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1 Introduction

In this paper, we study an identification problem for physical parameters o, 3 and § appearing

in the one-dimensional damped sine-Gordon equation

8%y oy o

5 + ase = BAy+dsiny=g, z€(0,L),t€ (0,T),
17/

y(0,z) = yo(z) and —y(O, z) =yi1(z), z € (0,L).

ot

The identification problem for (1.1) consists in finding the parameters o, 8 and & such that the
solution of (1.1) exhibits the desired behavior. More precisely, the parameter estimation problem
for (1.1) is described as follows. Let P = {q¢ = (@,8,8) € R | 8 > 0} be equipped with the
Euclidean norm. Let P,y C P be an admissible set of parameters and define the cost functional
J(q) by

T (L

I = [ [ wat,2) - 2a(t,2)dadt, q€ P, (12)
0o Jo

where 24 is a given function on (0,T) x (0,L). The data z4 can be thought of as the targeted
behavior of (1.1). The parameter identification problem for (1.1) with the objective function
(1.2) is to find ¢* = (a*, 8%, 8*) € P,y satisfying

J(¢") = of J(9), Paa CP. (1.3)

Since ¢* is a set of constants, the bang bang control law can be derived from the state system
(1.1) and the related adjoint state system. That is, if one chooses P,; to be a closed subset
in R3, then, under certain conditions, ¢* is uniquely determined by the extremal values of the

parameters in P,4. These results were obtained in [5] and they will be reviewed in Theorem
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3.1. It is meaningful to check the conditions on a, b and ¢ which yield the bang bang control law
(see Theorem 3.1). Unfortunately, it may be difficult to find ¢* numerically by the bang bang
control law, since one observes that all the parameter values approach zero.

In this paper we focus on examining the optimal values of a, b and d. The Powell’s minimization
method is used for the minimization of the cost functional J. The numerical solution of (1.1) is
obtained by a Spectral Method [6].

The paper is organized as follows. In Section 2 we review error bounds for the solution of
(1.1) and its approximation in a finite dimensional spectral space. In Section 3 we treat the
parameter identification problem subject to (1.3) with (1.1). Finally, in Section 4 we present
numerical results for the bang bang control law and the parameter estimation problem using

the Powell’s minimization method.

2 Weak solutions for the damped Sine-Gordon system

Let I = (0,L), @ = Ix(0,T), H = L%(I), and H§(I) be the Sobolev space on I with the norm
|[vllr. Let the Hilbert space H have the norm |v| and the inner product (u,v). When r = 1, we
denote the inner product in H}(I) by ((u,z)) = (Vu, Vu), and its norm by [|u||. Let < u,v >
denote the duality pairing between V = H}(I) and V' = H~!(I). Then we can define a self-
adjoint operator A with the domain D(4) = H}(I) N H?(I) by the relation < Au,v >= ((u,v)),
and Au = —Au for u € D(A).

As in [1] the variational formulation for the weak solutions of (1.1) is given by

< Z4v > +a(@,v) + B((,v) + 8(f(¥),0) = (g(t),v), veV, te(0,T), } 1)
y(0) = yo and %(0) = y1.

Here we considered a general nonlinear function f : V — H instead of sin(y), having in mind
other results involving more general equations, including the ones considered in (1.1). Assume
that f is a Lipschitz continuous function with f(0) = 0. Problem (2.1) is an initial value problem

for a formal abstract second-order differential equation in H:

Y' +ay +BAy+4f(y) =g, t€(0,T), } (2.2)

y(0) =yo, ¥'(0) =y,

where / = d/dt and " = d?/dt®. The weak solutions of (2.1) are the solutions of (2.2) sought in
the Hilbert space

W(,T) = {u | u € L*0,T;V),u € L*(0,T; H),u" € L*(0,T;V")}.

The existence, uniqueness and regularity results for the weak solutions of (2.2) are summarized

in Theorem 2.1, see [4] for the proofs.
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Theorem 2.1 Let o,0 € R, 3 > 0 and let us assume that
vw €V, y1 €H, and g€ L?(0,T; H). (2.3)

Then there exists a unique weak solution y € L2(0,T;V) of (2.2). This solution satisfies y €
C([0,T}; V) NnW(0,T), ' € C([0,T}; H), and

@2+ 1y @12 < O [llvoll? + lwal? + lgl2aomien] » Ve € 0,71, (2.4)

where C} is a constant.
Furthermore, if
y € D(A), y1 €V and ¢ € L*(0,T; H), (2.5)

then y € C([0,T); D(A)) and ¢’ € C([0,T}; V).
Let N be a positive integer. Now we establish error bounds for finite spectral a.pproximations

yn(t). Let Sy be the subspace of H spanned by the sine functions {uy(z) := sin(nrz/L)},n =
1,-++,N. Let y, () = yn(-,t) € Sy be the solution of

(%e0) +  (%10) + B((uns ) + 67w, ) = (8,01,
veSn, te(0,T), (2.6)
(9 (0) = 9(0),)) =0, (%H(0) —31,v) =0, veSn.

We need the following well-known error estimate [6]: for any s,r € R with0 < s <7,
|1Pyu = ulls < Co(1+ N2 |u]|, for ue HE(I), - (27

where Py : H — Sy is the projection operator, and Cp is a constant dependent on L. Using
Py the initial value problem (2.6) can be written in an equivalent form

y" + oyl + BAyy + 6Pnf(yy) = Png, t€(0,T), } (2.8)

Yy (0) = Pnyo, 9 (0) = Pnys.

The following Theorem for the error estimate is established in [3).

Theorem 2.2 Let 7 > 0. If the solution y of (2.2) satisfy y € H{(I), then there is a C; such
that

ly(t) — yy ()] < L1 + N%)~/2, vt € [0, T).
If the solution y of (2.2) satisfy y € Hj*(I), then there is a constant Cy > 0 such that

ly(t) — yy ) < C2(1 + N%)~"/2, vt € [0, T).
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3 Parameter identification problem

In this section we study a parameter identification problem for the one dimensional damped

sine-Gordon equation of the form

(3.1)

v +ay + BAy +dsiny=g, te€ (0,T),
¥(0) =50, ¥'(0) =1

We will always assume that the conditions (2.3) in Theorem 2.1 are satisfied for the initial data
%0, % and the forcing term g. Recall that P = {¢ = (o, 3,0) € R3 | @ > 0} with the Euclidean
norm. By Theorem 2.1 we have a well-defined solution map from P into W(0,T') C C([0,T]; H),
denoted by y(q), which is the solution of (3.1).

With the solution y(g) of (3.1) let us define the cost functional by

T
J() = /0 l(g;t) — za(t)[2dt, za € L2(Q), g € P. (3.2)

The parameter identification problem for (3.1) with the objective function (3.2) is to find ¢* =
(a*, B*,6*) € Paq, which is an admissible subset of P, satisfying

I = jnf J() (33)

The parameter ¢* is called an optimal parameter. It is well known that the map ¢ — y(q) from
P into C([0,T); H) is continuous, see [5]. Hence it is clear that the minimization problem (3.3)
has at least one solution, provided P,4 is bounded and closed.

The following Theorem and Corollary are proved in [5].

Theorem 3.1 The optimal parameter ¢* for (3.3) with (3.1) is characterized by two equations

and one constraint
Y + o'y +B*Ay++*siny =g in (0,T),

(3.4)
y(O) = Yo, y'(O) =Y,
w" — o*w' + B*Aw + y* cos(y)w =y — zg in (0,T), (3.5)
w(T) =0, w'(T) =0, .
T
/0 ((e* =)y’ + (8" = B)Ay + (v* — 7)siny + g, w) dt > 0, Vq € Paq. (3.6)

The constraint (3.6) is known to express the necessary condition for ¢*. One can obtain the
formula for ¢* under the assumptions in Corollary 3.1. This is called the bang bang control law.

Corollary 3.1 Assume that the admissible set is given

Pad = [01,02] X [ﬂ1,ﬁ2] X [71772]; .Bl > 0.



148

Then the optimal parameter ¢* = (a*, 5%, ¢*) subject to (1.2) and (1.1) is determined by the

formulas
ot = %{sign(a)+1}a2-—%{sign(a)—l}ah
g = glsien(t) + 1} — 5 {sign(s) — 1161,
¥ = 5lsiEn(o) + 1}m - 5{sign(e) - Lhm
provided that
/Q %%(x,t)w(w,t) dzdt # 0,
b = /Q Vy(2,?) - Vw(z, t) dedt # 0,
¢ = /Q siny(t, z)(z, w(z, t) dedt # 0.

Now for a numerical analysis let us introduce the cost functional corresponding to (3.2). It

can be give by the form

T
In(@) = [ lunlast) - za(®Pdt, g€ P, (3.7)

where y, (g) is the weak solution of (2.6) when f(y) = siny. Similarly to (3.3), the parameter
identification problem for (3.7) is to find g}, € Pyq such that
In(gy) = min Jn(g). (3.8)

As in [5], one can easily prove that the cost functional (3.8) is continuous on P,q. Therefore the
minimization problem admits a minimum in P,4.

The following Lemma and Theorem are proved in [3].
Lemma 3.1 There exists C3 > 0 independent on N such that
|In(g) — J(g)] < C3(1+ N?)™".

Theorem 3.2 Let {g} } be a sequence satisfying (3.8) and ¢* be its limit point. Then J(g*) =
mingep,, J(q)-

4 Numerical results

For our numerical experiments we chose to use a spectral method for the solution of the
initial and boundary value problems (3.1) and (3.5), and Powell’s minimization method for the
minimization of the cost functional. See [6] for a detailed discussion of spectral methods and
see [7,2] for the Powell’s minimization method.
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To accommodate the zero boundary conditions in (3.1) functions u,(z) = sin(7nz/L), n =
1,2,... are chosen as a (non-normalized) basis in H = Ly(I). Let Py be the projection operator
onto Sy = span{wy,, n=1,2,..., N} in H, see (2.6)-(2.8) with f(y) = siny.

Expanding the functions in (2.6) with f(y) = siny into the Fourier sine series, and using

v=wg, k=1,2..-N there we get

Y + oY} + BiYk + 0Sk(t) = Fi(t), t € (0,T), } (4.1)

Yi(0) =Yk, Yi(0) = Yi,.

where By, = Bk?n2?/L?, Si(t) is the k—th Fourier sine coefficient of Py siny, (t), and Y (t), Fi(t), Yz,
and Yy, are the Fourier coefficients of the solution y, (t) and the corresponding functions in (2.6).
Finally the approximate solutions y, (t) € Sy of (3.4) are given. Similarly one can define the
approximate solutions w, (t) € Sy of (3.5) by the equations

Wy — aW[ + BiWi + 8Ce()Wi = Yi(t) — Zk(2), t € (0,T), } (4.2)

Wi(T) =0, WL(T) =0,

where Cy(t) is the k — th Fourier sine coefficient of Py cosy, (t).
To test the assumptions on a,b,c in Corollary 3.1 and obtain ¢* let 2z4(t) = Pnz4(t) =
3" Zi(t)w, and introduce the time-discretized cost functional Jy(gq) defined by

L M N
In(g) =3 33 Wilasti) — Ze(t:)]?, g € Pag, (4.3)
i=1 k=1

where Y (q;t) is the solution Yk(t) of (4.1) for the given values of the parameters q = (e, 3,46) €
P,4- Lemma 3.1 and Theorem 3.2 hold for the cost functional (4.3), see [3].

The minimization problem for Jy(q) is solved using a modification of Powell’s minimization
method. The modified method for solving our problem is described in [3].

To simulate the data let § € P,4. Since real data always contain some noise, we set
z4(t, z) = y(§; t, z) + en(z), (4.4)

where 7n(z) is a random variable uniformly distributed on interval [—1,1], and € is a small
constant. If e = 0, then z4(t) = y(§;t) for all t € [0, T]. Therefore, in this case one can check the
performance of the parameter identification algorithm (i.e. if the algorithm finds the original
set of parameters §) by choosing sufficiently large N and M in (3.7).

We conducted two sets of numerical simulations with ¢ = 0. See [3] for € # 0. The problem is
to identify three unknown parameters a, 8 and 4.

In all simulations the initial value problem (4.1) and (4.2) are solved using a Leap-Frog Method
with the time step h = 0.01 as follows. For example, let ij, k=1,2,---,N be defined by

Yk_l = Yko - hYkp
2Y{ — [BY] — Fi(t;) + 0Sk(t;)h%] + (1 — ah/2)Y] "

Yj+1 =
k 1+ ah/2 ’
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#% 1: Parameter values for numerical simulations

Time and spatial intervals [0,7] x [0, L] = [0,4] x [0, 7]

Admissible set Poq = {0.001,1] x [0.1,1] x [0.1,1] x [0.1,1]
Initial conditions yo(z) =0
y1(z) = exp[~100(z — 7/2)?]
Forcing function flt,z) =0.01
N 16
Observation times ti=(T/M)i,i=1,2,.--, M

for j=0,1,2,.-.. Then Y,g is an approximation of Yi(t) at t = ¢t; = h]

The number of observations M varied in different simulations, but it is fixed as M = 400.
The results of various observations are in [3].

Finally, let go € P,q be an arbitrarily chosen set of parameters, and g¢i, g2, ... be the sequence of
the sets of parameters iteratively obtained in the Powell’s minimization method. The stopping
criterion for this iterative process is

|In(gm) — In(gm-1)]
[N (o)

Simulation 4.1 In this simulation let us consider § = (0.02,0.7,0.5) which is an interior point

<1078, (4.5)

of Fpq4, and z4 be computed according to (4.4). Let g5 = gm be the set of parameters attained
when the Powell’s minimization method was terminated according to the stopping criterion
(4.5). The minimizers g} together with the number of iterations m are shown in Tables 1 for
the noise level ¢ = 0, and the number of observations M.

Table 2 e=0
M m ay JIn(gy)
400 5 (0.02000, 0.70000, 0.50001)  0.000000
a b c
—0.101522 x 10™® 0.101384 x 10~ —0.295462 x 10~°

Tables 2 shows the identification algorithm is successful. The excellent simulation results are
given in [3] for a small number of observations. As we have mentioned in the Introduction one

can observe that all the parameters a, b and c are almost equal to zero.

Simulation 4.2 In this simulation let us consider § = (0.01,1,0.1) which is a boundary point

in P,4. All the procedures are the same as in Simulation 4.1.
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Table 3 e=0
M m qy Jn(ay)
400 4 (0.010040, 0.999992, 0.100026)  0.000000
a b c
—0.893024 x 1077 0.416599 x 1077 —-0.517080 x 10~7

All the parameters a,b and ¢ can be regarded as zeros for the error bound 10—%. Based on the
results shown in Tables 2 and 3, one can guess that the assumptions on the parameters a, b, ¢

specified in Corollary 3.1 for finding ¢* may be not suitable in these cases.
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