $none\varphi ansive$ mapping of $C$ into itself with $F(T)\neq\emptyset$ . Then, $\{T_{n}\}$ with $T_{n}=T$ for all
$n\in N$ satisfies the condition (I) with $T$ and the condition (III).

Proof. Put $T_{n}=T$ for all $n\in N$ . Then, it is obvious that $\{T_{n}\}$ satisfies the condition (I) with
$T$ and the condition (III). $\square$

Theorem 3.2 ([24]). Let $C$ be a nonempty closed convex subset of a uniformly convex Banach
space $E$ and let $S$ and $T$ be $none\eta ansive$ mappings of $C$ into itself such that $F(S)\cap F(T)\neq\emptyset$ .
Let $\{\gamma_{n}\}\subset[a, b]$ for some $a,$ $b\in(0,1)$ with $a\leq b$ . Then, $\{T_{n}\}$ with $T_{n}=\gamma_{n}S+(1-\gamma_{n})T$

for all $n\in N$ satisfies the condition (I) with $\frac{S+T}{2}$ Rrrrther, $\{T_{n}\}$ with $T_{n}=\gamma_{n}S+(1-\gamma_{\mathfrak{n}})T$

for all $n\in N$ such that $\sum_{n=1}^{\infty}|\gamma_{n}-\gamma_{n+1}|<\infty$ satisfies the condition (I) with $\frac{S+T}{2}$ and the
condition (III).

The following lemma iv related to Edelstein and O’Brien [6, Theorem 1].

Lemma 3.3 ([48]). Let $C$ be a nonempty closed convex subset of a Banach space $E$ and let
$T$ be a nonerpansive mapping of $C$ into itself with $F(T)\neq\emptyset$ . Let $\{\beta_{n}\}$ be a sequence of real
numbers with $0<a\leq\beta_{n}\leq b<1$ and let $B$ be a nonempty bounded subset of C. Define a
mapping $S_{n}$ of $C$ into itself by

$S_{n}x=S(\beta_{n})x=(1-\beta_{n})x+\beta_{n}Tx$ for all $x\in C$

and put $a_{\mathfrak{n}}= \sup_{x\in B}||TS^{n}x-S^{n}x\Vert$ for all $n\in N$ , where $S^{n}=S_{n}S_{n-1}\cdots S_{1}$ . Then, $a_{n}arrow 0$ .
In particular, for any $m\in N$ ,

$\lim_{narrow\infty}\sup_{x\in}||S_{m}S^{n}x-S^{\mathfrak{n}}x||=0$.

The following lemma was also proved by Takahashi [48].

Lemma 3.4 ([48]). Let $C$ be a nonempty closed convex subset of a Banach space $E$ and let
$T$ be a nonexpansive mapping of $C$ into itself with $F(T)\neq\emptyset$ . For a nonempty bounded subset
$B$ of $C$ and $n\in N$ , define a mapping $f_{n}$ of [$0,1|^{n}$ into (一\infty , $\infty$) by

$f_{n}( \beta_{n}, \beta_{n-1}, \ldots,\beta_{1})=\sup_{x\in B}\Vert TU^{n}x-U^{n}x||$

for all $(\beta_{n},\beta_{n-1}, \ldots, \beta_{1})\in[0,1]^{n}$, where $U^{n}=S(\beta_{n})S(\beta_{n-1})\cdots S(\beta_{1})$ and

$S(\beta_{k})x=(1-\beta_{k})x+\beta_{k}Tx$

for all $x\in C$ and $k\in\{1,2, \ldots, n\}$ . Then, $f_{n}$ is continuous.
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Using Lemmas 3.3 and 3.4 we obtain the following theorem.

Theorem 3.5 ([48]). Let $C$ be a nonempty closed convex subset of a Banach space $E$ and
let $T$ be a nonexpansive mapping of $C$ into itself such that $F(T)$ is nonempty. For any $n\in N$

and $\beta_{n}\in \mathbb{R}$ with $0<a\leq\beta_{n}\leq b<1$ , define $S_{n}$ : $Carrow C$ as follows:
$S_{n}x=(1-\beta_{\mathfrak{n}})x+\beta_{n}Tx$ for all $x\in C$ .

Then, $\{S_{n}\}$ satisfies the condition (I) with $T$ and the condition (II).

We know the following lemma for resolvents of accretive operators; see [44].

Lemma 3.6. Let $E$ be a Banach space and let A C $ExE$ be an accretive operator. Let
$r,$ $\lambda>0$ and $D(A)\subset R(I+\lambda A)$ . Then,

$\frac{1}{\lambda}||J_{r}x-J_{\lambda}J_{r}x\Vert\leq\frac{1}{r}||x-J_{r}x||$

for every $x\in R(I+rA)$ .
Using Lemma 3.6, we also have the following theorem.

Theorem 3.7 ([48]). Let $C$ be a nonempty closed convex subset of a Banach space $E$ and
let $A\subset ExE$ be an accretive operator such that

$\overline{D(A)}\subset C$ 欧 $\cap R(I+\lambda A)$

$\lambda>0$

and $A^{-1}0\neq\emptyset$ . Let $\{\lambda_{n}\}$ be a sequence of real numbers such that $\lambda_{n}\in(0, \infty)$ and $\lim_{narrow\infty}\lambda_{n}=$

$\infty$ . Define $S_{n}=J_{\lambda_{n}}$ for any $n\in N$ . Then, $\{S_{n}\}$ satisfies the condition (I) with $J_{1}$ and the
condition (II), where $J_{1}=(I+A)^{-1}$ . Moreover, $\{T_{n}\}$ with $T_{\mathfrak{n}}=J_{\lambda_{\mathfrak{n}}}(\forall n\in N)$ such that
$\{\lambda_{n}\}\subset(0, \infty),$ $\lim\inf_{narrow\infty}\lambda_{n}>0$ and $\sum_{n=1}^{\infty}|\lambda_{n}-\lambda_{n+1}|<\infty$ satisfies the condition (I) uyith

$\{J_{1}\}$ and the condition (III).

Let $C$ be a nonempty closed convex subset of $E$ . Let $S_{1},$ $S_{2},$
$\ldots$ be inflnite nonexpansive

mappings of $C$ into itself and let $\beta_{1},\beta_{2},$
$\ldots$ be real numbers such that $0\leq\beta_{i}\leq 1$ for every

$i\in N$ . Then, for any $n\in N$ , Takahashi [43] (see also [34, 45, 49]) introduced a mapping $W_{n}$

of $C$ into itself as follows:

$U_{n,n+1}=I$ ,
$U_{n,n}=\beta_{n}S_{n}U_{n,n+1}+(1-\beta_{n})I$ ,

$U_{n,n-1}=\beta_{n-1}S_{n-1}U_{n,n}+(1-\beta_{n-1})I$,

:
$U_{n,k}=\beta_{k}S_{k}U_{n,k+1}+(1-\beta_{k})I$ ,

:.
$U_{\mathfrak{n},2}=\beta_{2}S_{2}U_{n,3}+(1-\beta_{2})I$ ,

$W_{n}=U_{n,1}=\beta_{1}S_{1}U_{n,2}+(1-\beta_{1})I$ .
Such a mapping $W_{n}$ is called the W-mapping generated by $S_{n},$ $S_{n-1},$

$\ldots,$
$S_{1}$ and

$\beta_{n},\beta_{n-1},$ $\ldots,\beta_{1}$ . We know that if $E$ is strictly convex, $\bigcap_{1=1}^{n}F(S_{i})\neq\emptyset,$ $0<\beta_{i}<1$ for
every $i=2,3,$ $\ldots,n$ and $0<\beta_{1}\leq 1$ , then, $F(W_{n})= \bigcap_{i=1}^{n}F(S_{i})$ ; see $[45, 49]$ . We also have
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that if $E$ is strictly convex, $\bigcap_{n=1}^{\infty}F(S_{n})\neq\emptyset$ and $0<\beta_{i}\leq b<1$ for every $i\in N$ for some
$b\in(O, 1)$ , then, $\lim_{narrow\infty}U_{n,k}x$ exists for every $x\in C$ and $k\in N$ ; see [34]. So, we can define a
mapping $W$ of $C$ into itself as follows:

$Wx= \lim_{narrow\infty}W_{n}x=\lim_{narrow\infty}U_{n,1}x$

for every $x\in C$ . Such a $W$ is called the W-mapping generated by $S_{1},$ $S_{2},$
$\ldots$ and $\beta_{1},$ $\beta_{2},$

$\ldots$ .
We have that if $E$ is strictly convex, $\bigcap_{i=1}^{\infty}F(S_{l})\neq\emptyset$ and $0<\beta_{i}\leq b<1$ for every $i\in N$

for some $b\in(0,1)$ , then, $F(W)= \bigcap_{i=1}^{\infty}F(S_{i})$ ; see [34]. We know the following result for the
W-mappings.

Theorem 3.8 ([24]). Let $C$ be a nonempty dosed convex subset of a strictly convex Banach
space E. Let $S_{1},$ $S_{2},$

$\ldots$ be infinite nonexpansive mappings of $C$ into itself with $\bigcap_{n=1}^{\infty}F(S_{n})\neq\emptyset$

and let $\beta_{1},$ $\beta_{2},$
$\ldots$ be real numbers with $0<\beta_{1}\leq b<1$ for $eve\eta i\in N$ for some $b\in(0,1)$ .

Let $W_{n}$ be the W-mapping generated by $S_{n},$ $S_{n-1},$
$\ldots,$

$S_{1}$ and $\beta_{n},$ $\beta_{n-1},$
$\ldots,$

$\beta_{1}$ for every $n\in N$

and let $W$ be the W-mapping generated by $S_{1},$ $S_{2},$
$\ldots$ and $\beta_{1},$ $\beta_{2},$

$\ldots$ . Then, $\{T_{n}\}$ with $T_{n}=$

$W_{n}(\forall n\in N)$ satisfies the condition (I) with $W$ and the condition (III).

4 Strong convergence theorem of Browder’s type
We can prove a strong convergence theorem of Browder’s type for a countable family of

nonexpansive mappings in a Banach space.
Theorem 4.1 ([48]). Let $E$ be a reflexive Banach space with a uniformly G\^ateaux differen-
tiable nom and let $C$ be a nonempty closed convex subset of $E$ which has the fixed point prop-
erty for nonezpansive mappings. Let $T$ be a $none\varphi ansive$ mapping of $C$ into itself and let $\{T_{\dot{n}}\}$

be a family of nonempansive mappings of $C$ into itself which satisfies $\emptyset\neq F(T)=\bigcap_{n=1}^{\infty}F(T_{n})$ .
Further, suppose that $\{T_{n}\}$ satisfies the codition (I) with T. Define a sequence $\{x_{\mathfrak{n}}\}$ in $C$ as
follows:

$x_{n}=\alpha_{n}f(x_{n})+(1-\alpha_{n})T_{n}x_{n}$ , $n=1,2,3,$ $\ldots$ ,

where $\{\alpha_{n}\}\subset(0,1)$ satisfies $\lim_{narrow\infty}\alpha_{n}=0$ and $f$ is a contraction of $C$ into itself. Then,
$\{x_{n}\}$ converges strongly to $u\in F(T)$ , where $u=P_{F(T)}f(u)$ and $P_{F(T)}$ is a sunny $none\varphi ansive$

retraction of $C$ onto $F(T)$ .
We have the following result for nonexpansive mappings by Proposition 3.1 and $Th\infty rem$

4.1.

Theorem 4.2. Let $C$ be a nonempty closed convex subset of a uniformly convex Banach space
$E$ whose norm is uniformly G\^ateaux differentiable and let $T$ be a $none\varphi ansive$ mapping of
$C$ into itself such that $F(T)\neq\emptyset$ . Let $x\in C$ and $\{x_{n}\}$ be a sequence by $x_{n}=\alpha_{\mathfrak{n}}x+(1-$

$\alpha_{n})Tx_{n}(\forall n\in N)$ , where $\{\alpha_{n}\}C(0,1)$ with $\lim_{narrow\infty}\alpha_{n}=0$ . Then, $\{x_{n}\}conve\eta es$ strvngly
to $P_{F(T)}x$ , where $P_{F(T)}$ is a sunny nonexpansive retraction of $C$ onto $F(T)$ .

We also get the following result for nonexpansive mappings by $Th\infty rems3.2$ and 4.1.

Theorem 4.3. Let $C$ be a nonempty dosed convex subset of a uniformly convex Banach space
$E$ whose nomb is uniformly G\^ateaets differentiable and let $S$ and $T$ be $none\varphi ansive$ mappings
of $C$ into itself such that $F(S)\cap F(T)\neq\emptyset$ . Let $x\in C$ and $\{x_{n}\}$ be a sequence by $x_{\mathfrak{n}}=$

$\alpha_{n}x+(1-\alpha_{n})(\gamma_{n}Sx_{n}+(1-\gamma_{n})Tx_{n})(\forall n\in N)$, where $\{\alpha_{n}\}\subset(0,1)$ with $\lim_{narrow\infty}\alpha_{n}=0$ and
$\{\gamma_{n}\}\subset[a, b]$ for some $a,$ $b\in(O, 1)$ with $a\leq b$ . Then, $\{x_{n}\}$ converges strongly to $P_{F(S)\cap F(T)}x$,
where $P_{F(S)\cap F(T)}$ is a sunny nonexpansive retraction of $C$ onto $F(S)\cap F(T)$ .
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We have the following result for accretive operators from Theorems 3.7 and 4.1.

Theorem 4.4. Let $C$ be a nonempty dosed convex subset of a unifornly convex Banach
space $E$ whose norm is uniformly G\^ateaux differentiable and let A $cExE$ be an accretive
operator with $\overline{D(A)}\subset C\subset\bigcap_{\lambda>0}R(I+\lambda A)$ and $A^{-1}0\neq\emptyset$ . Let $x\in C$ and $\{x_{n}\}$ be a
sequence by $x_{n}=\alpha_{n}x+(1-\alpha_{n})J_{\lambda_{n}}x_{n}(\forall n\in N)$ , where $\{\lambda_{n}\}\subset(0, \infty)$ and $\{\alpha_{n}\}\subset(0,1)$ with
$\lim_{narrow\infty}\alpha_{n}=0$ . If $\lim_{narrow\infty}\lambda_{n}=\infty,$ $\{x_{n}\}$ converges strongly to $P_{A^{-1}0}x$, where $P_{A^{-1}0}$ is a
sunny $none\varphi ansive$ retraction of $C$ onto $A^{-1}0$ .

We get the following result for the W-mappings from Theorems 3.8 and 4.1.

Theorem 4.5. Let $C$ be a nonempty dosed convex subset of a unifomly convex Banach space
$E$ whose norm is uniformly G\^ateaux differentiable. Let $S_{1},$ $S_{2},$

$\ldots$ be infinite $none\varphi ansive$

mappings of $C$ into itself utth $F$ $:= \bigcap_{n=1}^{\infty}F(S_{n})\neq\emptyset$ and let $\beta_{1},\beta_{2},$
$\ldots$ be real numbers Utth

$0<\beta_{1}\leq b<1$ for $eve\eta i\in N$ for some $b\in(0,1)$ . Let $W_{n}$ be the W-mapping genemted by
$S_{n},$ $S_{n-1},$

$\ldots,$
$S_{1}$ and $\beta_{n},\beta_{n-1},$ $\ldots,\beta_{1}$ for every $n\in N$ . Let $x\in C$ and $\{x_{n}\}$ be a sequence by

$x_{n}=\alpha_{n}x+(1-\alpha_{n})W_{n}x_{n}(\forall n\in N)$ , where $\{\alpha_{n}\}c(0,1)$ with $\lim_{narrow\infty}\alpha_{n}=0$ . Then, $\{x_{n}\}$

converges strongly to $P_{F}x$, where $P_{F}$ is a sunny nonexpansive retraction of $C$ onto $F$ .

5 Strong convergenoe theorem of Halpern’s type
In this section, we prove two strong convergence theorems of Halpern’s type for a countable

fmily of nonexpansive mappings in a Banach space.

Theorem 5.1 ([48]). Let $E$ be a reflexive Banach space with a uniformly G\^ateaux differen-
tiable norm and let $C$ be a nonempty dosed convex subset of $E$ which has the fixed point prop-
erty for $none\varphi ansive$ mappings. Let $T$ be a $none\varphi ansive$ mapping ofC into itself and let $\{T_{n}\}$

be a family of nonexpansive mappings of $C$ into itself which satisfy $\emptyset\neq F(T)=\bigcap_{\mathfrak{n}=1}^{\infty}F(T_{n})$ .
$R\iota\hslash her$, suppose that $\{T_{n}\}$ satisfies the condition (I) with $T$ and the condition (II). Let $\{x_{n}\}$

be a sequence in $C$ as follows: $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}f(x_{n})+(1-\alpha_{n})T_{n}x_{n}$ , $n=1,2,3,$ $\ldots$ ,

where $\{\alpha_{n}\}\subset[0,1$ ) satisfies $\lim_{narrow\infty}\alpha_{n}=0$ , and $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ , and $f$ is a contraction of $C$

into itself. Then, $\{x_{n}\}$ converges strongly to $u \in F(T)=\bigcap_{n=1}^{\infty}F(T_{n})$ , where $u=Pf(u)$ and
$P$ is a sunny nonexpansive retraction of $C$ onto $F(T)$ .

Using Theorems 3.5 and 5.1, we obtain the following result:

Theorem 5.2 ([48]). Let $E$ be a reflexive Banach space with a uniformly Gat\^eaux differen-
tiable nom. Let $C$ be a nonempty closed convex subset of $E$ which has the fixed point property
for $none\varphi ansive$ mappings and let $T:Carrow C$ be a nonerp ansive mapping such that $F(T)$ is
nonempty and let $f$ be a contraction of $C$ into itself. Define a sequence $\{x_{n}\}$ of $C$ as follows:
$x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}f(x_{n})+(1-\alpha_{n})((1-\beta_{n})x_{\mathfrak{n}}+\beta_{\mathfrak{n}}Tx_{n})$ for all $n\in N$ ,

where $\{\alpha_{n}\}\subset(0,1)$ and $\{\beta_{n}\}\subset(0,1)$ satisfy the following conditions:

$\alpha_{n}arrow 0$ , $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ and $0<a\leq\beta_{n}\leq b<1$ .

Then, the sequence $\{x_{n}\}$ converges strongly to a fixed point of $T$ .
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Theorem 5.2 improves and extends Suzuki’s result [42]. Using Theorems 3.7 and 5.1, we
also obtain the following result which was proved by Takahashi [47].

Theorem 5.3 ([47]). Let $E$ be a reflexive Banach space with a unifomly Gat\^eaux differ-
entiable nom and let $C$ be a nonempty closed convex subset of $E$ which has he fixed point
property for nonexpansive mappings. Let A C $E\cross E$ be an accretive operator with $A^{-1}0\neq\emptyset$

satisfying
$\overline{D(A)}\subset C\subset\bigcap_{t>0}R(I+tA)$

,

where $\overline{D(A)}$ is the closure of $D(A)$ and let $f$ be a contraction of $C$ into itself. Let $\{x_{n}\}$ be a
sequence of $C$ defined by $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}f(x_{n})+(1-\alpha_{n})J_{t_{n}}x_{n}$ for all $n\in N$ ,

where $\{\alpha_{n}\}\subset(0,1)$ and $\{t_{n}\}\subset(0, \infty)$ satish the following conditions:

$\alpha_{n}arrow 0$ , $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ and $t_{n}arrow\infty$ .

Then, the sequence $\{x_{n}\}$ converges strongly to $u\in A^{-1}0$ , where $u=Pf(u)$ and $P$ is a sunny
$none\varphi ansive$ retraction of $C$ onto $A^{-1}0$ .
Theorem 5.4 ([24]). Let $C$ be a nonempty closed convex subset of a unifomly convex Banach
space $E$ whose nom is unifomly G\^ateaux differentiable and let $\{T_{n}\}$ and $T$ be families of
nonexpansive mappings of $C$ into itself which satisfy $\emptyset\neq F(\mathcal{T})=\bigcap_{n=1}^{\infty}F(T_{n})$ . $R\ell\hslash her$,
suppose that $\{T_{n}\}$ satisfies the condition (I) with $\mathcal{T}$ and the condition (III). Let $\{x_{n}\}$ be a
sequence generated as follows: $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x+(1-\alpha_{n})T_{n}(\beta_{n}x+(1-\beta_{n})x_{n})$ $(\forall n\in N)$ ,

where $\{\alpha_{n}\}\subset[0,1$ ) and $\{\beta_{n}\}\subset[0,1$) satisfy $\lim_{narrow\infty}\alpha_{n}=\lim_{narrow\infty}\beta_{n}=0$ and $\prod_{n=1}^{\infty}(1-$

$\alpha_{n})(1-\beta_{n})=0$ . If $\sum_{n=1}^{\infty}(|\alpha_{n}-\alpha_{n+1}|+|\beta_{n}-\beta_{n+1}|)<\infty$, then $\{x_{n}\}$ converges strongly to
$P_{F(\mathcal{T})^{X}}$ , where $P_{F(T)}$ is a sunny nonexpansive retraction of $C$ onto $F(\mathcal{T})$ .

Using Proposition 3.1 and $Th\infty rem5.4$ , we obtain the following theorem:

Theorem 5.5. Let $C$ be a nonempty closed convex subset of a unifomly convex Banach space
$E$ whose nom is unifomly G\^ateaux differentiable and let $T$ be a nonerpansive mapping of $C$

into itsef with $F(T)\neq\emptyset$ . Let $\{x_{n}\}$ be a sequence generated as follows: $x_{1}=x\in C$ and

$x_{\mathfrak{n}+1}=\alpha_{n}x+(1-\alpha_{n})T(\beta_{n}x+(1-\beta_{n})x_{n})$ $(\forall n\in N)$ ,

where $\{\alpha_{\mathfrak{n}}\}c[0,1$ ) and $\{\beta_{n}\}\subset[0,1$) satisfy $\lim_{narrow\infty}\alpha_{n}=\lim_{narrow\infty}\beta_{n}=0,$ $\prod_{n=1}^{\infty}(1-\alpha_{n})(1-$

$\beta_{n})=0$ and $\sum_{n=1}^{\infty}(|\alpha_{n}-\alpha_{n+1}|+|\beta_{n}-\beta_{n+1}|)<\infty$. Then, $\{x_{n}\}$ converges strongly to $P_{F(T)}x$ ,
where $P_{F(T)}$ is a sunny $none\varphi ansive$ retraction of $C$ onto $F(T)$ .

We have the following result [17] for nonexpansive mappings by $Th\infty rems3.2$ and 5.4.
Theorem 5.6. Let $C$ be a nonempty dosed convex subset of a unifomly convex Banach space
$E$ whose nom is unifomly G\^ateaux differentiable and let $S$ and $T$ be $none\varphi ansive$ mappings
of $C$ into itself with $F(S)\cap F(T)\neq\emptyset$ . Let $\{x_{n}\}$ be a sequence generated as follows: $x_{1}=x\in C$

and

$x_{n+1}=\alpha_{n}x+(1-\alpha_{\mathfrak{n}})(\gamma_{n}S+(1-\gamma_{n})T)(\beta_{n}x+(1-\beta_{n})x_{n})$ $(\forall n\in N)$ ,
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where $\{\alpha_{n}\}\subset[0,1$ ) and $\{\beta_{n}\}\subset[0,1$ ) satisfy $\lim_{narrow\infty}\alpha_{n}=\lim_{narrow\infty}\beta_{n}=0,$ $\prod_{n=1}^{\infty}(1-\alpha_{n})(1-$

$\beta_{n})=0$ and $\sum_{n=1}^{\infty}(|\alpha_{n}-\alpha_{n+1}|+|\beta_{n}-\beta_{n+1}|)<\infty$ and $\{\gamma_{n}\}\subset[a, b]$ for some $a,$ $b\in(0,1)$

with $a\leq b$ satisfies $\sum_{n=1}^{\infty}|\gamma_{n}-\gamma_{n+1}|<\infty$ . Then, $\{x_{n}\}$ converges strongly to $P_{F(S)\cap F(T)}x$ ,
where $P_{F(S)\cap F(T)}$ is a sunny nonexpansive retraction of $C$ onto $F(S)\cap F(T)$ .

We have the following result [21] for accretive operators from Theorems 3.7 and 5.4.

Theorem 5.7. Let $C$ be a nonempty closed convex subset of a unifomly convex Banach space
$E$ whose nom is unifomly G\^ateaux differentiable and let $A\subset E\cross E$ be an accretive operator
with $\overline{D(A)}\subset C\subset\bigcap_{\lambda>0}R(I+\lambda A)$ and $A^{-1}0\neq\emptyset$ . Let $\{x_{n}\}$ be a sequence generated as follows:
$x_{1}=x\in C$ and

$x_{\mathfrak{n}+1}=\alpha_{n}x+(1-\alpha_{n})J_{\lambda_{n}}(\beta_{n}x+(1-\beta_{n})x_{n})$ $(\forall n\in N)$ ,

where $\{\alpha_{n}\}\subset[0,1$ ) and $\{\beta_{n}\}\subset[0,1$ ) satisfy $\lim_{narrow\infty}\alpha_{n}=\lim_{narrow\infty}\beta_{n}=0,$ $\prod_{n=1}^{\infty}(1-$

$\alpha_{n})(1-\beta_{n})=0and\sum_{a\lim\inf_{n-\infty}\lambda_{n}>0nd\sum_{n=1}^{\infty}|\lambda_{n}-\lambda_{n+1}|<\infty.Then,\{x_{n}\}convergesstronglytoP_{A^{-1}0^{X}}}n\infty=1(|\alpha_{n}-\alpha_{n+1}|+|\beta_{n}-\beta_{n+1}|)<\infty and\{\lambda_{n}\}\subset(0,\infty)satisfies$

where $P_{A^{-1}0}$ is a sunny nonexpansive retraction of $C$ onto $A^{-1}0$ .
We get the following result [34] for W-mappings by Theorems 3.8 and 5.4.

Theorem 5.8. Let $C$ be a nonempty closed convex subset of a unifomly convex Banach space
$E$ whose nom is unifomly G\^ateaux differentiable. Let $S_{1},$ $S_{2},$

$\ldots$ be infinite nonerpansive
mappings of $C$ into itself with $F$ $:= \bigcap_{n=1}^{\infty}F(S_{n})\neq\emptyset$ and let $\beta_{1},$ $\beta_{2},$

$\ldots$ be real numbers with
$0<\beta_{i}\leq b<1$ for every $i\in N$ for some $b\in(0,1)$ . Let $W_{n}$ be the W-mapping genemted by
$S_{n},$ $S_{n-1},$

$\ldots,$
$S_{1}$ and $\beta_{n},$ $\beta_{n-1},$

$\ldots,$
$\beta_{1}$ for every $n\in N$. Let $\{x_{n}\}$ be a sequence generated as

follows: $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x+(1-\alpha_{n})W_{n}(\gamma_{n}x+(1-\gamma_{n})x_{n})$ $(\forall n\in N)$ ,

where $\{\alpha_{n}\}\subset[0,1$) and $\{\gamma_{n}\}\subset[0,1$) satisfy $\lim_{narrow\infty}\alpha_{n}=\lim_{narrow\infty}\gamma_{n}=0,$ $\prod_{n=1}^{\infty}(1-\alpha_{\mathfrak{n}})(1-$

$\gamma_{n})=0$ and $\sum_{n=1}^{\infty}(|\alpha_{n}-\alpha_{n+1}|+|\gamma_{n}-\gamma_{n+1}|)<\infty$ . Then, $\{x_{n}\}$ converges strongly to $P_{F}x$ ,
where $P_{F}$ is a sunny nonexpansive retraction of $C$ onto $F$ .
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