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1 Introduction

An interesting problem in robotics involves the identification in a two- or
three-dimensional space a continuous path that allows a robot, or a part of
it, to reach its destination without colliding with obstacles that may exist in
the space. Sometimes referred to as the findpath problem, it is essentially a
geometric problem.

In this paper we are proposing that we look at the findpath problem $hom$

the point of view of having an obstacle avoidance system that is at least Lya-
punov stable. We consider a simple planar obstacle avoidance system that
consists of a point-mass being controlled to its destination or target whilst
avoiding a fixed object in two-dimensional space. The proposed Lyapunov
function for the system produces artificial potential fields both for obstacle
avoidance and for target attraction. After establishing Lyapunov stability,
we then show that it is possible to identify a region of asymptotic stability
in which the target is the only minimum point.

The background of our method lies in the application of the Lyapunov
method to qualitative differential games that involve dynamical systems sub-
ject to control by one or more players ([2], [1]). Using these differential games
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concepts, a simple method to solve the findpath problem was proposed in
[3]. The methods therein are used in this paper.

2 A Globally Asymptotic Stable Point-Mass Sys-
tem

Consider a point-mass, defined as the disk of radius $r_{P}\geq 0$ , and positioned
at $(x(t), y(t))\in \mathbb{R}^{2}$ at time $t\geq 0$ . That is, the point-mass is

$P=\{(z_{1}, z_{2})\in \mathbb{R}^{2} : (z_{1}-x)^{2}+(z_{2}-y)^{2}\leq r_{P}^{2}\}$ .
Its instantaneous velocity is $(v(t),w(t))$ $:=(\dot{x}(t),\dot{y}(t))$ . Our general ODE
system is therefore of the form

$\dot{x}(t)=v(x(t),y(t))$ , $\dot{y}(t)=w(x(t), y(t)),$ $(x(O),y(O))$ $:=(x_{0}, y_{0})$ , (1)

and our objective is to steer the point-mass to a goal or target in $\mathbb{R}^{2}$ . The
target is defined as the disk with center $(\tau_{1}, \tau_{2})$ and radius $r_{T}$ , that is,

$T=\{(z_{1}, z_{2})\in \mathbb{R}^{2} : (z_{1}-\tau_{1})^{2}+(z_{2}-\tau_{2})^{2}\leq r_{T}^{2}\}$

with $r_{T}\geq 0$ sufficiently small. Let $e_{0}=(\tau_{1}, \tau_{2})$ . We state our first result:
Theorem 1 Let $v(x, y)=-(x-\tau_{1})$ and $w(x, y)=-(y-\tau_{2})$ . Then the point
$e0$ is the only equilibrium point of system (1) and is globally asymptotically
stable.

Proof. If $v(x, y)=-(x-\tau_{1})$ and $w(x, y)=-(y-\tau_{2})$ , then it is clear that
$e_{0}=(\tau_{1}, \tau_{2})$ is the only equilibrium point of the system. To prove global
asymptotic stability, we use the Lyapunov function $V(x, y)= \frac{1}{2}[(x-\tau_{1})^{2}+$

$(y-\tau_{2})^{2}]$ , which is radially unbounded, with $V(e_{0})=0$ . Its time-derivative
along a trajectory of system (1) is $\dot{V}_{(1)}.(x, y)=-[(x-\tau_{1})^{2}+(y-\tau_{2})^{2}]$ , with
$\dot{V}_{(1)}(x, y)<0$ for all $(x, y)\neq e_{0)}$ and $V_{(1)}(e_{0})=0$ .

3 An Asymptotically Stable Point-Mass System with
a fixed Obstacle

We next consider the situation where there is now a fixed obstacle that
the point-mass $P$ has to avoid. Precisely, if $(0_{1},0_{2})$ is the center of the
disk, and $r_{O}$ is the radius of the disk, then the obstacle can be defined as
$O=\{(z_{1}, z_{2})\in \mathbb{R}^{2} : (z_{1}-0_{1})^{2}+(z_{2}-0_{2})^{2}\leq r_{O}^{2}\}$ . Next, we construct
an artificial potential field function that guarantees target attraction and
collision avoidance.
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3.1 Target Attraction and Collision Avoidance

For target attraction, we want to have a measurement, at time $t\geq 0$ , of
the distance between the position $(x, y)$ of the point-mass $P$ and its target
$T$ . A likely function is therefore $G(x,y)= \frac{1}{2}\{(x-\tau_{1})^{2}+(y-\tau_{2})^{2}\}$ . For
obstacle-avoidance, we want to have a measurement of the distance between
the point-mass $P$ and its obstacle $O$ . For this purpose we shall utilize the
following function appropriately:

$W(x, y)= \frac{1}{2}\{(x-0_{1})^{2}+(y-0_{2})^{2}-(r_{O}+r_{P})^{2}\}$ . (2)

3.2 Lyapunov Function as the the Artificial Potential Field
Function

Let $\alpha>0$ be a constant, and consider as a tentative Lyapunov function for
system (1)

$V(x, y)=G(x,y)+ \frac{\alpha G(x,y)}{W(x,y)}$ . (3)

It is clear that $V$ is continuous and locally positive definite on the domain
$D(V)=\{(x, y)\in \mathbb{R}^{2} : W(x, y)>0\}$ . That is, $V(x, y)>0$ for all $(x,y)\in$

$D(V)\backslash \{e_{0}\}$ and $V(e_{0})=0$ , with $e_{0}\in D(V)$ . It is clear that $D(V)$ is a
pathwise-connected proper subset of $\mathbb{R}^{2}$ , meaning that for every two points
in $D(V)$ , there is a path connecting them.

Now, along a trajectory of system (1), we have $\dot{V}_{(1)}(x, y)=f(x, y)v(x, y)+$

$g(x, y)w(x, y)$ , where

$g(x,y)f(x,y)$ $:=:=$ $[1+ \frac{\alpha}{W(x,y)}](x-\tau_{1})-\frac{\alpha G(x,y)}{W^{2}(x,y)}(x-0_{1})[1+\frac{\alpha}{W(x,y)}](y-\tau_{2})-\frac{\alpha G(x,y)}{W^{2}(x,y)}(y-0_{2})$

.

$\}$ (4)

For some arbitrary constant $k>0$ , and define $v$ and $\omega$ as

$v(x, y)=-kf(x, y)$ and $w(x, y)=-g(x, y)$ (5)

Then it can easily be verified that

$\dot{V}_{(1)}(x,y)=-\frac{1}{k}[v^{2}(x, y)+w^{2}(x, y)]$ .

This shows that $\dot{V}_{(1)}(x, y)\leq 0$ for all $(x,y)\in D(V)$ , with $\dot{V}_{(1)}(e_{0})=0$ . This
implies that $e_{0}$ is a stable equilibrium point of system (1) if the instantaneous
velocities are defined as in (5).
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3.3 Main Results

Substituting $v$ and $w$ into (1), we have

$\dot{x}\dot{y}$ $==$

$-kf(x,y)=-k[1+ \frac{\alpha}{W(x,y)}](x-\tau_{1})-\frac{\alpha G(x,y)}{W^{2}(x,y)}(x-0_{1})-kg(x,y)=-k[1+\frac{\alpha}{W(x,y)}](y-\tau_{2})-\frac{\alpha G(x,y)}{W^{2}(x,y)}(y-0_{2})(x(0),y(0)):=(x_{0},y_{0})$

$1_{6)}$

The functions $fo$ and $90$ are continuously differentiable on $D(V)$ , and there-
fore the existence in $D(V)$ of the solutions of system (6) is guaranteed. More-
over, all the solutions that are initiated in $D(V)$ are bounded and lie in $D(V)$

for all $t\geq 0$ , given that our discussions above yield the stability of system (6):

Theorem 2 The point $e0=(\tau_{1}, \tau_{2})$ is a stable equilibrium point of sys-
tem (6).

We shall endeavor to show next that indeed $e_{0}$ is asymptotically stable given
a certain set of initial conditions.

We begin by identifying all the equilibrium points of system (6).

3.4 Equilibrium Points of System (6)

In $\mathbb{R}^{2}$ , the line that passes through the center of the obstacle $O$ and the
center of the target $T$ is

$l= \{(z_{1}, z_{2})\in \mathbb{R}^{2} : z_{2}-\tau_{2}=\frac{\tau_{2}-0_{2}}{\tau_{1}-0_{1}}(z_{1}-\tau_{1})\}$.

Let $\theta=\tan^{-1}(\frac{o_{2}-\tau_{2}}{o_{1}-\tau_{1}})$ , and let $l_{b}$ and $l_{f}$ be proper subsets of $l$ , with

$l_{b}=$ { $(z_{1},$ $z_{2})\in l$ : $z_{1}<0_{1}-r_{0}$ cos $\theta$ and $z_{2}<0_{2}-r_{0}$ sin $\theta$ },

and

$l_{f}=$ { $(z_{1},$ $z_{2})\in l:z_{1}>0_{1}+r0$ cos $\theta$ and $z_{2}>0_{2}+r_{0}$ sin $\theta$}.

Definition 1 The point $(z_{1}, z_{2})$ is said to be behind the obstacle $O$ if $(z_{1}, z_{2})\in$

$l_{b}$ , and is said to be in front of the obstacle $O$ if $(z_{1}, z_{2})\in l_{f}$ .
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Clearly, $l_{b}$ and $l_{f}$ are segments of $l$ , but in $D(V)$ . The point-mass $P$ is
behind the obstacle $O$ if it is on the line segment $l_{b}$ and is in front of $O$ if is
on the line segment $l_{f}$ . The need to have its radius $r_{P}$ sufficiently small is
a practical consideration, because, obviously, we do not want $P$ to overlap
with $O$ whose $r_{O}$ is not restricted.

Lemma 1 System (6) has a finite number of equilibrium points, of which
those with real components are in $l$ .

Proof. Solving for $\dot{v}=\dot{w}=0$ , we have

$f(x, y)=[1+ \frac{\alpha}{W(x,y)}](x-\tau_{1})-\frac{\alpha G(x,y)}{W^{2}(x,y)}(x-0_{1})$ $=$ $0$ , (7)

$g(x, y)=[1+ \frac{\alpha}{W(x,y)}](y-\tau_{2})-\frac{\alpha G(x,y)}{W^{2}(x,y)}(y-0_{2})$ $=$ $0$ . (8)

Since $1+\alpha/W\neq 0$ and $\alpha G/W^{2}\neq 0$ in $D(V)$ , we have, by solving (7) and
(8) simultaneously,

$(x-\tau_{1})(y-0_{2})=(x-0_{1})(y-\tau_{2})$ , (9)

which corresponds to points in $l$ . However, there are finite number of equi-
librium points because $f$ and $g$ involve rational functions, and if they have
real components, then they are in $l$ . Indeed, on rewriting $f(x, y)=0$ and
$g(x, y)=0$ , we have

$W(W+\alpha)(x-\tau_{1})-\alpha G(x-0_{1})$ $=$ $0$ , (10)
$W(W+\alpha)(y-\tau_{2})-\alpha G(y-0_{2})$ $=$ $0$ .

If we substitute (9) into either of the equations in (10), we will have a
polynomial of degree 5 in $x$ or in $y$ . To see this, we can assume, without
loss of generality, that the line $l$ lies on the x-axis and that the obstacle is
centered at the origin. This means that $y=\tau_{2}=0_{1}=0_{2}=0$ . Then the
first equation in (10) yields

$(x-\tau_{1})\{x^{4}-2(r_{O}+r_{P})^{2}x^{2}+2\alpha\tau_{1}x+(r_{O}+r_{P})^{2}[(r_{O}+r_{P})^{2}-2\alpha]\}=0$ ,
(11)

which is a polynomial of degree 5 in $x$ . Note that (10) also shows that one
of the equilibrium points is $(\tau_{1}, \tau_{2})$ . This ends the proof of Lemma 1.

口
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Lemma 2 Let $\tau_{1}>0$ and $\tau_{2}>0$ be sufficiently large. Then system (6) has
exactly one equilibrium point behind the obstacle $O$ and exactly one equilib-
rium point located at $e_{0}=(\tau_{1}, \tau_{2})$ in front of the obstacle $O$ .

Proof. We prove this Lemma 2 by showing that of the five roots alluded to by
Lemma 1, three are real. One root gives an equilibrium point that is behind
the obstacle; another root gives $e_{0}$ , meaning that the only equilibrium point
in front of the obstacle is $e_{0}$ ; and the third root gives an equilibrium point
that is always within the obstacle disk. This third root can be ignored.

Assume once again, and without loss of generality, that the line $l$ lies on
the x-axis and that the obstacle is centered at the origin, with radius $r_{O}>0$ .
Then we have equation (11), which shows that there are five roots, one of
which is $x=\tau_{1}$ . This gives the equilibrium point $e_{0}$ .

To determine the other roots, let the second term of (11) be $f(x)=$
$a_{4}x^{4}+a_{2}x^{2}+a_{1}x+a_{0}$ where $a_{4}$ $:=1,$ $a_{2}$ $:=-2(ro+r_{P})^{2},$ $a_{1}$ $:=2\alpha\tau_{1}$ and
$a_{0}$ $:=(r_{O}+r_{P})^{2}[(r_{O}+r_{P})^{2}-2\alpha]$ . Now, $a_{0}$ could either be negative, $0$ or
positive, depending on the values of $\alpha>0,$ $r_{O}>0$ and $r_{P}>0$ . Let us
consider each case separately.

1. Case $a_{0}<0$ . We have

$f(-r_{O})=-r_{O}^{4}-4r_{O}^{3}r_{P}-2r_{P}^{2}r_{O}^{2}-2\alpha\tau_{1}r_{O}+a0<0$. (12)

Now, $f(x)arrow+\infty$ as $xarrow-\infty$ . Thus, by the Intermediate Value
Theorem, there is a real root in $(-\infty, -r_{O})$ . Obviously this root gives
an equilibrium point behind the obstacle. Next, we have

$f(r_{O})=-r_{O}^{4}-4r_{O}^{3}r_{P}-2r_{P}^{2}r_{O}^{2}+2\alpha\tau_{1}r_{O}+a_{0}<2\alpha\tau_{1}ro$ (13)

It is clear that we can find $\tau_{1}>0$ sufficiently large such that $0<$
$f(r_{0})<2\alpha\tau_{1}r_{O}$ . Moreover, since $f(O)=a_{0}<0$ , the Intermediate
Value Theorem guarantees the existence of a real root in $[0, r_{O}$ ), giving
an equilibrium point within the obstacle disk.

2. Case $a_{0}=0$ . Put $a_{0}=0$ in (12) and (13), respectively, and we obtain
the two equilibrium points via the Intermediate Value Theorem; one
behind the obstacle and the other within the obstacle disk if $\tau_{1}>0$ is
sufficiently large.

3. Case $a_{0}>0$ . We have

$f(-r_{O})=-r_{O}^{4}-4r_{O}^{3}r_{P}-2r_{P}^{2}r_{O}^{2}-2\alpha\tau_{1}r_{O}+a_{0}<-2\alpha\tau_{1}r_{O}+a_{0}$ .
(14)
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It is clear that we can find $\tau_{1}>0$ sufficiently large such that $f(r_{0})<$

$-2\alpha\tau_{1}r_{O}+a_{0}<0$ . Since $f(x)arrow+\infty$ as $xarrow-\infty$ , the Intermediate
Value Theorem guarantees the existence of a real root that gives an
equilibrium point behind the obstacle. Also, since $f(O)=a_{0}>0$ ,
the Intermediate Value Theorem produces a real root that gives an
equilibrium point within the obstacle disk.

This completes the proof of Lemma 2.
Next, we show that if a solution of system (6) starts in $l_{b}$ or in $l_{f}$ , then it

remains in $l_{b}$ or $l_{f}$ for all time $t\geq 0$ . An implication of this is that it will be
necessary to delete the set $l_{b}$ , which contains the equilibrium point behind
the obstacle $O$ , from $D(V)$ to conclude asymptotic stability of $e_{0}$ .

Lemma 3 A solution of system (6) that is initiated in $l_{b}$ or in $l_{f}$ remains
in $l_{b}$ or $\iota_{f}$ , respectively.

Proof. It is sufficient to show that a solution of system (6) corresponds to
the line $l$ . Accordingly, let $x=\eta(t)$ and $y=\zeta(t)$ . Put these into the first
equation of (6) to get

$\dot{\eta}(t)=-k\cross f_{0}(\eta(t), \zeta(t))$, $\eta(0)=x_{0}$ . (15)

This initial value problem has a unique solution since $f_{0}$ is a smooth function
on $D(V)$ . Next, for $\zeta$ , assume the solution of the form

$y=\zeta(t)=\tau_{2}+m(x-\tau_{1})$ , $m=(0_{2}-\tau_{2})/(0_{1}.-\tau_{1})$ , (16)

which corresponds to the line $l$ . We may also write $y$ as

$y$ $=$ $\tau_{2}+m(x-\tau_{1})+mo_{1}-mo_{1}+0_{2}-0_{2}$

$=$ $0_{2}+m(x-0_{1})+\frac{o_{2}-\tau_{2}}{o_{1}-\tau_{1}}(0_{1}-\tau_{1})+\tau_{2}-0_{2}$

$=$ $0_{2}+m(x-0_{1})$ .
Substituting $g_{0},$ $y-\tau_{2}=m(x-\tau_{1})$ and $y-0_{2}=m(x-0_{1})$ into the right-hand
side of the second equation of (6), we get

$-mk_{0}[(1+ \frac{\alpha}{W})(x-\tau_{1})-\frac{\alpha G_{0}}{W^{2}}(x-0_{1})]=m\dot{x}$ ,

and since indeed $\dot{y}=m\dot{x}$ , with $y(O)=\tau_{2}+m(x(0)-\tau_{1})=\tau_{2}+m(x_{0}-\tau_{1})=$

$y_{0}$ , we have that the choice of $y=\zeta(t)$ given in (16) satisfies the second

131



equation of (6) with $y(O)=y_{0}$ . This proves that $(x, y)=(\eta(t), \zeta(t))$ is a
solution of (6) with the initial condition $(x_{0}, y_{0})$ in $l$ . This completes the
proof of Lemma 3.

Because a solution that starts in $l_{b}$ remains in $l_{b}$ , it is necessary to remove
the set $l_{b}$ from $D(V)$ to conclude the asymptotic stability of $e_{0}$ .

Theorem 3 Let $\tau_{1},$ $\tau_{2}>0$ be sufficiently large. If $(x_{0}, y_{0})\in D(V)\backslash l_{b}$ , then
$e_{0}$ is an asymptotically stable equilibrium point of system (6).

Proof. As a consequence of Lemma 2, the set $D(V)\backslash l_{b}$ has only one
equilibrium point and that is $e_{0}$ . But for all $(x, y)\in D(V)\backslash l_{b},$ $(x, y)\neq e_{0}$ ,
we have that $f_{0}(x, y)>0$ and $g_{0}(x, y)>0$ . Hence, using our Lyapunov
function (3), we have $\dot{V}_{(6)}(x, y)<0$ for $(x,y)\in D(V)\backslash l_{b},$ $(x, y)\neq e_{0}$ , and
$\dot{V}_{(6)}(e_{0})=0$ . This ends the proof of Theorem 3.

Corollary 1 A solution that is initiated in $l_{f}$ follows the line $l$ to $e0$

Proof. This is a clear consequence of Lemma 2, Lemma 3 and Theorem 3.
Lemma 2 shows that there is only one equilibrium point (which is $e_{0}$ ) in front
of the obstacle $O$ . Lemma 3 and Theorem 3 imply that if a solution starts
in $l_{f}$ , not only would it remain in $l_{f}$ but it would also be attracted to $e_{0}$ .
This ends of the proof of Corollary 1.

In the next section, we show the outcome of some computer simulations.

3.5 Example

For our computer simulations, we choose different initial conditions with the
same parameters (see Table 1).

Table 1: Simulation Parameters

As Figure 1 shows, all the chosen initial conditions, except that which is
directly behind the obstacle, produce trajectories that converge to the target.
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Figure 1: The trajectory which was initiated at $(0,0)$ behind the obstacle
converged to the equilibrium point behind the obstacle.
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