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Nonlinear Diffusion with a Stationary

Level Surface *

Shigeru Sakaguchit

‘ Abstract
We consider nonlinear diffusion of some substance in a bounded C? con-
tainer. Suppose that, initially, the' container is empty and, at all times, its
boundary is kept at denéity 1. We show that if the container contains a proper |
- sub- C? doina.in having constant boundary density at each given time, then

the container must be a ball.
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1 Introduction

This is based on the author’s recent work with R. Magnanini [MS5]. In the previous
paper [MS3], we considered the solution u = u(z,t) of the following initial-boundary

value problem for the heat equation:

uy=Au  in Qx (0,+00), | (1.1)

u=1 on 8Q x (0, +00), o (1.2)
u=0  on Qx {0}, (1.3)

where Q is a bounded domain in RY with N > 2, and we obtained \
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Theorem 1.1 ([MS3]) Let Q be a bounded domain in RN, N > 2, satisfying the
exterior sphere condition and suppose that D is a domain, with boundary 8D, sat-
isfying the interior cone condition, and ;uch that D C Q.

Assume that the solution u of problem (1.1)-(1.3) satisfies the following condi-

tion:
u(z,t) = a(t), (z,t) € 0D x (0,+00), (1.4)

| for some function a : (0, 4+00) — (0, +00). Then Q must be a ball.

We recall that  satisfies the exterior sphere condition if for every y € 0SQ there
exists a ball B,(z) such that B, (z) N = {y}, where B,(2) denotes an open ball
centered at 2 € RV and with radius » > 0. Also; D satisfies the interior cone
condition if for every z € 8D there exists a finite right ‘spherical-cone K, with _'
vertex = such that K, C D and K, N 8D = {z}. |

Here we introduce an outline of the proof of Theorem 1.1 by using a result in
[MS4]. The proof is essentially based on three ingredients. 4

One ingredient is a result of Varadhan [Va] which shows that, as ¢ — 0%, the
function —4tlogu(z, t) converges uniformly on £ to the function d(z)?, where

d(z) = dist (z, aQ), zeqQ. | - (15)

‘Here in order to apply the result of Varadhan we have used the assumption that (2
~ satisfies the exterior sphere condition. Hence, by (1.4) there exists R > 0 satisfying

d(z) = R for every z € 8D. (1.6)

The second ingredient is-a couple of balance laws proved in [MS1] and [MS2]
(see [MS3] for another proof). For 2o € Q, Vu(zo,t) =0 for every ¢ > 0 if and only
if | | |

(z — zo)u(z,t) dS; =0, for every r € [0,d(zp)) and every t > 0.  (1.7)
8Br(z0) , : ’

‘With the aid of the interior cone condition of D, by combining (1.7) and (1.>6)
with the initial behavior of u proved in Varadhan [Va], we see that for every point
Zo € 8D there exists a time ¢y > 0 satisfying Vu(zo, o) # 0, which implies that 8D
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is analytic. Thus, by using the exterior sphere condition of {2 again, we conclude
that 09 is analytic and parallel to 32?. Another balance law is stated as follows:
Let G be a doinain in RY. For zo € G, a solution v = v(z,t) of the heat equation
in G x (0, +00) is such that v(zo,t) =0 for every ¢t > 0 if and only if

v(z,t) dS’,, =0, for every r € [0,dist (z0,0G)) and every t > 0.  (1.8)
8Bi(z0) | | |

Let P,Q ‘e o2 ‘bé two distinct points, and let p,q € VBD .be‘t,he points such that |
Br(p) N o0 - {P} and Bgr(q)NoQ = {Q}.
Consider the function' v = v(z,t) defined .by |
v(a; t) =u(z +1;, t) — u(a: +¢q,t) for (z,t) € Bg(0) x (0,+00).

Since v satisfies the heat equa.tlon a,nd v(0,t) = a(t) — a(t) = 0 for every t > 0, 1t
follows from (1.8) that

't‘ﬂiﬂ‘/ u(z,t) do = T u(z,t) dz for every ¢ > 0.
Bg(p) Br(q)

| Therefore, by using a result in [MS4], letting t — 0% yields‘that

con{fi [5-see]} e iT[2-w]} . an

where k;(z),7 = 1,...,N — 1, denotes the j—th principal cur\}ature of the surface
0N at the point x € 6(2 and where C(IV) is a positive constant dependmg only on
N (see [MS4], Theorem 4.2).

The third ingredient is Aleksandrov’s sphere theorem [Alek], p. 412. A special
- case of this theorem is the well-known Soap-Bubble Theorem (see also [R]). Finally,

by applymg Aleksandrov’s sphere theorem to the fact that H [— - Kj (x)] is con-

stant for z € 9, we conclude that 80 must be a sphere. (See [MS3] and [MS4] for
the details.) v .

We observe that Varadhan’s result, a couple of balance laws, and Aleksandrov’s
sphere theorem play a key role in the above proof. Among these we can not expect -

a couple of balance laws for nonlinear diffusion equations.
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In this article we consider the solution u = u(z,t) of the following initial-

boundary value problem for the nonlinear diffusion equation:
£ .

u = A¢(u) in  Q x (0,+400), | | - (1.10)
u=1 on 89 x (0, +00), (1.11)
u=0 on Qx {0}, = ' (1.12)

where 0 is a bounded C? domain in RN with N > 2, and where ¢ : R — R is such
that |

$c CXR), ¢(0)=0, and o (1.13)
0<8, <#(s) <8, forseR, (1.14)

where 01, 0o are positive constants. By the ma.ximum pﬁnciple We get
O<u<l1 in Qx‘(O,v-{-oo).l o | (1.15)
Let @ = ®(s) be a functioh defined by | | |
| o(s) = /1.éj fﬁé_@ d¢ for s> 0. (1.16)

Note that if ¢(s) = s, then ®(s) = log s.
Our result corresponding to Varadhan’s one is

Theorem 1.2 ([MS5]) Let u be the solution of problem (1.10)-(1.12). Then, as
ot ——»\0*‘, the function —4t®(u(z,t)) converges to the function d(z)? uniformly on
every compact set in . |

The symmetry result corresponding to Theorem 1.1 is

Theorem 1.3 ([MS5]) Let D be a bounded C* domain in RY satisfying D C Q.
Assume that the solution u of problem (1.10)-(1.12) satisfies the following con-

u(z,t) = a(t), (z,t) € 8D x (0, +00), (1.17)

for some function a : (0, +00) — (0, +oo).v_ Then Q must be a ball.
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Remark. Let us give two remarks concerning Theorem 1.1 and Theorem 1.3. Since
we can not expect the balance laws forénonlinear equations and we used the balance |
- law (1.7) to obtain the regularity of 8D, we assume that both 4D and 0f2 are C?
smooth in Theorem 1.3. So, as far as problem (1.1)-(1.3) is concerned, Theorem
‘1.1 is stronger than Theorem 1.3. Furthermore, in problem (1.1)-(1.3), the same
method of the proof as in Theorem 1.1 also yields |

Theorem 1.4 Let Q be a bounded domain in RN, N > 2, satisfying the exterior
~ sphere condition and suppose that D is a domain, with boundary 0D, satisfying the
interior cone condition, and such that D C Q. Let T be a connected component of
0D satisfying . o :
dist (T, 8Q) = dist (8D, ).

Assume that t_hé solution u of problem (1.1)-(1.3) satisfies the follbwz'ng condition:
w(z,t) = a(t), (z8) €T x (0,+00), (1.18)

for some function a : (0,+00) — (0,+00). Then must be either a ball or an

annulus.

2 Outline of pfoo,fs of Theorems 1.3 and 1.2

In this section we give an outline of proofs. For the details, see [MS5]. -

Proof of Theorem 1.3. By using Theorem 1.2, we get (1.6). F\lrtherniore, with
- the aid of the C? smoothness assumption of both 8D and 95, we see that 9Q is
parallel to D. Then, by applying the method of moving planes to problem (1.10)-
(1.12) directly, we conclude that {2 must be a ball. See Serrin [Ser] for the method

of moving planes.

Proof of Theorem 1.2. Let g = g(s) be the inverse function of ®. Then

‘ 9(s) g
s=o(o(e) = [ E e

VD‘ifferentia,ting. in s yields | -
| g(s) = ¢'(9(s))g'(s)- | - (2
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As in Freidlin and Wentzell [FW], for 0 < € < 1, define the function u® = v®(z,t) by

3

u¢(z,t) = u(z,e%z) for (z,t) € N x (0,+00).
Then u° satisfies

uf =e?Ap(uf) in Q% (0, +o§),
1 on 909 x (0,+00),
0 on Qx{0}.

i

uE
ue

Moreover, we define the function v* = v*(z,t) by

#(2,8) = —20(u(z, ) for (z,£) € Q x (0,+00).

Then u = g (—e~2v¢). With the aid of (2.1), we have
v =2/ Avf — |[Vvf2  in % (0,00),
v =0 ~on 90 x (0, 00),
v€ = +00 on - 2 x {0},

where ¢' = ¢’ (g (—é‘%‘)).
Consider the limit problem as ¢ — 0%

vy = —|Vv|? in~ £ x (0, o),
v=0 on 90 x (0,00),
v = 400 on Qx{0}.

- This problem has a unique viscosity solution

v(z,t) = -l%id(x)?

(2.2)
(2.3)
(24)

(2.5) |
(2.6)
(2.7)

(28)
(2.9)
2.10)

(2.11)

The uniciueness is proved by Crandall, Lions, and Souganidis [CrLS]. With the help
.of Crandall, Ishii, and Lions [CrIL] we can prove that the function given by (2.11)

' is a viscosity solution of problem (2.8)-(2.10).

By applying the comparison principle to u(z,t + k) and u(z,t) for h > 0, we get

u; >0 and Ag(u) >0 in Q x (0,+00).

(2.12)
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Set w = ¢(u). Then w; = ¢'(u)Aw and by (1.14)
5:Aw < w, < 6Aw in Q x (0, +00). ' (2.13)

Let w; (j = 1,2) solve the problems:

(wj)e = 6;A(w;)  in Qx(0,+00), | - (2.14)
wj = ¢‘(1) ~ on 99 x (0,+00), .‘ (2.15)
w;=0 - on Qx{0}. : (2.‘16).

Hence, in view of (2.13), from the comparison principle we get
Lemma 2.1 |
w <w<<w in QX (O,-i—oo).
We observe that the following hold:

§18 < P(s)<bs  for 820, | 2.17) -

—d1logs < —®B(s) < —dzlogs  for 0<s< 1, | (2.18)
efl < g(s) < et - for —o0 <s<0. (2.19)

Let wf = wi(z,t), (j =1,2) be the functions defined by
wi(z,t) = wj(z, ).

With the aid of (2.17) and (2.18), it follows from Lemma 2.1 that

€

. , _
—e28, log (116)—2-) < v < —€%5;log (%—Jl) in Q x (0, +00). (2.20)
1 02/ -

By a result in Crandall, Lions, and Séuganidis [CrLS], we obtain that, as € — 0,
the functions —£2; log w§ converge to the function f;d(z)? uniformly on Qx|[r,T) for
each 0 < 7 < T < 400, since their results work for the equation v, = £20;Av—|Vv|?
with v = —€24;log (Tﬁ%) Therefore we obtain

Lemma 2.2

151 1

- 61
. — 2 < : . & < . s < %2 ' 1 2 , .
5 4td(m) < hsxgégfv'(w, t) < limsupv®(z,t) < 4td(:z:) in Q x (0, +oo)

2
e—0t 51



61

Hence this lemma yields

Lemma 2.3 For any compact set K in Q X (0,+oo), there erist three constants
g0 = €0(K), a1 = c1(K), and c; = ca(K) satisfying

g0 >0, 0< g <6 <A00,

and, if O < € < g, . _
o 0<01S’U€S02 in K.

‘The key point in the proof of Theorem 1.2 is to obtain the following gradient esti-

mate:

‘Lemma 2.4 For any compact set K in {1 X (0, +00), there erist two constants
e1 = £1(K) and c3 = c3(K) satisfying

0<e Légp, C3>0,

and, if O < e < &,
IV'UEI <cs in K.

Then, by combmmg Lemmas 2.3 and 2.4 with Glldlng s result [Gild] we have

Lemma 2.5 For any compact set K in  x (0, +00), there exist two con.stants A
- €9 = £9(K) and cy = c4(K) satisfying

0<ey Sel, cy > 0,
and; ifO < e <L €,
|v®(z, t) — v&(z, s)| < calt — s|} for (z,t),(z,s) € K.
| Thus? Lezhmas 2.3, 2.4, and 2.5 imply |

Theorem 2.8 -Ase — 0%, v*(z,t) converges to +d(x)? uniformly on every compact

get in © x (0, +00).
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In conclusion, setting t = 1 and &2 =t in Theorem 2.6 yields Theorem 1.2.

It remains to prove Lemma 2.4. 'We use Bernstein’s technique. (See Evans
and Ishii [EI], Koike [Koi], Evans and Souganidis [ES], and Lions, Souganidis, and
‘Vazquez [LSV] for the technique.) Let K C Bg(0) x [27,T] for some R >0, 0 <
7 <271 <T. Take ¢ € C=(B,r(0) x (7, T]) satistying

0<¢<land (>0 in Byr(0) x (7,71,
¢ =1 on Bg(0) x [27,T], and supp ¢ C Bagr(0) x (7, T}.
- Consider the function z = 2(z,t) defined by
z = Vo2 = o, _ (2.21)
where A > 0 is a constant determined later, and 0 < € < &. Here, g9 = éd(BzR(O) X
~ [r, T)) is the constant in Lemma 2.3. Suppose that (zo, to) is & point in Byr(0)x (1, T]

satisfying

¢(zo,t0) >0 and max z = z(Zo, to).
- Bar(0)x[,T)

At (zg, 1) we then have _
22>0, 2z, =0, and Az L0,

and hence

| 0<z— 52¢"(g(-e",2v€)) Az.
By using (2.5) and by some calculation, we can conclude that there exist two positive
constants A, and A; independent of (zo,t0) and € such that at (zo, o)
AV < A VP + Ao Vol B — 207 Vo P¢"g Avf — e2¢/PIVRS)2. (2.22)
Here, we use the‘following key ineQuality: | | o

g(—e%f) 1 4 1 —a
=.——.———<_.._ &4 <___ 45 .
)=E s e, )

where ¢; = ¢3(B;z(0) x [r, T)) is the constant in Lemma 2.3. With the aid of (2.23),
we observe that there exists a positive constant A3 independent of (zo,o) and &
such that at (xo, to)

0<g (=%

202 Ver[Pg At < CA(As| V[ + [V2) - e,
1 .

and — e2¢/'C?| V22 < -f-6251C2[V2"l)‘[2.
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Se.t M2+1
M=__max (V| and A= ——p,
BrOxnT] 2(c2 + 1) |
where c; = ¢3(B2g(0) x [r, T]) is the constant in Lemma 2.3. Choose ¢, in (0, &)
small to get

01 - 4(02 + 1) and 3;6

for all € € (0,&,). Then, at (o, to), for any € € (0, E,.] we have from (2.22)

1436—;%2- < 1 ! 1%2—- < 6261

M2 +1 o | |
— < €12 €| . (2.24
4( +1)|V > < Ai|Vof|© + A M[V2°[“. _ (2:24)
We distinguish cases:
(i) Vvi(zo,t0) # 0,
(ii) Vv‘(xo,to) = 0.
In case (i), we get from (2.24)
M?+1
< A; + A M,
T
which yields the gradient estimate desired. In case (ii), since Vv (zo, tp) = 0, we get
M1 ME 1
e, € —
2(c2 + 1) “ +

M? < max z + Amaxv® < Amaxv® < S5 3
and hence M < 1. This completes the proof of Lemma 2.4. |

Remark. Lions, Souganidis, and Vazquez [LSV] consider the pressure equation for

the porous medium equation:
(Um)e = (M — 1)UmAvy, + |Vom|? for m > 1,

and consider the asymptotic behavior as m — 1%. They get the interior grad1ent
 estimate for v, independent of m by the technique similar to ours. We follow
- them, but we use inequality(2.23) in order to overcome the difficulty caused by -
¢ = ¢' (g (—e~%%)) in equation (2.5). '
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