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1 Introduction
The purpose of the present paper is to give a new representation of solutions for the
periodic linear differential equation of the form

$\frac{d}{dt}x(t)=A(t)x(t)+f(t),$ $x(O)=w$ (1)

where $A(t)$ is a $\tau$-periodic continuous $pxp$ matrix $filnction$ with period $\tau>0$ and
$f$ : $\mathbb{R}\prec \mathbb{C}^{p}$ a $\tau$-periodic continuous function. In general, we know the variation
of constants formula as a representation of solutions for the inhomogeneous linear
differential equation. However it is not easy to obtain the asymptotic behavior of
solutions by analyzing the integral term of the variation of constants formula. Fbr the
case where $A(t\rangle$ is constant, we gave another, new representation of solutions as the
sum of exponential like functions and periodic functions in [1]. This representation
is powerful to investigate the asymptotic behavior of solutions.

In this paper we will study representations of solutions for the general periodic
equation (1) in such a direction. It is closely related to a new representation of
solutions of the linear difference equation of the form

$x_{n+1}=U(\tau,0)x_{n}+b_{f},$ $x_{0}=w$ , (2)

where $U(t, s)i_{8}$ a solution operator for the equation (1) with $f(t)\equiv 0$ and

$b_{f}= \int_{0}^{\tau}U(\tau, s)f(s)ds$ .
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2 Linear difference equations
Throughout this paper we make use of the following notations: Let $E$ be the unit $p\cross p$

matrix. For a complex $pxp$ matrix $H$ we denote by $\sigma(H)$ the set of all eigenvalues
of $H$ , and by $h_{H}(\eta)$ the index of $\eta\in\sigma(H)$ . Let $M_{H}(\eta)=N((H-\eta E)^{h_{H}(\eta)})$ be the
generalized eigenspace corresponding to $\eta\in\sigma(H)$ and $Q_{\eta}(H)$ : $\mathbb{C}^{p}arrow M_{H}(\eta)$ the
projection corresponding to the direct sum decomposition $\mathbb{C}^{p}=\sum_{\eta\in\sigma(H)}\oplus M_{H}(\eta)$ .

Consider the linear difference equation of the form

$x_{n+1}=Bx_{n}+b,$ $x_{0}=w$ , (3)

where $B$ is a complex $pxp$ matrix and $b\in \mathbb{C}^{p}$ . Denote by $x_{\mathfrak{n}}(w, b)$ the solution of
the equation (3). Then the solution $x_{n}:=x_{n}(w, b)$ is given as

$x_{n}=B^{n}w+S_{n}(B)b$ ,

where
$S_{n}(B)= \sum_{\triangleleft\kappa_{-}}^{n-1}B^{k}$, $(n\geq 1),$ $S_{0}(B)=0$ .

Put $h(\mu)=h_{B}(\mu),$ $Q_{\mu}=Q_{\mu}(B)$ for $\mu\in\sigma(B)$ . Clearly, we have

$Q_{\mu}x_{n}(w, b)=B^{n}Q_{\mu}w+S_{n}(B)Q_{\mu}b$ .

To describe the results, we prepare the following notations. The factorial num-
bers $(n)_{\hslash}$ are given as

$(n)_{k}=\{\begin{array}{ll}1, (k=0),n(n-1)(n-2)\cdots(n-k+1), (k=1,2, \cdots,n),0, (k=n+1,n+2, \cdots).\end{array}$

Set $a(z)=(z-1)^{-1},$ $(z\neq 1)$ . Then we have

$a^{(k)}(z)$ $:= \frac{d^{\hslash}}{dz^{k}}a(z)=(-1)^{k}k!(z-1)^{-k-1}$ .

For any $\mu\in\sigma(B)$ such that $\mu\neq l$ , we define a matrix $Z_{\mu}(B)$ as follows:

$Z_{\mu}(B)=Z_{\mu}(B, h(\mu))$

where

$Z_{\mu}(B, h)= \sum_{k=0}^{h-1}\frac{a^{(k)}(\mu)}{k!}(B-\mu E)^{k}=-\sum_{k=0}^{h-1}\frac{1}{(1-\mu)^{k+1}}(B-\mu E)^{k}$ , $(\mu\neq 1)$
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for $h=1,2,$ $\cdots$ , $h(\mu)$ . For a $\mu\in\sigma(B)$ and a $w\in \mathbb{C}^{p}$ , two vectors $\gamma_{\mu}(w, b)$ and
$\delta(w, b)$ are defined as $f_{0}n_{oWS}$ :

$\gamma_{\mu}(w,b):=\gamma_{\mu}(w_{\backslash ,\prime}b;B)=Q_{\mu}w+Z_{\mu}(B)Q_{\mu}b$ $(\mu\neq 1)$

and
$\delta(w, b):=\delta(w,b;B)=(B-E)Q_{1}w+Q_{1}b$ $(\mu=1)$ .

Theorem 2.1 [3] Let $\mu\in\sigma(B)$ . The component $Q_{\mu}x_{n}(w, b)$ of the solution $x_{\mathfrak{n}}(w,b)$

of the quation (3) is $e\varphi nssd$ as follows:
1) If $\mu\neq 1_{f}$ then

$Q_{\mu}x_{n}(w,b)=B^{n}\gamma_{\mu}(w,b)-Z_{\mu}(B)Q_{\mu}b$ .
2) $If\mu=1$ , then

$Q_{1}x_{n}(w, b)= \sum_{k=0}^{\hslash(1)-1}\frac{(n)_{k+1}}{(k+1)!}(B-E)^{\hslash}\delta(w, b)+Q_{1}w$ .

Lemma 2.1 Let $\mu\in\sigma(B),$ $(\mu\neq 1)$ . Then the following relation

$(B-E)Z_{\mu}(B)Q_{\mu}=Q_{\mu}$ (4)

holds, that is, $Z_{\mu}(B)Q_{\mu}$ is a solution of the equation

$(B-E)X=Q_{\mu}$ .
PmofFor any $b\in \mathbb{C}^{p}$ the assertion 1) in Theorem 2.1 holds. Setting $w=0,n=1$

in Theorem 2.1, we have $Q_{\mu}x_{1}(0, b)=BZ_{\mu}(B)Q_{\mu}b-Z_{\mu}(B)Q_{\mu}b=Q_{\mu}b$ for all $b\in \mathbb{C}^{p}$ .
This implies the relation (4). ロ

Lemma 2.2 If $\mu\neq 1,$ $\mu\in\sigma(B)$ , then the follounng relation

$(B-E)\gamma_{\mu}(w, b)=(B-E)Q_{\mu}w+Q_{\mu}b$

holds. In $pa\hslash i_{Cl}dar$, we have
$\gamma_{\mu}(w, b)=0\Leftrightarrow(B-E)\gamma_{\mu}(w,b)=0$ .

PrvofUsing Lemma 2.1, we have

$(B-E)\gamma_{\mu}(w,b)=(B-E)Q_{\mu}w+(B-E)Z_{\mu}(B)Q_{\mu}b$

$=(B-E)Q_{\mu}w+Q_{\mu}b$.
Now, we assume that $(B-E)\gamma_{\mu}(w, b)=0$ . Then we see that $\gamma_{\mu}(w,b)\in M_{B}(1)$ .
It foUows from definition of $\gamma_{\mu}(w, b)$ that $\gamma_{\mu}(w,b)\in M_{B}(\mu)$ . Hence $\gamma_{\mu}(w, b)\in$

$M_{B}(1)\cap M_{B}(\mu)$ . On the other hand, since $\mu\neq 1$ , we get $M_{B}(1)\cap M_{B}(\mu)=\{0\}$ .
Therefore the relation $\gamma_{\mu}(w,b)=0$ holds. $O$

The following result is one of the main result in this paper.
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Theorem 2.2 The solution $x_{n}(w, b)$ of the equation (3) is expressed as follows:
1)

$(B-E)x_{n}(w, b)=B^{n}((B-E)w+b)-b$.

2) Let $\mu\in\sigma(B)$ .
$(B-E)Q_{\mu}x_{n}(w,b)=B^{n}((B-E)Q_{\mu}w+Q_{\mu}b)-Q_{\mu}b$ .

(1) If $\mu\neq I$ , then

$(B-E)Q_{1}x_{n}(w, b)=B^{n}(B-E)\gamma_{\mu}(w, b)-Q_{\mu}b$ .
(2) If $\mu=1$ , then

$(B-E)Q_{1}x_{n}(w,b)=B^{n}\delta(w,b)-Q_{1}b$ .

Proof Since $x_{n}(w, b)=B^{n}w+S_{n}(B)b$ and $(B-E)S_{n}(B)b=B^{n}b-b$ , we have

$(B-E)x_{n}(w, b)$ $=$ $B^{n}(B-E)w+(B-E)S_{n}(B)b$
$=$ $B^{n}(B-E)w+B^{n}b-b$
$=$ $B^{n}((B-E)w+b)-b$ ,

which implies the assertion 1). The assertion 2) can be easily obtained by using the
assertion 1), Theorem 2.1 and Lemma 2.2. ロ

3 A representation of solutions of periodic linear
differential equations

Denote by $x(t)$ the solution $x(t;0,w)$ of the equation (1). In this section, we give a
representation of the solution $x(t)$ to the equation (1). The solution operator $U(t, s)$

is defined as $U(t,s)w=u(t;s,w),w\in \mathbb{C}^{p}$ by using the unique solution $u(t;s,w)$ of
the equation $u’(t)=A(t)u(t)$ with the imtial condition $u(s)=w\in \mathbb{C}^{p}$ . Define the
well known periodic map $V(t),t\in \mathbb{R}$ by $V(t)=U(t, t-\tau)=U(t+\tau,t)$ . Then it is
easy to cheCk the folowing properties : $V(t+\tau)=V(t),$ $V(t)U(t, s)=U(t, s)V(s)$ .

Set
$Q_{\mu}(t)=Q_{\mu}(V(t))(\mu\in\sigma(V(0)))$ .

We give a representation of the component $Q_{\mu}(t)x(t)$ of the solution $x(t)$ for the
equation (1) by using the method of periodicizing functions, cf.[2]. It is expressed
by characteristic multipliers. Hereafter, we set

$b_{f}= \int_{0}^{\tau}U(\tau, s)f(s)ds$

62



and
$\gamma_{\mu}(w, b_{f})=\gamma_{\mu}(w, b_{f};V(O))$ , $\delta(w,b_{f})=\delta(w,b_{f};V(O))$ .

Now we consider the problem of finding a solution $z(t)$ $:=\Delta_{\tau}^{-1}(-U(t, 0)b_{f})$ of
the following equation

$\Delta_{\tau}z(t):=z(t+\tau)-z(t)=-U(t,0)b_{f},$ $(t\in \mathbb{R})$ . (5)

Theorem 3.1
1) The solution $x(t\rangle$ of the equation ( $1\rangle$ is $e\varphi oessed$ as follows:

$x(t)=U(t,0)w-\Delta_{\tau}^{-1}(-U(t,0)b_{f})+h(t,b_{f})$ , $(t\in \mathbb{R})$ ,

where

$h(t, b_{f})= \Delta_{\tau}^{-1}(-U(t,0)b_{f})+\int_{0}^{t}U(t,s)f(s)ds$

is $a$ $cx\tau ti\tau$ 火 vko2uムテ $\tau$ -pe幅 (\sim tic fimctim.
2) Let $\mu\in\sigma(V(O))$ . The component $Q_{\mu}(t)x(t)$ of the solution $x(t)$ of the equation

(1) is $e\eta ressed$ as follows:
$Q_{\mu}(t)x(t)=U(t,0)Q_{\mu}(0)w-\Delta_{\tau}^{-1}(-U(t,0)Q_{\mu}(0)b_{f})+h_{\mu}(t, b_{f})$ , $(t\in \mathbb{R})$ ,

where

$h_{\mu}(t,b_{f})= \Delta_{\tau}^{-1}(-U(t,0\}Q_{\mu}(0)b_{f})+\int_{0}^{t}U(t,s)Q_{\mu}(s)f(s)ds$

is a continuous $\tau$-periodic function.
To get representations of solutions for the equation (1), we will calculate the

functions $\Delta_{\tau}^{-1}(-U(t,0)b_{f})$ and $\Delta_{\tau}^{-1}(-U(t,0)Q_{\mu}(0)b_{f})$ in Theorem 3.1.

Theorem 3.2
1) The following relation holds.

$(V(t)-E)\Delta_{\tau}^{-1}(-U(t,0)b_{f})=-U(t,0)b_{f}+e(t)$ , $(t\in \mathbb{R})$ (6)

where $e(t)$ is a $\tau$ -periodic function.
2) Let $\mu\in\sigma(V(O))$ . Then

$(V(t)-E)\Delta_{r}^{-1}(-U(t,0)Q_{\mu}(0)b_{f})=-U(t,0)Q_{\mu}(0)b_{f}+d(t)$ , $(t\in \mathbb{R})$ (7)

where $d(t)$ is a $\tau$-periodic function.
3) Let $\mu\in\sigma(V(O))$ such that $\mu\neq 1$ . Then

$\Delta_{r}^{-1}(-U(t,0)Q_{\mu}(0)b_{f})=-U(t,0)Z_{\mu}(V(0))Q_{\mu}(0)b_{f}+c(t)$ , $(t\in \mathbb{R})$ , (8)

where $c(t)$ is a $pe$riodic constant.
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Proof 1) Let $z(.t),t\in \mathbb{R}$ , be a continuo\^us solution of the equation (5). Operating
$V(t)-E$ to the both sides of the equation (5), we have

$(V(t)-E))(z(t+\tau)-z(t))$ $=-(V(t)-E)U(t\rangle 0)b_{f}$

$=$ $-U(t+\tau,0)b_{f}+U(t,0)b_{f}$ .

Since $V(t+\tau)=V(t)$ , the above relation becomes

$(V(t+\tau)-E)z(t+\tau)+U(t+\tau,0)b_{f}=(V(t)-E)z(t)+U(t,0)b_{f}$ .

Thus $e(t)$ $:=(V(t)-E)z(t)+U(t,0)b_{f}$ is a $\tau$-periodic frmction on R. Therefore the
following relation holds true:

$(V(t)-E)z(t)=-U(t,0)b_{f}+e(t)$ , $(t\in \mathbb{R})$ .
This proves the assertion 1).

2) The relation (7) is easily proved by operating $Q_{\mu}(t)$ to the both sides of (6).
3) Let $z(t),t\in \mathbb{R}$ , be a continuous solution of the equation

$z(t+\tau)-z(t)=-U(t,0)Q_{\mu}(0)b_{f}$ . (9)

Then for any $t\in \mathbb{R}$ and $n\in N_{0}$ , we have

$z(t+n\tau)$ $=z(t)- \sum_{k-\triangleleft}^{n-1}U(t+k\tau,0)Q_{\mu}(0)b_{f}$

$z(t)-U(t,0) \sum_{\hslash=0}^{n-1}U^{k}(\tau,0)Q_{\mu}(0)b_{f}$

$=z(t)-U(t,0)Q_{\mu}(0)x_{n}(0)$ ,

where $x_{n}(0)$ is the solution of the equation of the type $x_{n+1}=V(0)x_{n}+b_{f},$ $x_{0}=0$ .
It $foUow8$ from Theorem 2.1 that $Q_{\mu}(0)x_{1}(0)=V(0)\gamma-\gamma(=Q_{\mu}(0)b_{f})$ , where $\gamma=$

$Z_{\mu}(V(0))Q_{\mu}(0)b_{f}$ . Hence we have

$U(t,0)Q_{\mu}(0)x_{1}(0)$ $=U(t,0)(V(0)\gamma-\gamma\rangle$

$=U(t+\tau,0)\gamma-U(t,0\}\gamma$ ,

from which we see that $z(t+\tau)=(z(t)+U(t,O)\gamma)-U(t+\tau,0)\gamma$, that is,

$z(t+\tau)+U(t+\tau,0)\gamma=z(t)+U(t,0)\gamma$ .
Thus $c(t)$ $:=z(t)+U(t,0)\gamma i_{8}$ a $\tau$-periodic function on R. This implies that

$z(t)=\Delta_{r}^{-1}(-U(t,0)Q_{\mu}(0)b_{f})=-U(t,O)\gamma+c(t)$ , $(t\in \mathbb{R})$ .
Therefore the Proof of the theorem is completed. 口

Using Theoren 3.2, we will crystallize Theorem 3.1.

64



Theorem 3.3 For the solution $x(t)$ of the equation (1) the following representa-
tions hold true:

1)

$(V(t)-E)x(t)=U(t,O)((V(O)-E)w+b_{f})+v(t, b_{f}))$ $(t\in \mathbb{R})$ , (10)

where

$v(t,b_{f})=$ $(V(t)-E)h(t,$ $b_{f}$}

$-U(t,0)b_{f}+/0tU(t,s)(V(s)-E)f(s)d_{8}$ (11)

is a continuous $\tau$ -periodic $fi_{4}nction$ .
2) Let $\mu\in\sigma(V(O))$ . Then

$(V(t)-E)Q_{\mu}(t)x(t)$ $=$ $U(t,O)|(V(0)-E)Q_{\mu}(0)w+Q_{\mu}(0)b_{f}1$

$+v_{\mu}(t,b_{f})$ , $(t\in \mathbb{R})$ ,

wheoe

$v_{\mu}(t, b_{f})=$ $(V(t)-B)h_{\mu}(t, b_{f})$

$-U(t,0)Q_{\mu}(0)b_{f}+ \int_{0}^{t}U(t, s)(V(s)-E)Q_{\mu}(s)f(s)ds$

is a continuous $\tau$-penodic $fi_{A}nction$ .

PrvofSince $h(t,b_{f})$ given in Theorem 3.1 and $V(t)$ are r-periodic, $v(t, b_{f})$ $:=(V(t)-$
$E)h(t,b_{f})$ is also $\tau$-periodic. Moreover, (10) and (11) are easily proved by combining
Theorem 3.1 with Theorem 3.2. The remainder is obvious. $0$

We are now in a position to state the main theorem in this paper.

Theorem 3.4 Let $\mu\in\sigma(V(O))$ . For the component $Q_{\mu}(t)x(t)$ of the solution $x(t)$

of the equation (1) the following representations $h_{0}u$ true:
1) Let $\mu\neq 1$ . Then

$Q_{\mu}(t)x(t)=U(t,0)\gamma_{\mu}(w,b_{f})+h_{\mu}(t,b_{f})$ , $(t\in \mathbb{R})$ (12)

where

$h_{\mu}(t,b_{f} \rangle=-U(t,0)Z_{\mu}(V(0))Q_{\mu}(0)b_{f}+\int_{0}^{t}U(t,s)Q_{\mu}(s)f(s)ds$

is a continuous $\tau$-periodic function.
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2) Let $\mu=1$ . Then
$(V(t)-E)Q_{1}(t)x(t)=U(t,O)\delta(w,b_{f})+v_{1}(t,b_{f})$ , $(t\in \mathbb{R})$ , (13)

where

$v_{1}(t,b_{f})=-U(t,0)Q_{1}(0)b_{f}+ \int_{0}^{t}U(t,s)(V(s)-E)Q_{1}(s)f(s)ds$

is a continuous $\tau$-periodic fimction.
PmofThe assertion 1) is easily proved by using Theorem 3.1 and 3) in Theorem 3.2.
The assertion 2) is the case where $\mu=1$ in 2) of Theorem 3.3. ロ

Corollary 3.1 If $\delta(w,b_{f})=0$ in 2) of Theorem 3.4, then
$\Delta_{\tau}^{-1}(-U(t,0)Q_{1}(0)b_{f})=U(t, 0)Q_{1}(0)w+e(t)$ , (14)

where $e(t)$ is a perzodic constant, and $Q_{1}(t)x(t)=h_{1}(t,b_{f})$ is a $\tau$-periodic solution
of the equation (1).

Prvof Since $\delta(w,b_{f})=0$ , we have $(V(O)-E)Q_{1}(0)w=-Q_{1}(0)b_{f}$ . Then for a
continuous solution $z(t),t\in \mathbb{R}$ , of the equation (9) we have

$z(t+\tau)-z(t)=$ $U(t,O)(V(O)-E)Q_{1}(O)w$

$=U(t+\tau,0)Q_{1}(0)w-U(t,0)Q_{1}(0)w$ ,
hon which it follows that $e(t):=z(t$} $-U(t,0)Q_{1}(0)w$ is a $\tau$-periodic imction.
$Thereforeh_{1}(t,b_{f})$

we obtain $the\cdot relation(14)$ . In view of Theorem 3.1 we have $Q_{1}(t)x(t)=$

ロ

Finally, we consider the case where $1\not\in\sigma(V(O))$ . Then we have the following
result.

Theorem 3.5 Let $1\not\in\sigma(V(O))$ . Then the following results hold.
1)

$\Delta_{\tau}^{-1}(-U(t,0)b_{f})=-U(t,0)(V(0)-E)^{-1}b_{f}+p(t)$ , $(t\in \mathbb{R})$

where $p(t)$ is a periodic constant.
2) For the solution $x(t)$ of the equation (1) the follorning representation hol&

true:
$x(t)=U(t,O)(w+(V(O)-E)^{-1}b_{f})+\hat{h}(t,b_{f})$ , $(t\in \mathbb{R})$

where

$\hat{h}(t, b_{f})=-U(t,O)(E-V(0))^{-1}b_{f}+\int_{0}^{t}U(t,s)f(s)ds$

is a r-periodic solution of the equation (1).
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ProofLet $z(t),$ $t\in \mathbb{R}$ , be a continuous solution of the equation (5). Since $1\not\in\sigma(V(O))$ ,
we have

$z(t+\tau)$ $=z(t)-U(t,0)b_{f}$
$=$ $z(t)-U(t,0)(E-V(0))(E-V(0))^{-1}b_{f}$ .

Thus we get

$z(t+\tau)-U(t+\tau,0)(E-V(0))^{-1}b_{f}=z(t)-U(t,O)(E-V(0))^{-1}b_{f}$ .
This means that $z(t)=U(t,O)(E-V(0))^{-1}b_{f}+p(t),$ $(t\in \mathbb{R})$ , where $p(t)$ is a periodic
constant. The $rema\dot{i}$der is obvious. $\square$
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