Nonlinear Diffusion with a Stationary Level Surface＊

Shigeru Sakaguchi ${ }^{\dagger}$

Abstract

We consider nonlinear diffusion of some substance in a bounded C^{2} con－ tainer．Suppose that，initially，the container is empty and，at all times，its boundary is kept at density 1 ．We show that if the container contains a proper sub－C^{2} domain having constant boundary density at each given time，then the container must be a ball．

Key words．Nonlinear diffusion equation，overdetermined problems，stationary level surfaces．
AMS subject classifications．Primary 35K60；Secondary 35B40．

1 Introduction

This is based on the author＇s recent work with R．Magnanini［MS5］．In the previous paper［MS3］，we considered the solution $u=u(x, t)$ of the following initial－boundary value problem for the heat equation：

$$
\begin{array}{cl}
u_{t}=\Delta u & \text { in } \Omega \times(0,+\infty) \\
u=1 & \text { on } \partial \Omega \times(0,+\infty) \\
u=0 & \text { on } \Omega \times\{0\} \tag{1.3}
\end{array}
$$

where Ω is a bounded domain in \mathbb{R}^{N} with $N \geq 2$ ，and we obtained

[^0]Theorem 1.1 ([MS3]) Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 2$, satisfying the exterior sphere condition and suppose thiat D is a domain, with boundary ∂D, satisfying the interior cone condition, and such that $\bar{D} \subset \Omega$.

Assume that the solution u of problem (1.1)-(1.3) satisfies the following condition:

$$
\begin{equation*}
u(x, t)=a(t), \quad(x, t) \in \partial D \times(0,+\infty), \tag{1.4}
\end{equation*}
$$

for some function $a:(0,+\infty) \rightarrow(0,+\infty)$. Then Ω must be a ball.
We recall that Ω satisfies the exterior sphere condition if for every $y \in \partial \Omega$ there exists a ball $B_{r}(z)$ such that $\overline{B_{r}(z)} \cap \bar{\Omega}=\{y\}$, where $B_{r}(z)$ denotes an open ball centered at $z \in \mathbb{R}^{N}$ and with radius $r>0$. Also, D satisfies the interior cone condition if for every $x \in \partial D$ there exists a finite right spherical cone K_{x} with vertex x such that $K_{x} \subset \bar{D}$ and $\overline{K_{x}} \cap \partial D=\{x\}$.

Here we introduce an outline of the proof of Theorem 1.1 by using a result in [MS4]. The proof is essentially based on three ingredients.

One ingredient is a result of Varadhan [Va] which shows that, as $t \rightarrow 0^{+}$, the function $-4 t \log u(x, t)$ converges uniformly on $\bar{\Omega}$ to the function $d(x)^{2}$, where

$$
\begin{equation*}
d(x)=\operatorname{dist}(x, \partial \Omega), \quad x \in \Omega . \tag{1.5}
\end{equation*}
$$

Here in order to apply the result of Varadhan we have used the assumption that Ω satisfies the exterior sphere condition. Hence, by (1.4) there exists $R>0$ satisfying

$$
\begin{equation*}
d(x)=R \text { for every } x \in \partial D . \tag{1.6}
\end{equation*}
$$

The second ingredient is a couple of balance laws proved in [MS1] and [MS2] (see [MS3] for another proof). For $x_{0} \in \Omega, \nabla u\left(x_{0}, t\right)=0$ for every $t>0$ if and only if

$$
\begin{equation*}
\int_{\partial B_{r}\left(x_{0}\right)}\left(x-x_{0}\right) u(x, t) d S_{x}=0, \text { for every } r \in\left[0, d\left(x_{0}\right)\right) \text { and every } t>0 . \tag{1.7}
\end{equation*}
$$

With the aid of the interior cone condition of D, by combining (1.7) and (1.6) with the initial behavior of u proved in Varadhan [Va], we see that for every point $x_{0} \in \partial D$ there exists a time $t_{0}>0$ satisfying $\nabla u\left(x_{0}, t_{0}\right) \neq 0$, which implies that ∂D
is analytic. Thus, by using the exterior sphere condition of Ω again, we conclude that $\partial \Omega$ is analytic and parallel to $\partial \dot{D}$. Another balance law is stated as follows: Let G be a domain in \mathbb{R}^{N}. For $x_{0} \in G$, a solution $v=v(x, t)$ of the heat equation in $G \times(0,+\infty)$ is such that $v\left(x_{0}, t\right)=0$ for every $t>0$ if and only if

$$
\begin{equation*}
\int_{\partial B_{r}\left(x_{0}\right)} v(x, t) d S_{x}=0, \text { for every } r \in\left[0, \text { dist }\left(x_{0}, \partial G\right)\right) \text { and every } t>0 . \tag{1.8}
\end{equation*}
$$

Let $P, Q \in \partial \Omega$ be two distinct points, and let $p, q \in \partial D$ be the points such that

$$
\overline{B_{R}(p)} \cap \partial \Omega=\{P\} \text { and } \overline{B_{R}(q)} \cap \partial \Omega=\{Q\} .
$$

Consider the function $v=v(x, t)$ defined by

$$
v(x, t)=u(x+p, t)-u(x+q, t) \text { for }(x, t) \in B_{R}(0) \times(0,+\infty) .
$$

Since v satisfies the heat equation and $v(0, t)=a(t)-a(t)=0$ for every $t>0$, it follows from (1.8) that

$$
t^{-\frac{N+1}{4}} \int_{B_{R}(p)} u(x, t) d x=t^{-\frac{N+1}{4}} \int_{B_{R}(q)} u(x, t) d x \text { for every } t>0
$$

Therefore, by using a result in [MS4], letting $t \rightarrow 0^{+}$yields that

$$
\begin{equation*}
C(N)\left\{\prod_{j=1}^{N-1}\left[\frac{1}{R}-\kappa_{j}(P)\right]\right\}^{-\frac{1}{2}}=C(N)\left\{\prod_{j=1}^{N-1}\left[\frac{1}{R}-\kappa_{j}(Q)\right]\right\}^{-\frac{1}{2}} \tag{1.9}
\end{equation*}
$$

where $\kappa_{j}(x), j=1, \ldots, N-1$, denotes the j-th principal curvature of the surface $\partial \Omega$ at the point $x \in \partial \Omega$, and where $C(N)$ is a positive constant depending only on N (see [MS4], Theorem 4.2).

The third ingredient is Aleksandrov's sphere theorem [Alek], p. 412. A special case of this theorem is the well-known Soap-Bubble Theorem (see also [R]). Finally, by applying Aleksandrov's sphere theorem to the fact that $\prod_{j=1}^{N-1}\left[\frac{1}{R}-\kappa_{j}(x)\right]$ is constant for $x \in \partial \Omega$, we conclude that $\partial \Omega$ must be a sphere. (See [MS3] and [MS4] for the details.)

We observe that Varadhan's result, a couple of balance laws, and Aleksandrov's sphere theorem play a key role in the above proof. Among these we can not expect a couple of balance laws for nonlinear diffusion equations.

In this article we consider the solution $u=u(x, t)$ of the following initialboundary value problem for the nonlinear diffusion equation:

$$
\begin{array}{ll}
u_{t}=\Delta \phi(u) & \text { in } \quad \Omega \times(0,+\infty) \\
u=1 & \text { on } \quad \partial \Omega \times(0,+\infty) \\
u=0 & \text { on } \quad \Omega \times\{0\} \tag{1.12}
\end{array}
$$

where Ω is a bounded C^{2} domain in \mathbb{R}^{N} with $N \geq 2$, and where $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is such that

$$
\begin{align*}
& \phi \in C^{2}(\mathbb{R}), \quad \phi(0)=0, \text { and } \tag{1.13}\\
& 0<\delta_{1} \leq \phi^{\prime}(s) \leq \delta_{2} \text { for } s \in \mathbb{R} \tag{1.14}
\end{align*}
$$

where δ_{1}, δ_{2} are positive constants. By the maximum principle we get

$$
\begin{equation*}
0<u<1 \text { in } \Omega \times(0,+\infty) . \tag{1.15}
\end{equation*}
$$

Let $\Phi=\Phi(s)$ be a function defined by

$$
\begin{equation*}
\Phi(s)=\int_{1}^{s} \frac{\phi^{\prime}(\xi)}{\xi} d \xi \text { for } s>0 . \tag{1.16}
\end{equation*}
$$

Note that if $\phi(s) \equiv s$, then $\Phi(s)=\log s$.
Our result corresponding to Varadhan's one is
Theorem 1.2 ([MS5]) Let u be the solution of problem (1.10)-(1.12). Then, as $t \rightarrow \dot{0}^{+}$, the function $-4 t \Phi(u(x, t))$ converges to the function $d(x)^{2}$ uniformly on every compact set in Ω.

The symmetry result corresponding to Theorem 1.1 is
Theorem 1.3 ([MS5]) Let D be a bounded C^{2} domain in \mathbb{R}^{N} satisfying $\bar{D} \subset \Omega$.
Assume that the solution u of problem (1.10)-(1.12) satisfies the following condition:

$$
\begin{equation*}
u(x, t)=a(t), \quad(x, t) \in \partial D \times(0,+\infty), \tag{1.17}
\end{equation*}
$$

for some function $a:(0,+\infty) \rightarrow(0,+\infty)$. Then Ω must be a ball.

Remark. Let us give two remarks concerning Theorem 1.1 and Theorem 1.3. Since we can not expect the balance laws for, ${ }^{7}$ nonlinear equations and we used the balance law (1.7) to obtain the regularity of ∂D, we assume that both ∂D and $\partial \Omega$ are C^{2} smooth in Theorem 1.3. So, as far as problem (1.1)-(1.3) is concerned, Theorem 1.1 is stronger than Theorem 1.3. Furthermore, in problem (1.1)-(1.3), the same method of the proof as in Theorem 1.1 also yields

Theorem 1.4 Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 2$, satisfying the exterior sphere condition and suppose that D is a domain, with boundary ∂D, satisfying the interior cone condition, and such that $\bar{D} \subset \Omega$. Let Γ be a connected component of ∂D satisfying

$$
\operatorname{dist}(\Gamma, \partial \Omega)=\operatorname{dist}(\partial D, \partial \Omega) .
$$

Assume that the solution u of problem (1.1)-(1.3) satisfies the following condition:

$$
\begin{equation*}
u(x, t)=a(t), \quad(x, t) \in \Gamma \times(0,+\infty) \tag{1.18}
\end{equation*}
$$

for some function $a:(0,+\infty) \rightarrow(0,+\infty)$. Then Ω must be either a ball or an annulus.

2 Outline of proofs of Theorems 1.3 and 1.2

In this section we give an outline of proofs. For the details, see [MS5].
Proof of Theorem 1.3. By using Theorem 1.2, we get (1.6). Furthermore, with the aid of the C^{2} smoothness assumption of both ∂D and $\partial \Omega$, we see that $\partial \Omega$ is parallel to ∂D. Then, by applying the method of moving planes to problem (1.10)(1.12) directly, we conclude that Ω must be a ball. See Serrin [Ser] for the method of moving planes.

Proof of Theorem 1.2. Let $g=g(s)$ be the inverse function of Φ. Then

$$
s=\Phi(g(s))=\int_{1}^{g(s)} \frac{\phi^{\prime}(\xi)}{\xi} d \xi .
$$

Differentiating in s yields

$$
\begin{equation*}
g(s)=\phi^{\prime}(g(s)) g^{\prime}(s) . \tag{2.1}
\end{equation*}
$$

As in Freidlin and Wentzell [FW], for $0<\varepsilon<1$, define the function $u^{\varepsilon}=u^{\varepsilon}(x, t)$ by

$$
u^{\varepsilon}(x, t)=u\left(x, \varepsilon^{2} x\right) \text { for }(x, t) \in \Omega \times(0,+\infty)
$$

Then u^{ε} satisfies

$$
\begin{array}{lll}
u_{t}^{\varepsilon}=\varepsilon^{2} \Delta \phi\left(u^{\varepsilon}\right) & \text { in } & \Omega \times(0,+\infty) \\
u^{\varepsilon}=1 & \text { on } & \partial \Omega \times(0,+\infty) \\
u^{\varepsilon}=0 & \text { on } & \Omega \times\{0\} \tag{2.4}
\end{array}
$$

Moreover, we define the function $v^{\varepsilon}=v^{\varepsilon}(x, t)$ by

$$
v^{\varepsilon}(x, t)=-\varepsilon^{2} \Phi\left(u^{\varepsilon}(x, t)\right) \text { for }(x, t) \in \Omega \times(0,+\infty) .
$$

Then $u^{\varepsilon}=g\left(-\varepsilon^{-2} v^{\varepsilon}\right)$. With the aid of (2.1), we have

$$
\begin{array}{ll}
v_{t}^{\varepsilon}=\varepsilon^{2} \phi^{\prime} \Delta v^{\varepsilon}-\left|\nabla v^{\varepsilon}\right|^{2} & \text { in } \Omega \times(0, \infty) \\
v^{\varepsilon}=0 & \text { on } \partial \Omega \times(0, \infty) \\
v^{\varepsilon}=+\infty & \text { on } \Omega \times\{0\} \tag{2.7}
\end{array}
$$

where $\phi^{\prime}=\phi^{\prime}\left(g\left(-\varepsilon^{-2} v^{\varepsilon}\right)\right)$.
Consider the limit problem as $\varepsilon \rightarrow 0^{+}$

$$
\begin{array}{ll}
v_{t}=-|\nabla v|^{2} & \text { in } \Omega \times(0, \infty) \\
v=0 & \text { on } \partial \Omega \times(0, \infty) \\
v=+\infty & \text { on } \Omega \times\{0\} \tag{2.10}
\end{array}
$$

This problem has a unique viscosity solution

$$
\begin{equation*}
v(x, t)=\frac{1}{4 t} d(x)^{2} \tag{2.11}
\end{equation*}
$$

The uniqueness is proved by Crandall, Lions, and Souganidis [CrLS]. With the help of Crandall, Ishii, and Lions [CrIL] we can prove that the function given by (2.11) is a viscosity solution of problem (2.8)-(2.10).

By applying the comparison principle to $u(x, t+h)$ and $u(x, t)$ for $h>0$, we get

$$
\begin{equation*}
u_{t}>0 \text { and } \Delta \phi(u)>0 \text { in } \Omega \times(0,+\infty) \tag{2.12}
\end{equation*}
$$

Set $w=\phi(u)$. Then $w_{t}=\phi^{\prime}(u) \Delta w$ and by (1.14)

$$
\begin{equation*}
\delta_{1} \Delta w \leq w_{t} \leq \delta_{2} \Delta w \text { in } \Omega \times(0,+\infty) \tag{2.13}
\end{equation*}
$$

Let $w_{j}(j=1,2)$ solve the problems:

$$
\begin{array}{cl}
\left(w_{j}\right)_{t}=\delta_{j} \Delta\left(w_{j}\right) & \text { in } \Omega \times(0,+\infty) \\
w_{j}=\phi(1) & \text { on } \partial \Omega \times(0,+\infty) \\
w_{j}=0 & \text { on } \Omega \times\{0\} \tag{2.16}
\end{array}
$$

Hence, in view of (2.13), from the comparison principle we get

Lemma 2.1

$$
w_{1} \leq w \leq w_{2} \quad \text { in } \Omega \times(0,+\infty)
$$

We observe that the following hold:

$$
\begin{array}{cl}
\delta_{1} s \leq \phi(s) \leq \delta_{2} s & \text { for } s \geq 0 \\
-\delta_{1} \log s \leq-\Phi(s) \leq-\delta_{2} \log s & \text { for } 0<s \leq 1 \\
e^{\frac{\pi}{\delta_{1}}} \leq g(s) \leq e^{\frac{8}{\delta_{2}}} & \text { for }-\infty<s \leq 0 \tag{2.19}
\end{array}
$$

Let $w_{j}^{\epsilon}=w_{j}^{\epsilon}(x, t),(j=1,2)$ be the functions defined by

$$
w_{j}^{\varepsilon}(x, t)=w_{j}\left(x, \varepsilon^{2} t\right)
$$

With the aid of (2.17) and (2.18), it follows from Lemma 2.1 that

$$
\begin{equation*}
-\varepsilon^{2} \delta_{1} \log \left(\frac{w_{2}^{\varepsilon}}{\delta_{1}}\right) \leq v^{\varepsilon} \leq-\varepsilon^{2} \delta_{2} \log \left(\frac{w_{1}^{\varepsilon}}{\delta_{2}}\right) \text { in } \Omega \times(0,+\infty) \tag{2.20}
\end{equation*}
$$

By a result in Crandall, Lions, and Souganidis [CrLS], we obtain that, as $\varepsilon \rightarrow 0^{+}$, the functions $-\varepsilon^{2} \delta_{j} \log w_{j}^{\varepsilon}$ converge to the function $\frac{1}{4 t} d(x)^{2}$ uniformly on $\bar{\Omega} \times[\tau, T]$ for each $0<\tau<T<+\infty$, since their results work for the equation $v_{t}=\varepsilon^{2} \delta_{j} \Delta v-|\nabla v|^{2}$ with $v=-\varepsilon^{2} \delta_{j} \log \left(\frac{w_{j}^{e}}{\phi(1)}\right)$. Therefore we obtain

Lemma 2.2

$$
\frac{\delta_{1}}{\delta_{2}} \cdot \frac{1}{4 t} d(x)^{2} \leq \liminf _{\varepsilon \rightarrow 0^{+}} v^{\varepsilon}(x, t) \leq \limsup _{\varepsilon \rightarrow 0^{+}} v^{\varepsilon}(x, t) \leq \frac{\delta_{2}}{\delta_{1}} \cdot \frac{1}{4 t} d(x)^{2} \quad \text { in } \Omega \times(0,+\infty)
$$

Hence this lemma yields
Lemma 2.3 For any compact set K in $\Omega \times(0,+\infty)$, there exist three constants $\varepsilon_{0}=\varepsilon_{0}(K), c_{1}=c_{1}(K)$, and $c_{2}=c_{2}(K)$ satisfying

$$
\varepsilon_{0}>0,0<c_{1} \leq c_{2}<+\infty
$$

and, if $O<\varepsilon \leq \varepsilon_{0}$,

$$
0<c_{1} \leq v^{\varepsilon} \leq c_{2} \text { in } K
$$

The key point in the proof of Theorem 1.2 is to obtain the following gradient estimate:

Lemma 2.4 For any compact set K in $\Omega \times(0,+\infty)$, there exist two constants $\varepsilon_{1}=\varepsilon_{1}(K)$ and $c_{3}=c_{3}(K)$ satisfying

$$
0<\varepsilon_{1} \leq \varepsilon_{0}, c_{3}>0
$$

and, if $O<\varepsilon \leq \varepsilon_{1}$,

$$
\left|\nabla v^{\varepsilon}\right| \leq c_{3} \text { in } K
$$

Then, by combining Lemmas 2.3 and 2.4 with Gilding's result [Gild] we have
Lemma 2.5 For any compact set K in $\Omega \times(0,+\infty)$, there exist two constants $\varepsilon_{2}=\varepsilon_{2}(K)$ and $c_{4}=c_{4}(K)$ satisfying

$$
0<\varepsilon_{2} \leq \varepsilon_{1}, c_{4}>0
$$

and, if $O<\varepsilon \leq \varepsilon_{2}$,

$$
\left|v^{\varepsilon}(x, t)-v^{\varepsilon}(x, s)\right| \leq c_{4}|t-s|^{\frac{1}{2}} \text { for }(x, t),(x, s) \in K
$$

Thus, Lemmas 2.3, 2.4, and 2.5 imply
Theorem 2.6 As $\varepsilon \rightarrow 0^{+}, v^{\varepsilon}(x, t)$ converges to $\frac{1}{4 t} d(x)^{2}$ uniformly on every compact set in $\Omega \times(0,+\infty)$.

In conclusion, setting $t=1$ and $\varepsilon^{2}=t$ in Theorem 2.6 yields Theorem 1.2.
It remains to prove Lemma 2.4. We use Bernstein's technique. (See Evans and Ishii [EI], Koike [Koi], Evans and Souganidis [ES], and Lions, Souganidis, and Vazquez [LSV] for the technique.) Let $K \subset B_{R}(0) \times[2 \tau, T]$ for some $R>0,0<$ $\tau<2 \tau<T$. Take $\zeta \in C^{\infty}\left(B_{2 R}(0) \times(\tau, T]\right)$ satisfying

$$
\begin{aligned}
& 0 \leq \zeta \leq 1 \text { and } \zeta_{t} \geq 0 \text { in } B_{2 R}(0) \times(\tau, T] \\
& \zeta=1 \text { on } B_{R}(0) \times[2 \tau, T], \text { and } \operatorname{supp} \zeta \subset B_{2 R}(0) \times(\tau, T] .
\end{aligned}
$$

Consider the function $z=z(x, t)$ defined by

$$
\begin{equation*}
z=\zeta^{2}\left|\nabla v^{\varepsilon}\right|^{2}-\lambda v^{\varepsilon}, \tag{2.21}
\end{equation*}
$$

where $\lambda>0$ is a constant determined later, and $0<\varepsilon \leq \varepsilon_{0}$. Here, $\varepsilon_{0}=\varepsilon_{0}\left(\overline{B_{2 R}(0)} \times\right.$ $[\tau, T]$) is the constant in Lemma 2.3. Suppose that (x_{0}, t_{0}) is a point in $B_{2 R}(0) \times(\tau, T]$ satisfying

$$
\zeta\left(x_{0}, t_{0}\right)>0 \text { and } \frac{\max }{B_{2 R}(0) \times[r, T]} z=z\left(x_{0}, t_{0}\right) .
$$

At $\left(x_{0}, t_{0}\right)$ we then have

$$
z_{t} \geq 0, z_{x_{i}}=0, \text { and } \Delta z \leq 0
$$

and hence

$$
0 \leq z_{t}-\varepsilon^{2} \phi^{\prime}\left(g\left(-\varepsilon^{-2} v^{\varepsilon}\right)\right) \Delta z
$$

By using (2.5) and by some calculation, we can conclude that there exist two positive constants A_{1} and A_{2} independent of (x_{0}, t_{0}) and ε such that at (x_{0}, t_{0})

$$
\begin{equation*}
\lambda\left|\nabla v^{\varepsilon}\right|^{2} \leq A_{1}\left|\nabla v^{\varepsilon}\right|^{2}+A_{2} \zeta\left|\nabla v^{\varepsilon}\right|^{3}-2 \zeta^{2}\left|\nabla v^{\epsilon}\right|^{2} \phi^{\prime \prime} g^{\prime} \Delta v^{\varepsilon}-\varepsilon^{2} \phi^{\prime} \zeta^{2}\left|\nabla^{2} v^{\varepsilon}\right|^{2} . \tag{2.22}
\end{equation*}
$$

Here, we use the following key inequality:

$$
\begin{equation*}
0<g^{\prime}\left(-\varepsilon^{-2} v^{\varepsilon}\right)=\frac{g\left(-\varepsilon^{-2} v^{\varepsilon}\right)}{\phi^{\prime}} \leq \frac{1}{\delta_{1}} e^{-\frac{v^{\varepsilon}}{\varepsilon^{\delta} \delta_{2}}} \leq \frac{1}{\delta_{1}} e^{-\frac{\varepsilon_{1}}{\varepsilon^{2} \delta_{2}}}, \tag{2.23}
\end{equation*}
$$

where $c_{1}=c_{1}\left(\overline{B_{2 R}(0)} \times[\tau, T]\right)$ is the constant in Lemma 2.3. With the aid of (2.23), we observe that there exists a positive constant A_{3} independent of $\left(x_{0}, t_{0}\right)$ and ε such that at $\left(x_{0}, t_{0}\right)$

$$
\begin{aligned}
& -2 \zeta^{2}\left|\nabla v^{\varepsilon}\right|^{2} \phi^{\prime \prime} g^{\prime} \Delta v^{\varepsilon} \leq \zeta^{2}\left(A_{3}\left|\nabla v^{\varepsilon}\right|^{4}+\left|\nabla^{2} v^{\varepsilon}\right|^{2}\right) \cdot \frac{1}{\delta_{1}} e^{-\frac{c_{1}}{\varepsilon^{2} \delta_{2}}} \\
& \text { and }-\varepsilon^{2} \phi^{\prime} \zeta^{2}\left|\nabla^{2} v^{\varepsilon}\right|^{2} \leq-\varepsilon^{2} \delta_{1} \zeta^{2}\left|\nabla^{2} v^{\varepsilon}\right|^{2}
\end{aligned}
$$

Set

$$
M=\max _{B_{2 R}(0) \times[\tau, T]} \zeta\left|\nabla v^{\varepsilon}\right| \text { and } \lambda=\frac{M^{2}+1}{2\left(c_{2}+1\right)}
$$

where $c_{2}=c_{2}\left(\overline{B_{2 R}(0)} \times[\tau, T]\right)$ is the constant in Lemma 2.3. Choose ε_{*} in $\left(0, \varepsilon_{0}\right]$ small to get

$$
\frac{A_{3}}{\delta_{1}} e^{-\frac{c_{1}}{\varepsilon^{2} \delta_{2}}} \leq \frac{1}{4\left(c_{2}+1\right)} \text { and } \frac{1}{\delta_{1}} e^{-\frac{c_{1}}{\varepsilon^{2} \delta_{2}}} \leq \varepsilon^{2} \delta_{1}
$$

for all $\varepsilon \in\left(0, \varepsilon_{*}\right]$. Then, at $\left(x_{0}, t_{0}\right)$, for any $\varepsilon \in\left(0, \varepsilon_{*}\right]$ we have from (2.22)

$$
\begin{equation*}
\frac{M^{2}+1}{4\left(c_{2}+1\right)}\left|\nabla v^{\varepsilon}\right|^{2} \leq A_{1}\left|\nabla v^{\varepsilon}\right|^{2}+A_{2} M\left|\nabla v^{\varepsilon}\right|^{2} \tag{2.24}
\end{equation*}
$$

We distinguish cases:
(i) $\nabla v^{\varepsilon}\left(x_{0}, t_{0}\right) \neq 0$,
(ii) $\nabla v^{\varepsilon}\left(x_{0}, t_{0}\right)=0$.

In case (i), we get from (2.24)

$$
\frac{M^{2}+1}{4\left(c_{2}+1\right)} \leq A_{1}+A_{2} M
$$

which yields the gradient estimate desired. In case (ii), since $\nabla v^{\varepsilon}\left(x_{0}, t_{0}\right)=0$, we get

$$
M^{2} \leq \max z+\lambda \max v^{\varepsilon} \leq \lambda \max v^{\varepsilon} \leq \frac{M^{2}+1}{2\left(c_{2}+1\right)} \cdot c_{2} \leq \frac{M^{2}}{2}+\frac{1}{2}
$$

and hence $M \leq 1$. This completes the proof of Lemma 2.4.
Remark. Lions, Souganidis, and Vazquez [LSV] consider the pressure equation for the porous medium equation:

$$
\left(v_{m}\right)_{t}=(m-1) v_{m} \Delta v_{m}+\left|\nabla v_{m}\right|^{2} \text { for } m>1
$$

and consider the asymptotic behavior as $m \rightarrow 1^{+}$. They get the interior gradient estimate for v_{m} independent of m by the technique similar to ours. We follow them, but we use inequality(2.23) in order to overcome the difficulty caused by $\phi^{\prime}=\phi^{\prime}\left(g\left(-\varepsilon^{-2} v^{\varepsilon}\right)\right)$ in equation (2.5).

References

[Alek] A.D. Aleksandrov, Uniqueness theorems for surfaces in the large V, Vestnik Leningrad Univ. 13, no. 19 (1958), 5-8. (English translation: Amer. Math. Soc. Translations, Ser. 2, 21 (1962), 412-415.)
[CrIL] M. G. Crandall, H. Ishii, and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1-67.
[CrLS] M. G. Crandall, P.-L. Lions, and P. E. Souganidis, Maximal solutions and universal bounds for some partial differential equations of evolution, Arch. Ration. Mech. Anal. 105 (1989), 163-190.
[EI] L.C. Evans and H. Ishii, A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. Henri Poincaré 2 (1985), 1-20.
[ES] L. C. Evans and P. E. Souganidis, A PDE approach to certain large deviation problems for systems of parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire S6 (1989), 229-258.
[FW] M.I. Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, New York 1984.
[Gild] B. H.Gilding, Hölder continuity of solutions of parabolic equations, J. London Math. Soc. 13 (1976), 103-106.
[Koi] S. Koike, An asymptotic formula for solutions of Hamilton-Jacobi-Bellman equations, Nonlinear Anal. 11 (1987), 429-436.
[LSV] P. L. Lions, P. E. Souganidis, and J. L. Vázquez, The relation between the porous medium and the eikonal equations in several space dimensions, Rev. Mat. Iberoamericana 3 (1987), 275-310.
[MS1] R. Magnanini and S. Sakaguchi, The spatial critical points not moving along the heat flow, J. Analyse Math. 71 (1997), 237-261.
[MS2] R. Magnanini and S. Sakaguchi, The spatial critical points not moving along the heat flow II: The centrosymmetric case, Math. Z. 230 (1999), 695-712, Corrigendum, 232 (1999), 389.
[MS3] R. Magnanini and S. Sakaguchi, Matzoh ball soup: Heat conductors with a stationary isothermic surface, Ann. of Math. 156 (2002), 931-946.
[MS4] R. Magnanini and S. Sakaguchi, Interaction between degenerate diffusion and shape of domain, Proceedings Royal Soc. Edinburgh, Section A, in press.
[MS5] R. Magnanini and S. Sakaguchi, Nonlinear diffusion with a bounded stationary level surface, in preparation.
[R] R.C. Reilly, Mean curvature, the Laplacian, and soap bubbles, Amer. Math. Monthly 89 (1982), 180-188, 197-198.
[Ser] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304-318.
[Va] S.R.S. Varadhan, On the behavior of the fundamental solution of the heat equation with variable coefficients, Comm. Pure Appl. Math. 20 (1967), 431455.

[^0]: ＊This research was partially supported by a Grant－in－Aid for Scientific Research（B）（ $\#$ 15340047）of Japan Society for the Promotion of Science
 ${ }^{\dagger}$ Department of Mathematics，Graduate School of Science and Engineering，Ehime University， 2－5 Bunkyo－cho，Matsuyama－shi，Ehime 790－8577 Japan．（sakaguch＠dpc．ehime－u．ac．jp）．

