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1. Introduction
In this paper we discuss about the convergence of the internal transition
layers of the Allen-Cahn type equation with multiple-well potential of the
form $\cdot$

$u_{t}^{\epsilon}- \Delta u^{\epsilon}+\frac{1}{\epsilon^{2}}f_{\epsilon}(u^{\epsilon})-=0$ in $\mathbb{R}^{N}\cross(0, T)$ (1.1)

with initial condition

$u^{\epsilon}(\cdot, 0)=u_{0}\in BUC(\mathbb{R}^{N})$ , (1.2)

where $f_{\epsilon}$ is of the form

$f_{\epsilon}(r)=$ -sin $r-.\epsilon a(1+\cos r))$ (1.3)

and $a$ is a constant.
The equation (1.1) is called the Allen-Cahn equation if $f_{\epsilon}(u)=2u(u^{2}\backslash -1),$ .

which is introduced by [AC] as the equation which describes the motion. of
grain boundaries in a material. The function $u\mapsto 2u(u^{2}-..1)$ is the derivative
of the bistable potential of the form $urightarrow(u^{2}-1)^{2}/2,$. Here “bistable” means
that the potential has exactly two local minima at $u=\pm 1$ . By tending
$\epsilonarrow\cdot 0$ we have a sharp interface, which is called internal transition layers,
from the solution of the Allen-Cahn equation. The asymptotic analysis as
in, for example, [RSK] yields that the internal transition layers approximates
the motion of interfaces $\Gamma_{t}$ which moves by

$V=-H$ on $\dot{\Gamma}_{t}$ ,

where $V$ is the normal velocity of $\Gamma_{t}$ , and $H$ is the mean curvature in the
direction of the minus of the outer unit normal vector field of $\Gamma_{t}$ . The rigorous
proof of the convergence is given by [ESS]. This result is extended to the
case that the interface moves by the mean curvature flow with $s$ome driving.
force by, for example, [BSS], or the Neumann boundary value broblems by
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[KKR]. That is also extended to the anisotropic case by, $\cdot$for example, [EISI],
[EIPS], [EIS2], [GOS]. The set theoretic approach is provided by [BS]. It is
extended to the Neumann type boundary value problems by [BD].

The function $f_{\epsilon}$ is the derivative of the multiple-well potential $F_{\epsilon}$ of the
form

$F_{\epsilon}(r)=\cos u-\epsilon a(r+\sin r)$ . (1.4)

This potential has local minima at $u=(2k+1)\pi$ for $k\in \mathbb{Z}$ . Thereby the
solution $u^{\epsilon}$ has a lot of internal transition layers in a neighborhood of the sets
$\{x;u^{\epsilon}(x, t)=2\pi k\}$ for $k\in \mathbb{Z}$ . The aim of this paper is to give an brief idea
to prove the convergence of internal transition layers to the interface which
moves by the mean curvature flow equation with driving force of the form

$V=-H+\cdot A$ on $\Gamma_{t}$ ,

where $A$ is a constant. We remark that our problem is essentially same as
that of the Allen-Cahn equation if we assume that the initial data $u_{0}$ satisfies
$\sup_{\mathbb{R}^{N}}|u_{0}|\leq\pi$ because of the comparison principle. .Therefore we assume
that $u_{0}$ satisfies

$-\pi\leq u_{0}\leq 3\pi$ in $\mathbb{R}^{N},$

$\inf_{\mathbb{R}^{N}}u_{0}<0$ , and $\sup_{R}u_{0}>2\pi$ . (1.5)

In this case the internal transition layers appear in a neighborhood of the
sets $\{x;u^{\epsilon}(x, t)=2\pi k\}$ for $k=0$ and $k=1$ , respectively.

For the proof, we adjust the method of the generation of interface by
X. Chen in [C], and the construction of supersolutions for estimating the
internal transition layers by L. C. Evans, H. M. Soner and P. E. Souganidis
in [ESS]. The crucial difference between our problem and the Allen-Cabn
equation is the way to construct a supersolution. The usual way to construct
a supersolution as in [ESS] provides only the estimate of the motion of the
internal transition layers in a neighborhood of $\{x;u^{\epsilon}(x, t)=2\pi\}$ from above.
This is because of the height of the usual traveling wave. To overcome this.
difficulty, we construct a supersolution with twice heights of layers by using
the property of a closedness of a viscosity supersolutions under infimum.

R. Jerrard proved the another type of the convergence result in [J]. He
consider the equation of the form

$u_{t}^{\epsilon}- \Delta u^{\epsilon}+\frac{1}{\epsilon^{1\dotplus\gamma}}f_{\epsilon}(\frac{u^{\epsilon}}{\epsilon^{1-\gamma}})=0$ in $\mathbb{R}^{N}\cross(0, T)$

for $\gamma\in[0,1]$ Instead of (1.1). He proved a locally uniform convergence of
$u= \lim_{\epsilonarrow 0}u^{\epsilon}$ provlded that $\gamma\in(0, \gamma_{0})$ for some $\gamma_{0}$ , and $u$ solve the mean
curvature flow equation if $\gamma>0$ .
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2. Equations

2.1. Allen-Cahn equation with multi-well potential

Consider the Cauchy problem (1.1) with initial condition (1.2). The usual
theory of viscosity solutions are valid for $(1.1)-(1.2)$ . Especially, we have
the comparison principle, the existence and uniqueness of viscosity solutions.
See [CIL] for the proof of them.

For sufficiently small $\epsilon>0,$ the function $f_{\epsilon}\in C^{\infty}(\mathbb{R}/2\pi \mathbb{Z})$ has exactly
three zeros in $[-\pi, \pi]$ at $r=\pm\pi$ and $r=\alpha_{\epsilon}$ . By straightforward calculation
we have

$f_{\epsilon}’(\pm\pi)=1,$ $f_{\epsilon}’(\alpha_{\epsilon})=-1$ ,

and $f_{\epsilon}$ satisfies
$f_{\epsilon}>0$ in $(-\pi, \alpha_{\epsilon}),$ $f_{\epsilon}<0$ in $(\alpha_{\epsilon}, \pi)$ .

Therefore the $f_{\epsilon}$ satisfies the assumptions for the nonlinear term of the Allen-
Cahn equation in $[-\pi, \pi]$ . Since $f_{\epsilon}$ is periodic with the period $2\pi$ , several
internal transition layers appear. By the assumption (1.5), the internal tran-
sition layers appear around the sets $\{x;u^{\epsilon}(x, t)=2\pi k\}$ for $k=0,1$ .

Remark 2.1. In this paper we give an explicit form of $f_{e}$ . Fortunately, $we$

can extend the results of this paper to the case that $f_{\epsilon}=f_{0}+\epsilon f1$ , and satisfy
the condition

(i) $f_{0},$ $f_{1}\in C^{\infty}(\mathbb{R}/2\pi \mathbb{Z})_{f}$

(ii) $f_{0}(r)$ has exactly three zeros in $[-\pi, \pi]$ at $r=\pm\pi$ and $r=0_{j}f_{1}(r)$ has
exactly two zeros in $[-\pi, \pi]$ at $r=\pm\pi$ ,

(iii) $f_{0}’(\pm\pi)>0$ and $f’(O)<0$ ,

$(iv) \int_{-\pi}^{\pi}f_{0}(r)dr=0$ .

The important property is that the periods of $f_{0}$ and $f_{1}$ are same.

2.2. Asymptotic expansion

To find an interface evolution equation for the internal transition layers, we
consider the formal asymptotic expansion of solutions of (1.1) as in [RSK].
Set

$u^{\epsilon}(x, t)=Q(x, t,.\epsilon^{-1}\varphi(x, t)-\epsilon^{-2}ct)+\epsilon P(x, t, \epsilon^{-1}\varphi(x, t)-\epsilon^{-2}ct)_{:}+O(\epsilon^{2})$
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for a neighborhood of $\Gamma_{k}^{\epsilon}(t)$ $:=\{x;u^{\epsilon}(x, t)=2\pi k\}$ for $k=0,1$ . Then we
obtain

$u_{t}^{\epsilon}- \Delta u^{\epsilon}+\frac{1}{\epsilon^{2}}f_{\epsilon}(u^{e})=\epsilon^{-2}I_{0}+\epsilon^{-1}I_{1}+O(1)$ ,

where the order 0(1) is as $\epsilonarrow 0$ ,

$I_{0}=-|\nabla\varphi|^{2}Q’’-cQ’+f_{0}(Q)$ ,
$I_{1}=-|\nabla\varphi|^{2}P’’-cP’+f_{0}(Q)P+Q’(\varphi_{t}-\Delta\varphi)-2\langle\nabla Q’, \nabla\varphi\rangle+f_{1}(Q)$ ,

$Q’=Q_{\sigma}$ and $P’=P_{\sigma}$ for $Q=Q(x, t, \sigma)$ and $P=P(x, t, \sigma)$ , respective.ly. The
equation (1.1) yields that $I_{0}=I_{1}=0$ . We now assume that $Q(x, t, \pm\infty)=$

$\pm\pi+2\pi k$ for $k=0,1$ . Then the methods in [RSK, Section 3] yields that

$\varphi_{t}-\Delta\varphi+\frac{(\nabla^{2}\varphi\nabla\varphi,\nabla\varphi\rangle}{|\nabla\varphi|^{2}}-A_{k}|\nabla\varphi|=0$,

where
$A_{k}=- \frac{\int_{-\pi+2\pi k}^{\pi+2\pi k}f_{1}(u)du}{\int_{\mathbb{R}}(q_{k}’(\sigma))^{2}d\sigma}.$ , (2.1)

and $q_{k}$ is the solution of the ordinary differential equation of the fortn

$q_{k}’’=f_{0}(q)$ in $\mathbb{R}$ ,
$q_{k}(\pm\infty)=\pm\pi.+2\pi k$ ,

$q_{k}(0)=2\pi k$ .

We remark that$\cdot$

$q_{k}=q_{0}+2\pi k$ and $\int_{-\pi+2\pi k}^{\pi+2\pi k}f_{1}(u)du=\int_{-\pi}^{\pi}f_{1}(u)d’u$ , which
yields $A_{k}=A_{0}=:A$ .

Here and hereafter we consider the level set equation for $V=-H+A$ of,
the form

$u_{l}- \Delta u+\frac{\langle\nabla^{2}u\nabla u,\nabla u\rangle}{|\nabla u|^{2}}-A|\nabla u|=0$ in $\mathbb{R}^{N}\cross(0, T)$ (2.2)

with initial condition
$u(\cdot, 0)=u_{0}$ in $\mathbb{R}^{N}$ . (2.3)

The usual methods for viscosity solution are valid for (2.2). See [CGG], [ES],
or [G] for more precise properties.
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3. Convergence result
We prepare some notations to state our main result.

Let $u$ be a solution of $(2.2)arrow(2.3)$ . For $k=0,1$ , we define

$I_{t}^{k}=$ $\{x;u(x, t)>2\pi k\}$ ,
$O_{t}^{k}=$ $\{x;u(x, t)<2\pi k\}$ ,
$\Gamma_{t}^{k}=$ $\{x;u(x, t)=2\pi k\}$ .

We also define for $\dot{k}=0,1$ ,

$I^{k}$ $=$ $\{(x, t)\in \mathbb{R}^{N}\cross(0, T);u(x, t)>2\pi k\}$ ,
$O^{k}$ $=$ $\{(x, t)\in \mathbb{R}^{N}\cross(0, T);u(x, t)<2\pi k\}$ .

Theorem 3.1. Let $u^{\epsilon}$ be a viscosity solution of (1.1) with $u^{\epsilon}(\cdot, 0)=u_{0}$ .
Assume that the initial data $u_{0}$ satisfies (1.5). Let $u$ be a viscosity solution
of (2.2) with $u(\cdot, 0)=u_{0}$ . Then we have the followings.

(i) For $k=0,1$ and any compact subset $K\in I^{k}$ , we have

$\varliminf_{\epsilon,.arrow 0}\sup_{(x,t)\in K}u^{\epsilon}(x, t)\geq(2k+1)\pi$
.

(ii) For $k=0,1$ and any compact subset $k\in O_{f}^{k}$ we have

$\frac{\prime}{\lim_{\epsilonarrow 0}}\inf_{(x,t)\in K}u^{\epsilon}(x, t)\leq(2k-1)\pi$ .

By Theorem 3.1 and the comparison principle it is easy to obtain

Corollary 3.2. Under the same hypothesis of Theorem 3.1 we have

$u^{\epsilon}arrow(2k+1)\pi$ in $I^{k}\cap O^{k+1}$

for $k.=-1,0,1$ locally uniformly as $\epsilonarrow 0$ .

The proof of Theorem 3.1 is devided into two steps, which are described
in the following two lemmas.

42



Lemma 3.3. Let $u^{\epsilon}$ be a viscosity solution of (1.1) with $u^{\epsilon}(\cdot)0)=u_{0}$ . As-
sume that $u_{0}$ satisfies (1.5). Then, for any $b>0$ and $m>0$ , there exist
positive constants $\overline{\epsilon}=\overline{\epsilon}(b, m)$ and $\tau_{0}=\tau_{0}(b)$ such that

$u^{\epsilon}(x, \tau_{0}\epsilon^{2}|\log\epsilon|)\geq(2k+1)\pi-b\epsilon$

(3.1)
if $x\in\{y\in \mathbb{R}^{N};u_{0}(y)\geq 2\pi k+m\}$ ,

$u^{\epsilon}(x, \tau_{0}\epsilon^{2}|\log\epsilon|)\leq(2k\cdot-1)\pi+b\epsilon$

(3.2)
if $x\in\{y.\in \mathbb{R}^{N};u_{0}(y)\leq 2\pi k-m\}$

for $k=0,1$ provided that $\epsilon\in(0.\overline{\epsilon})$ .

Lemma‘ 3.4. Let $u$ be a viscosity solution of (2.2) with $u(\cdot.’ 0)=u_{0}\in$

$BUC(\mathbb{R}^{N})$ . Let $\Gamma_{t}=\{x;u(x, t)=C\}$ with $C\in \mathbb{R}$ and $d(x, t)$ be a fimction
defined by

$d(x, t)=\{\begin{array}{ll}dist (x, \Gamma_{t}) if x\in\{yju(y., t)\geq C\},-dist(x, \Gamma_{t}) if x\in\{y;u(y, t)<,C\}.\end{array}$

For any $\beta\geq 0$ , there exist a constant $\epsilon_{0}=\epsilon(\delta)>0$ and a viscosity superso-
.lution $v=v^{\epsilon,\delta}$ of (1.1) provided that $\epsilon\in(0, \epsilon_{0})$ satisfying

(i) $v(x, t)\geq 3\pi$ if $(x,.t)$ satisfies $d(x, t)>\beta$ ,

(ii) $v(x, t)\leq-\pi+\epsilon\tilde{C}$ if $(x, t)$ satisfies $d(x, t)<-\beta$ ,

where $\tilde{C}$ is a positive constant.

We remark that we can construct a viscosity subsolution satisfying (i) and
(ii) of Lemma 3.4 by similar way, so that we only mentioned $about\backslash$ the
construction of a supersolution.

The crucial observation for our problem is Lemma 3.4. In the method
of the construction as in [ESS] we consider the traveling wave $q:\mathbb{R}arrow \mathbb{R}$

satisfying
$q”+cq’=f_{\epsilon}(q)$ in $\mathbb{R}$ , (3.3)

where $c$ is a constant determined only by $f_{e}$ . By applying the method as
in [AW, Section 4], we obtain the existence and uniqueness of $(q, c)$ with
$q(\pm\infty)=2\pi k\pm\pi$ for $k\in \mathbb{Z}$ . When we try to construct a supersolution as
in Lemma 3.4, we attempt to consider the traveling wave $q$ satisfying (3.3)
with the boundary condition

$q(-\infty)=-\pi,$ $q\cdot(\infty)=3\pi$
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instead of $q(\pm\infty)=2\pi k\pm\pi$ . Unfortunately, however, there is no such a
solution if $a=0$ , i.e., $f_{\epsilon}=-$ sin $u$ (see $[0]$ ). To overcome this difficulty, we
adjust the method in [ESS] for our problem.

Let $q$ be a traveling wave satisfying (3.3) with $q(\pm\infty)=\pm\pi$ . Let $\eta$ be a
truncating function as in [ESS] satisfying $\eta\in C^{\infty}(\mathbb{R})$ ,

$i$

$\eta(\sigma)=\{\begin{array}{ll}\sigma-\delta if \sigma>\delta/2,-\delta if \sigma<\delta/4,\end{array}$

$0\leq\eta’\leq C_{\eta}$ in $\mathbb{R}$ ,
$|\eta’’|\leq C_{\eta}/\eta$ in $\mathbb{R}$

’

for $\delta>0$ , where $C_{\eta}$ is a numerical donstant. Define $\psi_{j}^{\epsilon,b}$ : $\mathbb{R}^{N}\cross[0, \infty$ ) $arrow \mathbb{R}$

by

$\psi_{j}^{\epsilon,b}(x, t)=q(\frac{\eta(d(x,t))+K_{1}t+jb}{\epsilon})+2\pi.(1-j)+\epsilon(K_{2}+jb)$ .

We remark that $q(s)+2\pi$ is a solution of (3.3) with $q(\pm\infty)=2\pi\pm\pi.$ By$\cdot$

give more precise estimates in the proof of [ESS, Theorem 3.2], we obtain
the following lemma.

Lemma 3.5. Under the hypothesis on above, for $\delta>0$ , there $e$ rzst positive
constants $b_{0}=b_{0}(\delta),$ $K_{1}=K_{1}(\delta)$ and $K_{2}=K_{2}(\delta)$ such that, for any $b\in$

$(0, b_{0})_{f}$ there exists $\hat{\epsilon}=\hat{\epsilon}(\delta, b)$ such that $\psi_{j}^{\epsilon,b}$ is a viscosity supersolution of
(1.1) provided that $\epsilon.\in(0,\hat{\epsilon})$ and $j=0,1$ .

We define $v(x, t)$ by

$v(x, t)=\{\begin{array}{ll}\min\{\psi_{0}^{\epsilon,b}(x, t), \psi_{1}^{\epsilon}’(x, t)\} if \eta(d(x,t))+K_{1}t\leq-b/2,\psi_{0}^{\epsilon,b}(x, t) if \eta(d(x,t))+K_{1}t>-b/2.\end{array}$

Since $q(\sigma)arrow\pm\pi$ expomentially fast as $\sigmaarrow\pm\infty$ , we observe that

$\psi_{0}^{\epsilon,b}<\psi_{1}^{\epsilon,b}$ on $\{(y, s);\eta(d(y, s))+K_{1}s\in[-3b/4, -b/4]\}$

for sufficiently small $b$ and $\epsilon$ . Then we observe that $v$ is a viscosity superso-
lution of (1.1). Moreover we observe that

$v(x, t)>3\pi$ for $(x, t)\in\{(y, s);\eta(d(y, s))+K_{1}s>b/4\}$ ,
$v(x, t)<-\pi+\epsilon\overline{C}$ for $(x, t)\in\{(y,\cdot s);\eta(d(y,.s))+K_{1}s<-5b/4\}$,

where $\tilde{C}$ is a positive constant.
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