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Abstract

We consider nonlinear diffusion of some substance in a bounded $C^{2}$ con-
tainer. Suppose that, initially, the container is empty and, at all times, its
boundary is kept at density 1. We show that if the container contains a proper
sub- $C^{2}$ domain having constant boundary density at each given time, then
the container must be a ball.
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1 Introduction

This is based on the author’s recent work with R. Magnanini [MS5]. In the previous
paper [MS3], we considered the solution $u=u(x,t)$ of the following initial-boundary
value problem for the heat equation:

$u_{t}=\Delta u$ in $\Omega\cross(0, +\infty)$ , (1.1)

$u=1$ on $\partial\Omega\cross(0, +\infty)$ , (1.2)

$u=.O$ on $\Omega\cross\{0\}$ , (1.3)

where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$ with $N\geq 2$ , and we obtained
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Theorem 1.1 ([MS3]) Let $\Omega$ be a bounded domain in $\mathbb{R}^{N},$ $N\geq 2$ , satisjfying the
exterior sphere condition and suppose $t_{P,i}\dot{h}$at $D$ is a domain, with boundaw $\partial D$ , sat-
isfying the interior cone condition, and such that $\overline{D}\subset\Omega$ .

Assume that the solution $u$ of problem $(1.1)-(1.3)$ satisfies the following condi-
tion:

$u(x, t)=a(t)$ , $(x, t)\in\partial D\cross(0, +\infty)$ , (14)

for some function $a:(0, +\infty)arrow(0, +\infty)$ . Then $\Omega$ must be a ball.

We recall that $\Omega$ satisfies the exteri or sphere condition if for every $y\in\partial\Omega$ there
exists a ball $B_{r}(z)$ such that $\overline{B_{r}(z)}\cap\overline{\Omega}=\{y\}$ , where $B_{r}(z)$ denotes an open ball
centered at $z\in \mathbb{R}^{N}$ and with radius $r>0$ . Also, $D$ satisfies the interior cone
condition if for every $x\in\partial D$ there exists a finite right {

$spherical\cdot coneK_{x}$ with
vertex $x$ such that $K_{x}\subset\overline{D}$ and $K_{x}\cap\partial D=\{x\}$ .

Here we introduce an outline of the proof of Theorem 1.1 by using a result in
[MS4]. The proof is essentially based on three ingredients.

One ingredient is a result of Varadhan [Va] which shows that, as $tarrow 0^{+}$ , the
$function-4t\log u(x, t)$ converges uniformly on $\overline{\Omega}$ to the function $d(x)^{2}$ , where

$d(x)=dist(x, \partial\Omega)$ , $x\in\Omega$ . (1.5)

Here in order to apply the result of Varadhan we have used the assumption that $\tilde{\Omega}$

satisfies the exterior sphere condition. Hence, by (1.4) there exists $R>0$ satisfying

$d(x)=R$ for every $x\in\partial D$ . (1.6)

The second ingredient is a couple of balance laws proved in [MS1] and [MS2]
(see [MS3] for another proof). For $x_{0}\in\Omega,$ $\nabla u(x_{0},t)=0$ for every $t>0$ if and only
if

$\int_{\partial B_{f}(x_{0})}(x-x_{0})u(x, t)dS_{x}=0$, for every $r\in[0,$ $d(x_{0}))$ and every $t>0$ . (1.7)

With the aid of the interior cone condition of $D$ , by combining (1.7) and (1.6)
with the initial behavior of $u$ proved In Varadhan [Va], we see that for every point
$x_{0}\in\partial D$ there exists a time $t_{0}>0$ satisfying $\nabla u(x_{0}, t_{0})\neq 0$ , which implies that $\partial D$
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is analytic. Thus, by using the exterior sphere condition of $\Omega$ again, we conclude
that $\partial\Omega$ is analytic and parallel to $\partial\dot{D_{i}}$ . Another balance law is stated as follows:
Let $G$ be a domain in $\mathbb{R}^{N}$ . For $x_{0}\in G$ , a solution $v=v(x, t)$ of the heat equation

in $G\cross(O, +\infty)$ is such that $v(x_{0}, t)=0$ for every $t>0$ if and only if

$\int_{\partial B_{r}(x_{0})}v(x, t)dS_{x}=0$
, for every $r\in[0$ , dist $(x_{0}, \partial G))$ and every $t>0$ . (1.8)

Let $P,$ $Q\in\partial\Omega$ be two distinct points, and let $p,$ $q\in\partial D$ be the points such that

$\overline{B_{R}(p)}\cap\partial\Omega=\{P\}$ and $\overline{B_{R}(q)}\cap\partial\Omega=\{Q\}$ .

Consider the function $v=v(x, t)$ defined by

$v(x, t)=u(x+p, t)-u(x+q, t)$ for $(x, t)\in B_{R}(0)\cross(0, +\infty)$ .

Since $v8atisfies$ the heat equation and $v(O, t)=a(t)-a(t)=0$ for every $t>0$ , it
follows from (1.8) that

$t^{-}4 \underline{N}H\int_{B_{R}(p)}u(x, t)dx=t^{-+}N\int_{B_{R}(q)}u(x, t)dx$ for every $t>0$ .

Therefore, by using a result in [MS4], letting $tarrow 0^{+}$ yields that

$C(N) \{\prod_{j=1}^{N-1}[\frac{1}{R}$ 一 $\kappa_{j}(P)]\}^{-z}1=C(N)\{\prod_{j=1}^{N-1}[\frac{1}{R}-\kappa_{j}(Q)]\}^{-z}1$ (1.9)

where $\kappa_{j}(x),j=1,$ $\ldots$ , $N-1$ , denotes the j-th principal curvature of the surface
.

$\partial\Omega$ at the point $x\in\partial\Omega$ , and where $C(N)$ is a positive constant depending only on
$N$ (see [MS4], Theorem 4.2).

The third ingredient is Aleksandrov’s sphere theorem [Alek], p. 412. A special
case of this theorem is the well-known Soap-Bubble Theorem (see also [R]). Finally,

by applying Aleksandrov’s sphere theorem to the fact that $\prod_{j=1}^{N-1}[\frac{1}{R}-\kappa_{j}(x)]$ is con-

stant for $x\in\partial\Omega$ , we conclude that $\partial\Omega$ must be a sphere. (See [MS3] and [MS4] for
the details.)

We observe that Varadhan’s result, a couple of balance laws, and Aleksandrov’s
sphere theorem play a key role in the above proof. Among these we can not expect
a couple of balance law.$s$ for nonlinear diffusion equations.
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In this article we consider the solution $u=u(x, t)$ of the following initial-
boundary value problem for the $nonline_{i}^{i}ar$ diffusion equation:

$u_{t}=\Delta\phi(u)$ in $\Omega\cross(0, +\infty)$ , (1.10)

$u=1$ on $\partial\Omega\cross(0, +\infty)$ , (1.11)

$u=0$ on $\Omega\cross\{0\}$ , (1.12)

where $\Omega$ is a bounded $C^{2}$ domain in $\mathbb{R}^{N}$ with $N\geq 2$ , and where $\phi:\mathbb{R}arrow \mathbb{R}$ is such
that

$\phi\in C^{2}(\mathbb{R})$ , $\phi(0)=0$ , and. (1.13)

$0<\delta_{1}\leq\phi’(s)\leq\delta_{2}$ for $s\in \mathbb{R}$ , (1.14).

where $\delta_{1},$ $\delta_{2}$ are positive constants. By the maximum principle we get

$0<u<1$ in $\Omega\cross(0, +\infty)$ . (115)

Let $\Phi=\Phi(s)$ be a function defined by

$\Phi(s)=\int_{1}^{s}\frac{\phi’(\xi)}{\xi}d\xi$ for $s>0$ . (1.16)

Note that if $\phi(s)\equiv s$ , then $\Phi(s)=\log s$ .
Our result corresponding to Varadhan’s one is

Theorem 1.2 ([MS5]) Let $u$ be the solution of problem (1.10)-(1.12). Then, $as$

$tarrow 0^{+}$ , the hnction $-4t\Phi(u(x, t))$ converges to the function $d(x)^{2}$ uniformly on
every compact set in $\Omega$ .

The symmetry result corresponding to Theorem 1.1 is

Theorem 1.3 ([MS5]) Let $D$ be a bounded $C^{2}$ domain in $\mathbb{R}^{N}$ satishing $\overline{D}\subset\Omega$ .
Assume that the solution $u$ of problem (1.10)-(1.12) satisfies the following con-

dition:
$u(x, t)=a(t)$ , $(x, t)\in\partial D\cross(0, +\infty)$ , (117)

for some $\mu nctiona:(0, +\infty)arrow(0, +\infty).$ Then $\Omega$ must be a ball.
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Remark. Let us give two remarks concerning Theorem 1.1 and Theorem 1.3. Since
we can not expect the balance laws $f_{or_{\ell}}^{\backslash }$,nonlinear equations and we used the balance
law (1.7) to obtain the regularity of $\partial D$ , we assume that both $\partial D$ and $\partial\Omega$ are $C^{2}$

smooth in Theorem 1.3. So, as far as problem $(1.1)-(1.3)$ is concerned, Theorem

1.1 is stronger than Theorem 1.3. Furthermore, in problem $(1.1)-(1.3)$ , the vame
method of the proof as in Theorem 1.1 also yields

Theorem 1.4 Let $\Omega$ be a bounded domain in $\mathbb{R}^{N},$ $N\geq 2$ , satisfy ing the exterior

sphere condition and suppose that $D$ is a domain, with boundary $\partial D$ , satisfy ing the

interior cone condition, and such that $\overline{D}\subset\Omega$ . Let $\Gamma$ be a connect$ed$ component of
$\partial D$ satisfying

dist $(\Gamma, \partial\Omega)=dist(\partial D, \partial\Omega)$ .

Assume that the solution $u$ ofproblem $(1.1)-(1.3)$ satisfies the folloutng condition:

$u(x, t)=a(t)$ , $(x, t)\in\Gamma\cross(0, +\infty)$ , (118)

for $8ome$ function a : $(0, +\infty)arrow(0, +\infty)$ . Then $\Omega$ must be either a ball or an
annulus.

2 Outline of proofs of Theorems 1.3 and 1.2

In this section we give an outline of proofs. For the details, see [MS5].

Proof of Theorem 1.3. By using Theorem 1.2, we get (1.6). Furthermore, with

the aid of the $C^{2}$ smoothness assumption of both $\partial D$ and $\partial\Omega$ , we see that $\partial\Omega$ is
parallel to $\partial D$ . Then, by applying the method of moving planes to problem (1.10)-

(1.12) directly, we conclude that $\cdot$

$\Omega$ must be a ball. See Serrin [Ser] for the method
of moving planes.

Proof of Theorem 1.2. Let $g=g(s)$ be the inverse function of $\Phi$ . Then

$s= \Phi(g(s))=\int_{1}^{g(s)}\frac{\phi’(\xi)}{\xi}d\xi$ .

Differentiating in $s$ yields
$g(s)=\phi’(g(s))g’(s)$ . (2.1)
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As in Freidlin and Wentzell [FW], for $0<\epsilon<1$ , define the function $u^{\epsilon}=u^{\epsilon}(x, t)$ by
$\tau_{-}$

$u^{\epsilon}(x, t)=u(x, \epsilon^{2}x)$ br $(x, t)\in\Omega\cross(0, +\infty)$ .

Then $u^{\epsilon}$ satisfies

$u_{t}^{\epsilon}=\epsilon^{2}\Delta\phi(u^{\epsilon})$ in $\Omega\cross(0, +\infty)$ , (2.2)

$u^{e}=1$ on $\partial\Omega\cross(0, +\infty)$ , (2.3)

$u^{\epsilon}=0$ on $\Omega\cross\{0\}.$
. (2.4).

Moreover, we define the function $v^{\epsilon}=v^{\epsilon}(x, t)$ by

$v^{\epsilon}(x, t)=-\epsilon^{2}\Phi(u^{\epsilon}(x, t))$ for $(x, t)\in\Omega\cross(O, +\infty)$ .

Then $u^{\epsilon}=g(-\epsilon^{-2}v^{\epsilon})$ . With the aid of (2.1), we have

$v_{t}^{\epsilon}=\epsilon^{2}\phi’\Delta v^{\epsilon}-|\nabla v^{\epsilon}|^{2}$ in $\Omega\cross(0, \infty)$ , (2.5)

$v^{\epsilon}=0$ on $\partial\Omega x(0, \infty)$ , (2.6)

$v^{\epsilon}=+\infty$ on $\Omega\cross\{0\}$ , (2.7)

where $\phi’=\phi’(g(-\epsilon^{-2}v^{\epsilon}))$ .
Consider the limit problem as $\epsilonarrow 0^{+}$

$v_{t}=-|\nabla v|^{2}$ in $\Omega\cross(0, \infty)$ , (2.8)

$v=0$ on $\partial\Omega\cross(0, \infty)$ , (2.9)

$v=+\infty$ on $\Omega\cross\{0\}$ . (2.10)

This problem has a unique viscosity solution

$v(x, t)= \frac{1}{4t}d(x)^{2}$ . (2.11)

The uniqueness is proved by Crandall, Lions, and Souganidis $[CrLS]$ . With the help

of Crandall, Ishii, and Lions $[CrIL]$ we can prove that the function given by (2.11)

is a viscosity solution of problem $(2.8)-(2.10)$ .
By applying the comparison principle to $u(x, t+h)$ and $u(x, t)$ for $h>0$ , we get

$u_{t}>0$ and $\Delta\phi(u)>0$ in $\Omega\cross(0, +\infty)$ . (2.12)
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Set $w=\phi(u)$ . Then $w_{t}=\phi’(u)\Delta w$ and by (1.14)

$\delta_{1}\triangle w\leq w_{t}\leq\delta_{2^{i’}}\Delta w$ in $\Omega\cross(0, +\infty)$ . (2.13)

Let $w_{j}(j=1,2)$ solve the problems:

$(w_{j})_{t}=\delta_{J}’\Delta(w_{j})$ in $\Omega\cross(0, +\infty)$ , (2.14)

$w_{j}=\phi(1)$ on $\partial\Omega\cross(0, +\infty)$ , (2.15)

$w_{j}=0$ on $\Omega x\{0\}$ . $(2.l6)$

Hence, in view of (2.13), from the comparison principle we get

Lemma 2.1
$w_{1}\leq w\leq w_{2}$ in $\Omega\cross(0, +\infty)$ .

We observe that the following hold:

$\delta_{1}s\leq\phi(s)\leq\delta_{2}s$ for $s\geq 0$ , (2.17)

$-\delta_{1}\log s\leq-\Phi(s)\leq-\delta_{2}\log s$ for $0<s\leq 1$ , (2.18)

$e^{\tau i}\leq g(s)\leq e^{\Gamma_{2}^{*}}$ for $-\infty<s\leq 0$ . (2.19)

Let $w_{j}^{\epsilon}=w_{j}^{\epsilon}(x, t),$ $(j=1,2)$ be the functions defined by

$w_{j}^{\epsilon}(x, t)=w_{j}(x, \epsilon^{2}t)$ .

With the aid of (2.17) and (2.18), it follows from Lemma 2.1 that

$-\epsilon^{2}\delta_{1}$ log $( \frac{w_{2}^{\epsilon}}{\delta_{1}})\leq v^{e}\leq-\epsilon^{2}\delta_{2}$ log $( \frac{w_{1}^{\epsilon}}{\delta_{2}})$ in $\Omega\cross(0, +\infty)$ . (2.20)

By a result in Crandall, Lions, and Souganidis $[CrLS]$ , we obtain that, as $\epsilonarrow 0^{+}$ ,

the $functions-\epsilon^{2}\delta_{j}$ log $w_{j}^{\epsilon}$ converge to the function $\frac{1}{4t}d(x)^{2}$ uniformly on $\overline{\Omega}\cross[\tau,T]$ for

each $0<\tau<T<+\infty$ , since their results work for the equation $v_{l}=\epsilon^{2}\delta_{j}\Delta v-|\nabla v|^{2}$

with $v=-\epsilon^{2}\delta_{j}$ log $(_{\overline{\phi}(}w_{1)}^{\epsilon}\perp).$ Therefore we obtain

Lemma 2.2

$\frac{\delta_{1}}{\delta_{2}}\cdot\frac{1}{4t}d(x)^{2}\leq\lim_{\epsilonarrow 0}\inf_{+}v^{\epsilon}(x, t)\leq\lim_{\epsilonarrow}\overline{\sup_{0+}}v^{\epsilon}(x, t)\leq\frac{\delta_{2}}{\delta_{1}}\cdot\frac{1}{4t}d(x)^{2}$ in $\Omega\cross(0, +\infty)$ .
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Hence this lemma yields

Lemma 2.3 For any compact set $K$ in $\Omega\cross(0, +\infty)$ , there exist three constants
$\epsilon_{0}=\epsilon_{0}(K),$ $c_{1}=c_{1}(K)$ , and $c_{2}=c_{2}(K)$ satisfying

$\epsilon_{0}>0,0<c_{1}\leq c_{2}<.+\infty$ ,

and, if $O<\epsilon\leq\epsilon_{0z}$

$0<c_{1}\leq v^{\epsilon}\leq c_{2}$ in $K$.

The key point in the proof of Theorem 1.2 is to obtain the following gradient esti-

mate:

Lemma 2.4 For any compact set $K$ in $\Omega\cross(0, +\infty)$ , there exist two $constant_{8}$

$\epsilon_{1}=\epsilon_{1}(K)$ and $c_{3}=c_{3}(K)$ satisfying

$0<\epsilon_{1}\leq\epsilon_{0},$ $c_{3}>0$ ,

and, if $O<\epsilon\leq\epsilon_{1}$ ,
$|\nabla v^{\epsilon}|\leq c_{3}$ in $K$.

Then, by combining Lemmas 2.3 and 2.4 with Gilding’s result [Gild] we have

Lemma 2.5 For any compact $s\backslash et$
$K$ in $\Omega\cross(0, +\infty)$ , there nist two constants

$\epsilon_{2}=\epsilon_{2}(K)$ and $c_{4}=c_{4}(K)$ satisfy ing

$0<\epsilon_{2}\leq\epsilon_{1},$ $c_{4}>0$ ,

and, if $O<\epsilon\leq\epsilon_{2}$ ,

$|v^{\epsilon}(x, t)-v^{\epsilon}(x, s)|\leq c_{4}|t-s|\}$ for $(x, t),$ $(x, s)\in K$ .

Thus, Lemmas 2.3, 2.4, and 2.5 imply

Theorem 2.6 As $\epsilonarrow 0^{+},$ $v^{\epsilon}(x, t)$ converges to $\frac{1}{4t}d(x)^{2}$ uniformly on $eve\eta$ compact

set in $\Omega\cross(0, +\infty)$ .
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In conclusion, setting $t=1$ and $\epsilon^{2}=t$ in Theorem 2.6 yields Theorem 1.2.

It remains to prove Lemma 2.4. We use Bernstein’s technique. (See Evans

and Ishii [EI], Koike [Koi], Evans and Souganidis [ES], and Lions, Souganidis, and

Vazquez [LSV] for the technique.) Let $K\subset B_{R}(0)\cross[2\tau, T]$ for some $R>0,0<$
$\tau<2\tau<T$. Take $\zeta\in C^{\infty}(B_{2R}(0)\cross(\tau, T$ ]) satisfying

$0\leq\zeta\cdot\leq 1$ and $\zeta_{t}\geq 0$ in $B_{2R}(0)\cross(\tau, T$],

$\zeta=1$ on $B_{R}(0)\cross[2\tau, T]$ , and supp $\zeta\subset B_{2R}(0)\cross(\tau, T$].

Consider the function $z=z(x, t)$ defined by

$z=\zeta^{2}|\nabla v^{\epsilon}|^{2}-\lambda v^{\epsilon}$, (2.21)

where $\lambda>0$ is a constant determined later, and $0<\epsilon\leq\epsilon_{0}$ . Here, $\epsilon_{0}=\epsilon_{0}(\overline{B_{2R}(0)}\cross$

$[\tau,T])$ is the constant in Lemma 2.3. Suppose that $(x_{0}, t_{0})$ is a point in $B_{2R}(0)\cross(\tau,T$]

satisfying
$\zeta(x_{0}, t_{0})>0$ and $\frac{m}{B_{2R}(0)}a_{X}x_{1\tau,T]}z=z(x_{0}, t_{0})$

.

At $(x_{0}, t_{0})$ we then have

$z_{t}\geq 0,$ $z_{x}:=0$ , and $\Delta z\leq 0$ ,

and hence
$0\leq z_{t}-\epsilon^{2}\phi’(g(-\epsilon^{-2}v^{g}))\Delta z$ .

By using (2.5) and by some calculation, we can conclude that there exist two positive

constants $A_{1}$ and $A_{2}$ independent of $(x_{0}, t_{0})$ and $\epsilon$ such that at $(x_{0}, t_{0})$

$\lambda|\nabla v^{\epsilon}|^{2}\leq A_{1}|\nabla v^{e}|^{2}+A_{2}\zeta|\nabla v^{e}|^{3}-2\zeta^{2}|\nabla v^{e}|^{2}\phi’’g’\Delta v^{\epsilon}-\epsilon^{2}\phi’\zeta^{2}|\nabla^{2}v^{\epsilon}|^{2}$ . (2.22)

Here, we use the following key inequality:

$0<g’(- \epsilon^{-2}v^{\epsilon})=\frac{g(-\epsilon^{-2}v^{\epsilon})}{\phi’}\leq\frac{1}{\delta_{1}}e^{\zeta}\leq\frac{1}{\delta_{1}}e^{-+}-\star_{\delta_{2}}^{\epsilon_{\delta_{2}}}$ , (2.23)

where $c_{1}=c_{1}(\overline{B_{2R}(0)}\cross[\tau,T])$ is the constant in Lemma 2.3. With the aid of (2.23),

we observe that there exists a positive constant $A_{3}$ independent of $(x_{0},i_{0})$ and $\epsilon$

such that at $(x_{0}, t_{0})$

$-2 \zeta^{2}|\nabla v^{\epsilon}|^{2}\phi’’g’\Delta v^{\epsilon}\leq\zeta^{2}(A_{3}|\nabla v^{\epsilon}|^{4}+|\nabla^{2}v^{\epsilon}|^{2})\cdot\frac{1}{\delta_{1}}e^{\epsilon\delta_{2}}-c+$

and – $\epsilon^{2}\phi’\zeta^{2}|\nabla^{2}v^{\epsilon}|^{2}\leq-\epsilon^{2}\delta_{1}\zeta^{2}|\nabla^{2}v^{\epsilon}|^{2}$ .
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Set
$M= \frac{m}{B_{2R}(0)}a_{X}x_{1^{\tau,T]}}\zeta|\nabla v^{\epsilon}|i$

and $\lambda=\frac{M^{2}+1}{2(c_{2}+1)}$ ,

where $c_{2}=c_{2}(\overline{B_{2R}(0)}\cross[\tau, T])$ is the constant in Lemma 2.3. Choose $\epsilon_{*}$ in $(0,\epsilon_{0}$ ]

small to get
$\frac{A_{3}}{\delta_{1}}e^{-+}\epsilon\delta_{2\leq\frac{1}{4(c_{2}+1)}}\epsilon \bm{t}d\frac{1}{\delta_{1}}e^{-+}e_{\delta_{2}}\leq\epsilon^{2}\delta_{1}$

for all $\epsilon\in(0,\epsilon_{*}$ ]. Then, at $(x_{0},t_{0})$ , for any $\epsilon\in(0,\cdot\epsilon_{*}$] we have from (2.22)

$\frac{M^{2}+1}{4(c_{2}+1)}|\nabla v^{\epsilon}|^{2}\leq A_{1}|\nabla v^{\epsilon}|^{2}+A_{2}M|\nabla v^{\epsilon}|^{2}$ . (2.24)

We distinguish cases:

(i) $\nabla v^{\epsilon}(x_{0}, t_{0})\neq 0$,

(ii) $\nabla v^{e}(x_{0}, t_{0})=0$ .

In case (i), we get from (2.24)

$\frac{M^{2}+1}{4(c_{2}+1)}\leq A_{1}+A_{2}M$ ,

which yields the gradient estimate desired. In case (ii), since $\nabla v^{e}(x_{0}, t_{0})=0$ , we get

$M^{2} \leq\max z+\lambda\max v^{\epsilon}\leq\lambda\max v^{\epsilon}\leq\frac{M^{2}+1}{2(c_{2}+1)}\cdot c_{2}\leq\frac{M^{2}}{2}+\frac{1}{2}$ ,

and hence $M\leq 1$ . This completes the proof of Lemma 2.4.

Remark. Lions, Souganidis, and Vazquez [LSV] consider the pressure equation for

the porous medium equation:

$(v_{m})_{t}=(m-1)v_{m}\Delta v_{m}+|\nabla v_{m}|^{2}$ for $m>1$ ,

and consider the asymptotic behavior as $marrow 1^{+}$ . They get the interior gradient

estimate for $v_{m}$ independent of $m$ by the technique similar to ours. We follow
them, but we use inequality(2.23) in order to overcome the difficulty caused by.
$\phi’=\phi’(g(-\epsilon^{-2}v^{\epsilon}))$ in equation (2.5).
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