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Abstract
Some iteration algorithms to prove 8trong convergence of approximating fixed

point sequences for nonlinear mappings are introduced in Hilbert spaces or Ba-
nach spaces. Also, we propose a modified iteration algorithm for Xu’s iteration
process [Bull. Austral. Math. Soc., 74 (2006), 14&151] for nonexpansive map-
pings and establish strong convergence of such an iteration for asymptotically
nonexpansive mappings in smooth and uniformly convex Banach spaces.
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1 Introduction
Let $C$ be a nonempty closed convex subset of a real Banach space $X$ and let $T:Carrow C$

be a mapping. Then $T$ is said to be a Lipschitzian mapping if, for each $n\geq 1$ , there
exists a constant $k_{n}>0$ such that $||T^{n}x-T^{n}y||\leq k_{n}||x-y||$ for all $x,y\in C$
(we may assume that all $k_{n}\geq 1$). A Lipschitzian mapping $T$ is called unifomly
k-Lipschitzian if $k_{\mathfrak{n}}=k$ for all $n\geq 1,$ $none\varphi ansive$ if $k_{n}=1$ for all $n\geq 1$ , and
asymptotically nonexpansive [9] if $\lim_{\mathfrak{n}arrow\infty}k_{n}=1$, respectively. A point $x\in C$ is a
fixed point of $T$ provided $Tx=x$ . Denote by $F(T)$ the set of fixed points of $T$ ; that is,
$F(T)=\{x\in C:Tx=x\}$ . A point $p$ in $C$ is said to be an asymptotic fixed point of $T$

[25] if $C$ contains a sequence $\{x_{n}\}$ which converges weakly to $p$ such that the strong
$\lim_{\wedge}narrow\infty(x_{\mathfrak{n}}-Tx_{n})=0$ . The set of asymptotic fixed points of $T$ will be denoted by
$F(T)$ . We say that a sequence $\{x_{n}\}$ in $C$ is said to be an apprvnimating jfixed point
sequence for $T$ if 11 $x_{n}-Tx_{n}||arrow 0$ .
$\overline{Support\alpha 1}$by Pukyong National University Research Fund in 2006(PK2006-0I8). Corresponding
author.
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Let $X$ be a smooth Banach space and let $X^{*}$ be the dual of $X$ . The function
$\phi:XxXarrow \mathbb{R}$ is defined by

$\phi(y,x)=||y||^{2}-2\langle y, Jx\rangle+||x\Vert^{2}$

for all $x,y\in X$ , where $J$ is the normalized duality mapping from $X$ to $X^{*}$ . We say
that a mappIng $T:Carrow C$ is relatively asymptotically nonexpansive [15] if $F(T)$ is
nonempty, $\hat{F}(T)=F(T)$ and, for each $n\geq 1$ there exists a constant $k_{n}>0$ such that
$\phi(p,2^{m}x)\leq k_{n}^{2}\phi(p,x)$ for $x\in C$ and $p\in F(T)$ , where $\lim_{narrow\infty}k_{n}=1$ . In particular,
$T$ is called $n$latively nonearpansive [19] if $k_{n}=1$ for all $n$ ; see also [3,4,5].

The purpose of this paper is to introduce some recent results and open questions
relating to strong convergence for modified Mann (or Ishikawa) iteration processes.
Firstly, in section 2, we introduce three famous iteration processes introduced by
Halpern [10], Mann [17], and Ishikawa [11], respectively. Next, in section 3, we give
some properties of generalized projection relating to the above function $\phi:XxXarrow$
$\mathbb{R}$ , and furthermore, in section 4, we give some recent results and open questions for
strong convergence of approximating fixed point sequences in Hilbert spaces or general
Banach spaces. Finally, in section 5, we give a positive answer for Question3, that
is, we $modi\phi$ Xu’s iteration (4.12) and prove strong convergence for such a modified
iteration for asymptotically nonexpansive mappings in smooth and uniformly convex
Banach spaces.

2 Three iteration algorithms

Construction of approximating flxed points of nonexpansive mappings is an important
subject in the theory of nonexpansive mappings and its applications in a number of
applied areas, in particular, in image recovery and signal processing. However, the
sequence $\{T^{n}x\}$ of iterates of the mapping $T$ at a point $x\in C$ may not converge
even in the weak topology. Thus three averaged iteration methods often prevail to
approximate a fixed point of a nonexpansive mapping $T$ . The first one is introduced
by Halpern [10] and is defined as follows: Rke an initial guess $x_{0}\in C$ arbitrarily and
define $\{x_{n}\}$ recursively by

$x_{n+1}=t_{n}x_{0}+(1-t_{n})Tx_{n}$ , $n\geq 0$ , (2.1)

where $\{t_{n}\}$ is a sequence in the interval $[0,1]$ .
The second iteration process is now known as Mann’s iteration process [17] which

is defined as
$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})Tx_{n}$ , $n\geq 0$ , (2.2)

where the initial guess $x_{0}$ is taken in $C$ arbitrarily and the sequence $\{\alpha_{n}\}$ is in the
interval $[0,1]$ .

The third iteration process is referred to as Ishikawa’s iteration process [11] which
is defined recursively by

$\{\begin{array}{l}y_{n}=\beta_{\mathfrak{n}}x_{n}+(1-\beta_{n})Tx_{n}x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})Ty_{\mathfrak{n}}\end{array}$ $n\geq 0$ , (2.3)
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where the initial guess $x_{0}$ is taken in $C$ arbitrarily and $\{\alpha_{\mathfrak{n}}\}$ and $\{\beta_{n}\}$ are sequences in
the interval $[0,1]$ . By taking $\beta_{n}=1$ for all $n\geq 0$ in (2.3), Ishikawa’s iteration process
reduces to the Mann’s iteration process (2.2). It is known in [6] that the process
(2.2) may fail to converge while the process (2.3) can still converge for a Lipschitz
pseudo-contractive mapping in a Hilbert space.

In general, the iteration process (2.1) has been proved to be strongly convergent
in both Hilbert spaces [10, 16, 30] and uniformly smooth Banach spaces [23, 26, 32],
while Mann’s iteration (2.2) has only weak convergence even in a Hilbert space [8].

3 Some properties of generalized projections

Let $X$ be a real Banach space with norm $||\cdot||$ and let $X^{*}$ be the dual of $X$ . Denote
by $(\cdot, \cdot)$ the duality product. When $\{x_{n}\}$ is a sequence in $X$ , we denote the strong
convergence of $\{x_{n}\}$ to $x\in X$ by $x_{n}arrow x$ and the weak convergence by $x_{\mathfrak{n}}arrow x$ .
We also denote the weak w-limit set of $\{x_{n}\}$ by $w_{w}(x_{n})=\{x : \exists x_{n_{f}}arrow x\}$ . The
normalized duality mapping $J$ from $X$ to $X$“ is defined by

$Jx=\{x^{*}\in X" : \langle x,x^{*})=||x\Vert^{2}=||x^{*}\Vert^{2}\}$

for $x\in X$ .
A Banach space $X$ is said to be strictly convex if $\Vert(x+y)/2||<1$ for all $x,$ $y\in X$

with $||x\Vert=||y\Vert=1$ and $x\neq y$ . It is also said to be uniformly convex if $||x_{n}-$

$y_{n}||arrow 0$ for any two sequences $\{x_{n}\},$ $\{y_{n}\}$ in $X$ such that II $x_{n}||=||y_{\mathfrak{n}}||=1$ and
$\Vert(x_{n}+y_{\mathfrak{n}})/2||arrow 1$ .

Let $U=\{x\in X : \Vert x\Vert=1\}$ be the unit sphere of $X$ . Then the Banach space $X$

is said to be smooth provided

$\lim_{tarrow 0}\frac{||x+ty\Vert-\Vert x||}{t}$ (3.1)

exists for each $x,$ $y\in U$ . It is also known that if $X$ is uniformly smooth, then $J$ is
uniformly norm-tonorm continuous on each bounded subset of $X$ . Some properties
of the duality mapping have been given in [7, 24, 28]. A Banach space $X$ is said to
have the Kadec-Klee property if a sequence $\{x_{n}\}$ of $Xsatis\Phi ing$ that $x_{n}arrow x\in X$

and $||x_{n}||arrow\Vert x||$ , then $x_{n}arrow x$ . It is known that if $X$ is uniformly convex, then $X$

has the Kadec-Klee property; see $[7, 28]$ for more details.
Let $X$ be a smooth Banach space. Recall that the function $\phi$ : $XxXarrow \mathbb{R}$ is

defined by
$\phi(y,x)=\Vert y\Vert^{2}-2(y,$ $Jx\rangle$ $+||x||^{2}$

for all $x,y\in X$ . It is obvious from the definition of $\phi$ that

$(\Vert y||-||x||)^{2}\leq\phi(y,x)\leq(||y||+||x||)^{2}$ (3.2)

for all $x,y\in X$ . Further, we have that for any $x,y,$ $z\in X$ ,

$\phi(x,y)=\phi(x,z)+\phi(z,y)+2(x-z, J(z)-J(y)\rangle$ .
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In particular, it is easy to see that if $X$ is strictly convex, for $x,$ $y\in X,$ $\phi(y, x)=0$ if
and only if $y=x$ (see, for example, Remark 2.1 of [19]).

Let $X$ be a reflexive, strictly convex and smooth Banach space and let $C$ be a
nonempty closed convex subset of $X$ . Then, for any $x\in X$ , there exists a unique
element $\tilde{x}\in C$ such that

$\phi(\tilde{x},x)=\inf_{z\in C}\phi(z,x)$ .

Then a mapping $Q_{C}$ : $Xarrow C$ defined by $Q_{C}x=\tilde{x}$ is called the generalized prvjection
(see [1, 2, 12]), In Hilbert spaces, notice that the generalized projection is clearly
coincident with the metric projection.

The following result is well known (see, for example, [1, 2, 12]).

Proposition 3.1. ([1, 2, 12]) Let $K$ be a nonempty closed convex subset of a real
Banach space $X$ and let $x\in X$ .

(a) If $X$ is smooth, then, $\tilde{x}=Q_{K}x$ if and only if $\langle\tilde{x}-y, Jx-J\tilde{x}\rangle\geq 0$ for $y\in K$ .
(b) If $X$ is oeflenive, stnctly convex and smooth, then $\phi(y,Q_{K}x)+\phi(Q_{K}x,x)\leq$

$\phi(y,x)$ for all $y\in K$ .

The following subsequent two lemmas are motivated by Lemmas 1.3 and 1.5 of
Martinez-Yanes and Xu [18] in Hilbert spaces, respectively; for detailed proo&, see
[13].

Lemma 3.2. ([13]) Let $C$ be a nonempty closed convex subset of a smooth Banach
space $X,$ $x,y,$ $z\in X$ and $\lambda\in[0,1]$ . Given aZso a real number $a\in \mathbb{R}$ , the set

$D$ $:=\{v\in C : \phi(v,z)\leq\lambda\phi(v,x)+(1-\lambda)\phi(v,y)+a\}$

is closed and convex.

Lemma 3.3. ([13]) Let $X$ be a reflexive, strictly convex and smooth Banach space
with the Kadec-Klee property, and let $K$ be a nonempty closed convex subset of $X$ .
Let $x_{0}\in X$ and $q:=Q_{K}x_{0}$ , where QK denotes the generalized prvjection jfnom $X$

onto K. If $\{x_{n}\}$ is a sequence in $X$ such that $w_{w}(x_{n})\subset K$ and satisfies the condition

$\phi(x_{n},x_{0})\leq\phi(q,x_{0})$

for all $n$ . Then $x_{\mathfrak{n}}arrow q(=Q_{K}x_{0})$ .
Recently, Kamimura and Takahashi [12] proved the following result, which plays

a crucial role in our discussion.

Proposition 3.4. ([12]) Let $X$ be a unifomly convex and smooth Banach space and
let $\{y_{n}\},$ $\{z_{n}\}$ be two sequences of X. $If\phi(y_{n}, z_{n})arrow 0$ and either $\{y_{n}\}$ or $\{z_{n}\}$ is
bounded, then $y_{n}-z_{n}arrow 0$ .

Finally, concerning the set of fixed points of a relatively asymptotically nonexpan-
sive mapping, we know the following result.

132



Strong Convergence

Proposition 3.5. ([15]) Let $X$ be a reflexive, strictly convex and smooth Banach
space with the Kadec-Klee property, let $C$ be a nonempty closed convex subset of
$X$ , and let $T$ : $Carrow C$ be a $\omega ntinuous$ mapping which is relatively asymptotically
nonepmnsive. Then $F(T)$ is closed and convex.

Remark 3.6. Note that if $T$ is relatively nonexpansive, the hypothesis of continuity of
$T$ in Proposition 2.5 is abundant. Also, $F(T)$ is closed and convex in strictly convex
and smooth Banach spaces; see Proposition 2.4 of [19].

4 Strong convergence for approximating fixed point se-
quences

Let $C$ be a nonempty closed convex subset of a real Banach space $X$ and let $T:Carrow C$
be a mapping with $F(T)\neq\emptyset$ . Recalling that a sequence $\{x_{\mathfrak{n}}\}$ in $C$ is said to be an
approximating fixed point sequence for $T$ if 11 $x_{n}-Tx_{n}||arrow 0$ , there are several ways
to construct an approximating fixed point sequences for a nonexpansive mapping
$T$. We now introduce two cases mentioned in Xu [33]. Firstly we can use Banach’s
contraction principle to obtain a sequence $\{x_{n}\}$ in $C$ such that

$x_{n}=t_{\mathfrak{n}}x_{0}+(1-t_{n})Tx_{n}$ , $n\geq 1$

where the initial guess $x_{0}$ is taken arbitrarily in $C$ and $\{t_{n}\}$ is a sequence in the
interval $(0,1)$ such that $t_{\mathfrak{n}}arrow 0$ as $narrow\infty$ , which is called as a Halpern’s iteration
process (2.1). Due to the assumption that $F(T)\neq\emptyset$ , this sequence $\{x_{n}\}$ is bounded
(indeed 11 $x_{\mathfrak{n}}-p||\leq||x_{0}-p||$ for all $p\in F(T)$ ). Hence

$||x_{n}-Tx_{n}||=t_{\mathfrak{n}}||x_{0}-Tx_{n}||arrow 0$

and $\{x_{n}\}$ is an approximating fixed point sequence for $T$.
Secondly, we recall a sequence $\{x_{n}\}$ in $C$ generated by Mann’s iteration process

(2.2) in a recursive way. This sequence $\{x_{n}\}$ is bounded since, for any $p\in F(T)$ , we
have

$||x_{n+1}-p||\leq\alpha_{n}||x_{n}-p\Vert+(1-\alpha_{n})||Tx_{n}-p\Vert\leq||x_{n}-p\Vert$.
That is, $\{|x_{n}-p\Vert\}$ is a nonincreasing sequence. Moreover, since

$||x_{\mathfrak{n}+1}-Tx_{n+1}||$ $=$ $||\alpha_{n}x_{n}+(1-\alpha_{n})Tx_{n}-Tx_{n+1}||$

$=$ $\Vert\alpha_{n}(x_{n}-Tx_{n})+(Tx_{\mathfrak{n}}-Tx_{n+1})\Vert$

$\leq$ $\alpha_{n}||x_{n}-Tx_{n}||+||x_{n}-x_{n+1}||=||x_{n}-Tx_{n}||$ ,

the sequence $\{|x_{n}-Tx_{n}\Vert\}$ is aiso nonincreasing and hence $\lim_{narrow\infty}\Vert x_{\mathfrak{n}}-Tx_{n}||$ exists.
However, it is not known whether this sequence $\{x_{n}\}$ is always an approximating

fixed point sequence for $T$ . Only partial answers have been obtained. Indeed, if the
space $X$ is uniformly convex and if the control sequence $\{\alpha_{n}\}$ satisfies the condition

$\sum_{\mathfrak{n}=0}^{\infty}\alpha_{n}(1-\alpha_{n})=\infty$ ,
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then Reich [22] showed that the sequence $\{x_{n}\}$ generated by Mann’s iteration process
(2.2) is an approximating fixed point sequence for $T$ . For the sake of completeness,
we include a brief proof to this fact. Let $\delta_{X}$ be the modulus of convexity of $X$ . Pick
a $p\in F(T)$ . Assuming II $x_{n}-p\Vert>0$ and noticing 11 $Tx_{n}-p||\leq\Vert x_{n}-p||$ , we deduce
that

$||x_{n+1}-p|| \leq\Vert x_{n}-p||[1-2\alpha_{n}(1-\alpha_{n})\delta_{X}(\frac{||x_{\mathfrak{n}}-Tx_{\mathfrak{n}}||}{||x_{\mathfrak{n}}-p||})]$ .

Hence
$\sum_{n=0}^{\infty}\alpha_{n}(1-\alpha_{n})\Vert x_{n}-p\Vert\delta_{X}(\frac{||x_{\mathfrak{n}}-Tx_{n}\Vert}{\Vert x_{n}-p||})\leq\Vert x_{0}-p\Vert<\infty$ . (4.1)

Put 11 $x_{n}-p\Vertarrow r$ . If $r=0$, we are done. So assume $r>0$ . If $\sum_{n=0}^{\infty}\alpha_{n}(1-\alpha_{n})=\infty$ ,
we obtain from (3.1) that $\delta_{X}(||x_{\mathfrak{n}}-Tx_{n}||/r)arrow 0$ . This implies that 11 $x_{n}-Tx_{n}\Vertarrow 0$

and $\{x_{n}\}$ is an approximating sequence for $T$ .
Recently, numerous attempts to $modi\phi$ the Mann iteration method (2.2) or the

Ishikawa iteration method (2.3) so that strong convergence is guaranteed have recently
been made.

Firstly, motivated by Solodov and Svaiter [27], Nakajo and Tabhashi [21] pro-
posed the following modification of Mann’s iteration process (2.2) for a single nonex-
pansive mapping $T$ with $F(T)\neq\emptyset$ and also proved the existence of an approximating
fixed point sequence for $T$ and strong convergence of such a sequence as follows.

Theorem NT. ([21]) Let $H$ be a red Hilbert space, let $C$ be a nonempty closed
convex subset of $H$ and let $T$ : $Carrow C$ be a $none\varphi ansive$ mapping. Assume that
$F(T)$ is nonempty. Define a sequence $\{x_{n}\}$ in $C$ by the algonthm:

$\{\begin{array}{l}x_{0}\in Cy_{n}=\alpha_{n}x_{n}+(1-\alpha_{n})Tx_{n}C_{n}=\{z\in C : ||y_{n}-z\Vert\leq\Vert x_{n}-z||\}Q_{n}=\{z\in C:\langle x_{n}-z,x_{0}-x_{n}\rangle\geq 0\}x_{n+1}=P_{C_{n}\cap Q_{n}}x_{0}\end{array}$ (4.2)

where $P_{K}$ denotes the meiic projection fivm $H$ onto a dosed convex subset $K$ of $H$ .
If the sequence $\{\alpha_{n}\}$ is bounded above fivm one, then $\{x_{n}\}$ generated by $(4\cdot 2)$ is an
approximating fixed point sequence for $T$ and strvngly convergent to $P_{F(T)}x_{0}$ .

As a special case, taking $\alpha_{n}=0$ for all $n$ in Theorem NT, the above iteration
scheme (4.2) reduces to the following:

$\{\begin{array}{l}x_{0}\in CC_{n}=\{z\in C:||Tx_{n}-z\Vert\leq||x_{n}-z\Vert\}Q_{\mathfrak{n}}=\{z\in C:\langle x_{n}-z,x_{0}-x_{n}\}\geq 0\}x_{n+1}=P_{C_{n}\cap Q_{n}}x_{0}\end{array}$ (4.3)

Recently, Kim and Xu [14] generalized Nakajo and Takahashi’s iteration process
(4.2) to the following iteration process for an asymptotically nonexpansive mapping
$T$ in a Hilbert space, under the hypothesis of boundedness of $C$ .
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Theorem KX. ([14]) Let $C$ be a nonempty bounded closed convex subset of a Hilbert
space $H$ and let $T:Carrow C$ be an asymptotically nonexpansive mapping. Assume that
$\{\alpha_{n}\}$ is a sequence in $(0,1)$ such that $\alpha_{n}\leq a$ for some $0<a<1$ . Define a sequence
$\{x_{n}\}$ in $C$ by the folloutng algorithm:

$\{\begin{array}{l}x_{0}\in Cy_{n}=\alpha_{n}x_{n}+l-x_{n}C_{n}=\{z\in C : \Vert y_{n}-z||^{2}\leq\Vert x_{n}-z\Vert^{2}+\theta_{n}\}Q_{n}=\{z\in C:\langle x_{\mathfrak{n}}-z, x_{0}-x_{n}\rangle\geq 0\}x_{n+1}=P_{C_{n}\cap Q_{n}}x_{0}\end{array}$ (4.4)

where
$\theta_{n}=(1-\alpha_{n})$ ( $k_{n}^{2}$ –l) $($diam $C)^{2}arrow 0$ as $narrow\infty$ . (4.5)

Then $\{x_{n}\}$ is an appro vimating fixed point sequence for $T$ and strvngly converg ent to
$P_{F(T)}x_{0}$ .

Very recently, Martinez-Y.anez and Xu [18] generalized Nakajo and Ihkahaehi’s
iteration process (4.2) to the following modification of Ishikawa’s iteration process
(2.3) for a nonexpansive mapping $T:Carrow C$ with $F(T)\neq\emptyset$ in a Hilbert space $H$ :

$\{\begin{array}{l}x_{0}\in Cy_{n}=\alpha_{n}x_{n}+(1-\alpha_{n})Tz_{n}z_{n}=\beta_{n}x_{n}+(1-\beta_{n})Tx_{n}C_{n}=\{v\in C||y_{n}-v||^{2}\leq||x_{n}-v||^{2}+(1-\alpha_{\mathfrak{n}})(\Vert z_{n}||^{2}-||x_{n}||^{2}+2\langle x_{\mathfrak{n}}-z_{n},v\rangle)\}Q_{n}=\{v\in C:\langle x_{n}-v,x_{n}-x_{0})\leq 0\}x_{n+1}=P_{C_{n}\cap Q_{\pi}}x_{0}\end{array}$ (4.6)

and proved that the sequence $\{x_{n}\}$ generated by (4.6) converges strongly to $P_{F(T)}x_{0}$

provided the sequence $\{\alpha_{n}\}$ is bounded above Rom one and $\lim_{narrow\infty}\beta_{n}=1$ .
Kamimura and Ibkahashi [12] considered the problem of finding an element $u$ of

a Banach space $X$ satisfying $0\in Au,$ where $A\subset XxX^{*}$ is a maximal monotone
operator and $X$“ is the dual space of $X$ . They studied the following algorithm:

$\{\begin{array}{l}x_{0}\in X0=v_{n}+\frac{1}{r_{n}}(Jy_{\mathfrak{n}}-Jx_{n}),v_{\mathfrak{n}}\in Ay_{n}H_{n}=\{z\in X : \langle y_{\mathfrak{n}}-z,v)\geq 0\}W_{n}=\{z\in C:\langle x_{n}-z, Jx_{0}-Jx_{n}\rangle\geq 0\}x_{n+1}=Q_{H_{n}\cap W_{n}}x_{0}\end{array}$ (4.7)

where $J$ is the duality mapping on $X,$ $\{r_{\mathfrak{n}}\}$ is a sequence of positive real numbers and
QK denotes the generalized projection from $X$ onto a closed convex subset $K$ of $X$ ; see
the section 2 for more details. They proved that if $A^{-1}0\neq\emptyset$ and $\lim\inf_{narrow\infty}r_{n}>0$,
then the sequenoe $\{x_{n}\}$ generated by (4.7) converges strongly to an element of $A^{-1}0$ .
This generalizes the result due to Solodov and Svaiter [27] in a Hilbert space.

135



T. H. Kim

Question 1. Can we carry Theorem $NT$ in Hilbert spaces over more general Banach
spaces?

The crucial key to solve this question is to show the convexity of $C_{n}$ in (4.2) in
general, which is not easy to prove it in Banach spaces. Professor H. K. Xu raised
the following question to me:

Question 2. Let $C$ be a nonempty dosed convex subset of a normed linear space $X$ .
For any choice of $a,b\in C$ ,

$C_{a,b}=\{z\in C : \Vert a-z\Vert\leq||b-z||\}$

$i\ell$ a convex subset of $C$ if and only if $X$ is a Hilbert space.
Note that if $X$ is a Hilbert space, then

$z\in C_{a,b}\Leftrightarrow$ $\langle b-a, z\rangle\leq\frac{1}{2}(||b||^{2}-\Vert a||^{2})$ .

So, $C_{a,b}$ is convex in $C$ . However, the proof of the converse still remains open.
$Owi\backslash ng$ to these troubles, we need another hypotheses for mappings $T$ . In view of this
point, for relatively nonexpansive mappings, Matsushita and Takahashi [19] recently
extended Nakajo and Takahashi’s iteration process (4.2) to general Banach spaces as
follows.

Theorem MT. ([19]) Let $X$ be a uniformly convex and unifomly smooth Banach
space, let $C$ be a nonempty closed convex subset of $X$ , let $T:Carrow C$ be a relatively
$none\varphi ansive$ mapping utth $F(T)\neq\emptyset$, and let $\{\alpha_{n}\}$ be a sequence of real numbers
such that $0\leq\alpha_{n}<1$ and $\lim\sup_{narrow\infty}\alpha_{n}<1$ . Suppose that $\{x_{n}\}$ is $\dot{\varphi}ven$ by

$\{\begin{array}{l}x0\in Clyy_{n}=J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{n})JTx_{n})H_{n}=\{z\in C : \phi(z, y_{n})\leq\phi(z, x_{n})\}W_{n}=\{z\in C:\langle x_{n}-z, Jx_{0}-Jx_{n}\rangle\geq 0\}x_{n+1}=Q_{H_{n}\cap W_{n}}x_{0}\end{array}$ (4.8)

where $J$ is the nomalized duality mapping. Then $\{x_{n}\}$ generated by $(4\cdot 8)$ is an
approximating fixed point sequence for $T$ and strongly convergent to $Q_{F(T)}x_{0}$ , where
$Q_{K}$ denotes the generalized prvojection ffom $X$ onto a closed convex subset $K$ of $X$ .

As a special case, taking $\alpha_{n}=0$ for all $n$ in (4.8), the iteration scheme reduces to
the following:

$\{\begin{array}{l}x_{0}\in CH_{n}=\{z\in C:\phi(z,Tx_{n})\leq\phi(z,x_{n})\}W_{n}=\{z\in C:\langle x_{n}-z,Jx_{0}-Jx_{n}\rangle\geq 0\}x_{n+1}=Q_{H_{n}\cap W_{n}}x_{0}\end{array}$ (4.9)

which generalizes the iteration scheme (4.3) in a Hilbert spaces. Also, they established
that even though the condition of uniformly smooth of $X$ is only weakened by the
smooth condition of $X$ , the sequence $\{x_{n}\}$ generated by (4.9) still converges strongly
to $Q_{F(T)}x_{0}$ .
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Recently, Kim and Takahashi [15] generalized Matsushita and Takahashi’s iter-
ation process (4.8) to the following iteration process for a uniformly k-Lipschitzian
mapping $T$ which is relatively asymptotically nonexpansive.

Theorem KT. ([15]) Let $X$ be a unifomly convex and unifomly smooth Banach
space, let $C$ be a nonempty closed convex subset $ofX$ and letT: $Carrow C$ be a unifomly
k-Lipschitzian mapping which is relatively asymptotically none rpansive. Assume that
$F(T)$ is a nonempty bounded subset of $C$ and $\{\alpha_{n}\}$ and $\{\beta_{n}\}$ are sequences in $[0,1]$

such that $\lim\sup_{narrow\infty}\alpha_{n}<1$ and $\beta_{n}arrow 1$ . Define a sequence $\{x_{n}\}$ in $C$ by the
ilgorithm:

$\{\begin{array}{l}x_{0}\in Cy_{n}=J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{n})JT^{n}z_{n})z_{n}=\beta_{n}x_{n}+(1-\beta_{\mathfrak{n}})T^{n}x_{n}H_{n}=\{v\in C : \phi(v,y_{n})\leq\alpha_{n}\phi(v,x_{n})+(1-\alpha_{n})\phi(v,z_{n})+\eta_{n}\}W_{n}=\{v\in C:\langle x_{n}-v, Jx_{n}-Jx_{0}\rangle\leq 0\}x_{\mathfrak{n}+1}=Q_{H_{n}\cap W_{\mathfrak{n}}}x_{0}\end{array}$ (4.10)

where $J$ is the normalized duality mapping and
$\eta_{n}=(1-\alpha_{n})(k_{\mathfrak{n}}^{2}-1)\cdot\sup\{\phi(p,z_{n}) : p\in F(T)\}$ .

Then $\{x_{n}\}$ generated by $(4\cdot 1\theta)$ is an appmnimating fixed point sequence for $T$ and
strongly convergent to $Q_{F(T)}x_{0}$ , where $Q_{F(T)}$ is the generalized prvjection fiom $X$

onto $F(T)$ .
Let $C$ be a closed convex subset of a Hilbert space $H$ and let $T$ : $Carrow C$ be

an asymptotically nonexpansive mapping with $F(T)\neq\emptyset$ . Then, after noticing that
$\phi(x,y)=||x-y\Vert^{2}$ for all $x,y\in H$ , we see that II $T^{n}x-T^{n}y\Vert\leq k_{n}\Vert x-y||$ is equivalent
to $\phi(T^{n}x,T^{n}y)\leq k_{n}^{2}\phi(x,y)$ . It is therefore easy to show that every asymptotically
nonexpansive mapping is both uniformly k-Lipschitzian and relatively asymptotically
nonexpansive. In fact, it suffices to show that $\hat{F}(T)\subset F(T)$ . The inclusion follows
easily from the well-known demiclosedness at zero of $I-T$ (c.f., [31]), where $I$ denotes
the identity operator.

Can we remove the hypothesis of boundedness of $C$ in Theorem KX in Hilbert
spaces? The question still remains open. However, if $F(T)$ is a nonempty bounded
subset of $C$, we now give a partial answer with the following $\eta_{\mathfrak{n}}$ instead of $\theta_{n}$ in (4.5),
that is, a Hilbert space’s version in a case when $\beta_{n}=1$ for all $n$ in Theorem KT.

Corollary KT. ([15]) Let $C$ be a nonempty closed convex subset of a Hilbert space $H$

and let $T:Carrow C$ be an asymptotically $none\varphi an\epsilon\dot{j}ve$ mapping. Assume that $F(T)\dot{w}$

a nonempty bounded subset of C. Assume also that $\{\alpha_{n}\}$ is a sequenoe in $[0,1]$ such
that $\lim\sup_{narrow\infty}\alpha_{n}<1$ . Define a sequence $\{x_{n}\}$ in $C$ by the following algonthm:

$\{\begin{array}{l}x_{0}\in Cy_{n}=\alpha_{n}x_{n}+(1-\alpha_{n})T^{\iota}x_{n}C_{n}=\{z\in C : ||y_{n}-z\Vert^{2}\leq||x_{n}-z||^{2}+\eta_{n}\}Q_{n}=\{z\in C:(x_{n}-z,x_{0}-\cdot x_{n})\geq 0\}x_{n+1}=P_{C_{n}\cap Q_{n}}x_{0}\end{array}$ (4.11)
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where
$\eta_{n}=(1-\alpha_{n})(k_{n}^{2}-1)\cdot\sup\{\Vert x_{n}-p\Vert^{2} : p\in F(T)\}$,

then $\{x_{n}\}$ in $C$ generated by $(4\cdot 11)$ is an appronimating fixed point sequence for $T$

and strongly convergent to $P_{F(T)}x_{0}$ .
Very recently, Xu [33] also constructed the following iteration to guarantee strong

convergence for a single nonexpansive mapping $T:Carrow C$ with $F(T)\neq\emptyset$ in Banach
spaces.

Theorem X. ([33]\rangle Let $X$ be a real smooth and unifomly convex Banach space, $C$

a nonempty closed convex subset of $X$ , and $T:Carrow C$ a $none\varphi ansive$ mapping such
that $F(T)\neq\emptyset$ . Define a sequence $\{x_{n}\}$ in $C$ by the algorithm:

$\{\begin{array}{l}x_{0}\in Carbitmr\dot{\tau}lyH_{n}=\overline{co}\{v\in C:\Vert v-Tv\Vert\leq t_{n}\Vert x_{n}-Tx_{n}\Vert\}W_{n}=\{v\in C:\{x_{n}-v, Jx_{0}-Jx_{n}\rangle\geq 0\}x_{n+1}=Q_{H_{n}\cap W_{n}}x_{0}\end{array}$ (4.12)

where $\{t_{n}\}$ is a sequence in $(0,1)$ so that $t_{n}arrow 0$ . Then $\{x_{n}\}$ is an apprvstmating
fxed point sequence for $T$ and strvngly converg ent to $Q_{F(T)}x_{0}$ , where $Q_{F(T)}$ is the
genemlized prvjection fivm $X$ onto $F(T)$ .

The following question is naturally invoked.

Question 3. Does Theorem $X$ still remain true for asymtotically none zpansive map-
pings?.

5 Proof of Question 3

In this section, we give a positive answer for Question 3 which is reformulated as
follows.

Theorem 5.1. Let $X$ be a unifomly convex and smooth Banach space, let $C$ be
a nonempty closed convex subset of $X$ and let $T$ : $Carrow C$ be an asymptotically
$none\eta ansive$ mapping. Assume that $F(T)$ is nonempty. Define a sequence $\{x_{n}\}$ in
$C$ by the algorithm:

$\{\begin{array}{l}x_{0}\in CH_{n}=\overline{co}\{v\in C;\Vert v-T^{n}v||\leq t_{n}||x_{n}-Tx_{n}||\}W_{n}=\{v\in C:\langle x_{n}-v, Jx_{0}-Jx_{n}\rangle\geq 0\}x_{n+1}=Q_{H_{n}\cap W_{n}}x_{0}\end{array}$

where $\{t_{\mathfrak{n}}\}$ is a sequence in $(0,1)$ so that $t_{n}arrow 0$ . Then $\{x_{n}\}$ is an appmnimating
fixed point sequence for $T$ and strvngly converyent to $Q_{F(T)}x_{0}$ , where $Q_{F(T)}$ is the
genemlized projection ffom $X$ onto $F(T)$ .
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Proof. First we show that $F(T)\subset H_{n}\cap W_{n}$ and $x_{n+1}$ is well defined. As a matter
of fact, it is clear that $F(T)\subset H_{\mathfrak{n}}$ for all $n$ . Also, clearly, $F(T)\subset W_{0}=C$ and
$x_{1}=P_{H_{0}\cap W_{0}}x_{0}$ is well defined. Assume now that $F(T)\subset W_{n}$ and $x_{n+1}$ is well
defined. We inductively need to prove that $F(T)\subset W_{n+1}$ and $x_{n+2}$ is well defined.
In fact, since $x_{n+1}=Q_{H_{n}\cap W_{n}}x_{0}$ , by Proposition 3.1 (a), we get

$\langle x_{n+1}-z, Jx_{0}-Jx_{n+1}\rangle\geq 0$ (5.1)

for all $z\in H_{n}\cap W_{n}$ . As $F(T)\subset H_{n}\cap W_{n},$ $(5.1)$ holds for all $z\in F(T)$ . Thus,
$F(T)\subset W_{n+1}$ and $x_{n+2}=Q_{H_{n+1}\cap W_{n+1}}x_{0}$ is well defined.

Now we claim that $\{x_{n}\}$ is bounded. As a matter of fact, by the definition of $W_{n}$ ,
we have $x_{n}=Q_{W_{n}}x_{0}$ and so

$\phi(x_{n},x_{0})\leq\phi(y,x_{0})$

for all $y\in W_{n}$ . In particular, since $F(T)\subset W_{n}$ , we get

$\phi(x_{n},x_{0})\leq\phi(p,x_{0})$ $(p\in F(T))$ . (5.2)

This implies the boundedness of $\{x_{n}\}$ and so is $\{T^{m}x_{n} : n, m\geq 1\}$ . Next we show that
11 $x_{n+1}-x_{n}||arrow 0$ . For this end, noticing that $x_{n}=Q_{W_{n}}x_{0}$ and $x_{n+1}\in H_{n}\cap W_{n}\subset W_{n}$ ,
we get

$\phi(x_{n},x_{0})=\inf_{y\in W_{\hslash}}\phi(y,x_{0})\leq\phi(x_{n+1},x_{0})$

which shows that the sequence $\{\phi(x_{n},x_{0})\}$ is increasing (and also bounded) and so
$1{\rm Im}_{narrow\infty}\phi(x_{n},x_{0})$ exists. Applying (b) of Proposition 3.1, we have

$\phi(x_{n+1}, x_{n})$ $=$ $\phi(x_{n+1}, Q_{W_{n}}x_{0})\leq\phi(x_{n+1},x_{0})-\phi(Q_{W_{n}}x_{0},xo)$

$=$ $\phi(x_{n+1},x_{0})-\phi(x_{n}, x_{0})arrow 0$ .
By Proposition 3.4, we have

$||x_{\mathfrak{n}+1}-x_{n}\Vertarrow 0$. (5.3)
We now claim that $\{x_{n}\}$ is an approximating fixed point sequence of $T$ . Let $\tilde{C}$ be a
bounded closed convex subset of $C$ which contains all the points $x_{n}$ and $T^{m}x_{n}$ for all
$n,$ $m$ and let $d=diam(\tilde{C})$ . Since $x_{n+1}\in H_{n}$ and by deflnition of $H_{n}$ , we have

$\Vert x_{n+1}-\sum_{i=1}^{\ell}\lambda_{i*\Vert}<t_{n}$ (5.4)

where $\lambda_{i}>0$ satisfying $\sum_{i=1}^{\ell}\lambda_{i}=1$ and each $z_{i}\in C$ satisfies
$\Vert a-T^{\iota}z_{1}||<t_{\mathfrak{n}}||x_{n}-T^{*}x_{*}||\leq dt_{n}$. (5.5)

Then it follows &om Lemma 2.4 of [29] that there exists a continuous strictly in-
creasing function $\gamma$ (depending only on d) with $\gamma(0)=0$ and such that for any fixed
$n\geq 1$ ,

$\Vert T^{n}(\sum_{1=1}^{m}\mu_{1}\cdot v_{1)}-\sum_{i=1}^{m}\mu_{i}T^{n}v_{i}\Vert$ (5.6)

$\leq$ $k_{n} \gamma^{-1}(\max_{1\leq:_{\dot{\theta}\leq m}}[\Vert v_{i}-v_{j}\Vert-\Vert T^{n}v_{i}-T^{n}v_{j}\Vert]+(1-k_{n}^{-1})d)$
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for all integers $m>1$ , all points $\{v_{i}\}$ in $\tilde{C}$ , and all nonnegative numbers $\{\mu_{i}\}$ such that
$\sum_{i=1}^{m}\mu_{i}=1$ . Then, since $t_{n}arrow 0$ and $k_{n}arrow 1$ , it follows easily from $(5.4)-(5.6)that$

$| I^{x_{n+1}-T^{n+1}x_{n+1}||\leq}\Vert’:\Vert\sum_{i=1}^{\ell}\lambda_{i}(z_{i}-T^{n+1}z_{i})\Vert$

$+ \Vert\lambda T^{n+1}z_{i}-T^{n+1}(\sum_{i=1}^{\ell}\lambda:*)\Vert+\Vert T^{n+1}(\sum_{i=1}^{\ell}\lambda_{th})-T^{n+1}x_{n+1}\Vert$

$\leq$ $(t_{n}+k_{n+1}t_{n})+dt_{n+1}\dotplus$

$k_{n+1} \gamma^{-1}(\max_{1\leq i_{\dot{\theta}\leq\ell}}[||z_{i}-z_{j}\Vert-\Vert T^{n+1}z_{i}-T^{n+1}z_{j}\Vert]+(1-k_{n+1}^{-1})d)$

$\leq$ $(1+k_{n+1})t_{n}+dt_{n+1}+$

$k_{n+1} \gamma^{-1}(_{1}\max_{\leq 1\dot{o}\leq\ell}[\Vert z_{i}-T^{n+1_{Z:}}||-||z_{j}-T^{n+1}z_{j}||]+(1-k_{n+1}^{-1})d)$

$\leq$ $(1+k_{n+1})t_{n}+dt_{\mathfrak{n}+1}+k_{n+1}\cdot\gamma^{-1}[d(2t_{n+1}+1-k_{n+1}^{-1})]arrow 0$ .

This combined with (5.3) yields

$\Vert x_{\mathfrak{n}}-Tx_{n}\Vert$ $\leq$ $\Vert x_{n}-x_{n+1}||+\Vert x_{\mathfrak{n}+1}-I^{m+1}x_{\mathfrak{n}+1}\Vert$

$+\Vert T^{n+1}x_{\mathfrak{n}+1}-T^{n+1}x_{\mathfrak{n}}\Vert+||T^{n+1}x_{n}-Tx_{n}\Vert$

$\leq$ $(1+k)||x_{n}-x_{\mathfrak{n}+1}\Vert+\Vert x_{n+1}-T^{n+1}x_{\mathfrak{n}+1}\Vert$

$+k||T^{n}x_{n}-x_{n}\Vertarrow 0$ , (5.7)

recalling that $T$ is k-uniformly Lipschitzian for some $k>0$ . Therefore, $\{x_{\mathfrak{n}}\}$ is an
approximating fixed point sequence for $T$ .

Finally let us prove that $x_{n}arrow q=Q_{F(T)}x_{0}$ . As a similar proof of Theorem 2 in
[31], we have $w_{w}(x_{n})\subset F(T)$ . Indeed, let $p\in\omega_{w}(x_{n})$ , i.e., there exists a subsequence
$\{x_{n_{k}}\}$ of $\{x_{\mathfrak{n}}\}$ such that $x_{n_{k}}arrow p$. Set $z_{k}:=x_{n_{k}}$ for all $k$ . We shall prove that
$T^{n}xarrow x$ . Since $z_{k}arrow x$ , for each integer $k\geq 1$ , there exists a convex combination
$y_{k}= \sum_{i=1}^{m(k)}\lambda_{1}^{(k)}z_{i+k},$ $\lambda_{1}^{(.k)}\geq 0$ and $\sum\lambda_{i}^{(k)}=1$ , such that

$\Vert y_{k}-x\Vert<1/k$. (5.8)

By (5.7), since 11 $x_{n}-Tx_{n}\Vertarrow 0$, it easily follows that

$||z_{k}-T^{n}z_{k}||arrow 0$ (5.9)

as $karrow\infty$ for any flxed $n\geq 1$ . Note that, by (5.9), for arbitrary given $\epsilon>0$ , there
exists $N=N(\epsilon,n)$ such that $||z_{k}-T^{n}z_{k}\Vert<\epsilon$ for all $k\geq N$ . Applying (5.6) again,
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together with this fact, yields

$\Vert y_{k}-\mathcal{I}^{n}y_{k}||$ $\leq$ $\Vert\sum_{i=1}^{m\langle k)}\lambda_{i}^{\langle k)}(h+k-T^{n}z_{i+k})\Vert+\Vert\sum_{1=1}^{m(k)}\lambda_{i}^{(k)}T_{h+k}^{n}-\mathcal{I}^{m}y_{k}\Vert$

$\leq$ $\Vert z_{1+k}-T_{h+k}^{n}||+k_{n}\gamma^{-1}(\max_{1\leq 1\dot{\theta}\leq m(k)}[||\wedge+k-z_{j+k}||-\Vert T^{n_{Z:+k}}$

$-\mathcal{I}^{m}z_{j+k}||]+(1-k_{n}^{-1})d)$

$\leq$ $||z_{\dot{\iota}+k}-T^{n_{Z:+k}} \Vert+k_{n}\gamma^{-1}(_{1}\max_{\leq 1j\leq m(k)}[||z_{1+k}-T^{n}z_{1+k}||$

$+\Vert z_{j+k}-T^{n}z_{j+k}||]+(1-k_{n}^{-1})d)$

$\leq$ $\epsilon+k_{n}\gamma^{-1}(2\epsilon+(1-k_{n}^{-1})d)$ $(k\geq N)$ . (5.10)

Ihking the limit in (5.10) as $karrow\infty$ , we obtain for each $n\geq 1$

$\lim_{karrow}\sup_{\infty}||y_{k}-\mathcal{I}^{m}y_{k}\Vert\leq k_{n}\gamma^{-1}((1-k_{\mathfrak{n}}^{-1})d)$ . (5.11)

Noticing that

$\Vert x-T^{n}x||$ $\leq$ $||x-y_{k}||+||y_{k}-T^{n}y_{k}||+||T^{n}y_{k}-T^{n}x||$

$\leq$ $(1+k_{\mathfrak{n}})||x-y_{k}||+||y_{k}-T^{\cdot}y_{k}\Vert$

$\leq$ $(1+k_{\mathfrak{n}})/k+||y_{k}-T^{n}y_{k}||$ (by using (5.8))

and (5.11), it follows that

$\lim_{narrow}\sup_{\infty}\Vert x-T^{n}x||\leq\gamma^{-1}(0)=0$.

This shows that $T^{n}xarrow x$ and so $x\in F(T)$ . Let $q=Q_{F\langle T)}x_{0}$ . By (5.2), we see that
$\phi(x_{n}, x_{0})\leq\phi(q, x_{0})$ for all $n$ . Applying Lemma 3.3 (with $K=F(T)$), we conclude
that $x_{n}arrow q=Q_{F(T)}x_{0}$ . 口
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