Optimal parameters for damped Sine－Gordon equation

韓国技術教育大学校 河 準洪（Junhong Ha）
School of Liberal Arts，
Korea University of Technology and Education，KOREA
オクラホマ大学 Semion Gutman
Department of Mathematics，University of Oklahoma，USA．

1 Introduction

In this paper，we study an identification problem for physical parameters α, β and δ appearing in the one－dimensional damped sine－Gordon equation

$$
\left.\begin{array}{l}
\frac{\partial^{2} y}{\partial t^{2}}+\alpha \frac{\partial y}{\partial t}-\beta \Delta y+\delta \sin y=g, \quad x \in(0, L), t \in(0, T) \tag{1.1}\\
y(t, 0)=y(t, L)=0, \quad t \in(0, T) \\
y(0, x)=y_{0}(x) \text { and } \frac{\partial y}{\partial t}(0, x)=y_{1}(x), \quad x \in(0, L)
\end{array}\right\}
$$

The identification problem for（1．1）consists in finding the parameters α, β and δ such that the solution of（1．1）exhibits the desired behavior．More precisely，the parameter estimation problem for（1．1）is described as follows．Let $P=\left\{q=(\alpha, \beta, \delta) \in R^{3} \mid \beta>0\right\}$ be equipped with the Euclidean norm．Let $P_{a d} \subset P$ be an admissible set of parameters and define the cost functional $J(q)$ by

$$
\begin{equation*}
J(q)=\int_{0}^{T} \int_{0}^{L}\left(y(q ; t, x)-z_{d}(t, x)\right)^{2} d x d t, \quad q \in P \tag{1.2}
\end{equation*}
$$

where z_{d} is a given function on $(0, T) \times(0, L)$ ．The data z_{d} can be thought of as the targeted behavior of（1．1）．The parameter identification problem for（1．1）with the objective function （1．2）is to find $q^{*}=\left(\alpha^{*}, \beta^{*}, \delta^{*}\right) \in P_{a d}$ satisfying

$$
\begin{equation*}
J\left(q^{*}\right)=\inf _{q \in P_{a d}} J(q), P_{a d} \subset P \tag{1.3}
\end{equation*}
$$

Since q^{*} is a set of constants，the bang bang control law can be derived from the state system （1．1）and the related adjoint state system．That is，if one chooses $P_{a d}$ to be a closed subset in R^{3} ，then，under certain conditions，q^{*} is uniquely determined by the extremal values of the parameters in $P_{a d}$ ．These results were obtained in［5］and they will be reviewed in Theorem
3.1. It is meaningful to check the conditions on a, b and c which yield the bang bang control law (see Theorem 3.1). Unfortunately, it may be difficult to find q^{*} numerically by the bang bang control law, since one observes that all the parameter values approach zero.

In this paper we focus on examining the optimal values of a, b and d. The Powell's minimization method is used for the minimization of the cost functional J. The numerical solution of (1.1) is obtained by a Spectral Method [6].

The paper is organized as follows. In Section 2 we review error bounds for the solution of (1.1) and its approximation in a finite dimensional spectral space. In Section 3 we treat the parameter identification problem subject to (1.3) with (1.1). Finally, in Section 4 we present numerical results for the bang bang control law and the parameter estimation problem using the Powell's minimization method.

2 Weak solutions for the damped Sine-Gordon system

Let $I=(0, L), Q=I \times(0, T), H=L^{2}(I)$, and $H_{0}^{r}(I)$ be the Sobolev space on I with the norm $\|v\|_{r}$. Let the Hilbert space H have the norm $|v|$ and the inner product (u, v). When $r=1$, we denote the inner product in $H_{0}^{1}(I)$ by $((u, u))=(\nabla u, \nabla u)$, and its norm by $\|u\|$. Let $<u, v>$ denote the duality pairing between $V=H_{0}^{1}(I)$ and $V^{\prime}=H^{-1}(I)$. Then we can define a selfadjoint operator A with the domain $D(A)=H_{0}^{1}(I) \cap H^{2}(I)$ by the relation $<A u, v>=((u, v))$, and $A u=-\Delta u$ for $u \in D(A)$.

As in [1] the variational formulation for the weak solutions of (1.1) is given by

$$
\left.\begin{array}{l}
<\frac{\partial^{2} y}{\partial t^{2}}, v>+\alpha\left(\frac{\partial y}{\partial t}, v\right)+\beta((y, v))+\delta(f(y), v)=(g(t), v), \quad v \in V, \quad t \in(0, T) \tag{2.1}\\
y(0)=y_{0} \text { and } \frac{\partial y}{\partial t}(0)=y_{1}
\end{array}\right\}
$$

Here we considered a general nonlinear function $f: V \rightarrow H$ instead of $\sin (y)$, having in mind other results involving more general equations, including the ones considered in (1.1). Assume that f is a Lipschitz continuous function with $f(0)=0$. Problem (2.1) is an initial value problem for a formal abstract second-order differential equation in H :

$$
\left.\begin{array}{l}
y^{\prime \prime}+\alpha y^{\prime}+\beta A y+\delta f(y)=g, \quad t \in(0, T) \tag{2.2}\\
y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
\end{array}\right\}
$$

where ${ }^{\prime}=d / d t$ and ${ }^{\prime \prime}=d^{2} / d t^{2}$. The weak solutions of (2.1) are the solutions of (2.2) sought in the Hilbert space

$$
W(0, T)=\left\{u \mid u \in L^{2}(0, T ; V), u^{\prime} \in L^{2}(0, T ; H), u^{\prime \prime} \in L^{2}\left(0, T ; V^{\prime}\right)\right\}
$$

The existence, uniqueness and regularity results for the weak solutions of (2.2) are summarized in Theorem 2.1, see [4] for the proofs.

Theorem 2.1 Let $\alpha, \delta \in R, \beta>0$ and let us assume that

$$
\begin{equation*}
y_{0} \in V, \quad y_{1} \in H, \text { and } g \in L^{2}(0, T ; H) \tag{2.3}
\end{equation*}
$$

Then there exists a unique weak solution $y \in L^{2}(0, T ; V)$ of (2.2). This solution satisfies $y \in$ $C([0, T] ; V) \cap W(0, T), y^{\prime} \in C([0, T] ; H)$, and

$$
\begin{equation*}
\|y(t)\|^{2}+\left|y^{\prime}(t)\right|^{2} \leq C_{1}\left[\left\|y_{0}\right\|^{2}+\left|y_{1}\right|^{2}+\|g\|_{L^{2}(0, T ; H)}^{2}\right], \quad \forall t \in[0, T] \tag{2.4}
\end{equation*}
$$

where C_{1} is a constant.
Furthermore, if

$$
\begin{equation*}
y_{0} \in D(A), \quad y_{1} \in V \text { and } g^{\prime} \in L^{2}(0, T ; H) \tag{2.5}
\end{equation*}
$$

then $y \in C([0, T] ; D(A))$ and $y^{\prime} \in C([0, T] ; V)$.
Let N be a positive integer. Now we establish error bounds for finite spectral approximations $y_{N}(t)$. Let S_{N} be the subspace of H spanned by the sine functions $\left\{\mathrm{u}_{n}(x):=\sin (n \pi x / L)\right\}, n=$ $1, \cdots, N$. Let $y_{N}(t)=y_{N}(\cdot, t) \in S_{N}$ be the solution of

$$
\left.\begin{array}{r}
\left(\frac{\partial^{2} y_{N}}{\partial t^{2}}, v\right)+\alpha\left(\frac{\partial y_{N}}{\partial t}, v\right)+\beta\left(\left(y_{N}, v\right)\right)+\delta\left(f\left(y_{N}\right), v\right)=(g(t), v) \tag{2.6}\\
v \in S_{N}, t \in(0, T) \\
\left(\left(y_{N}(0)-y(0), v\right)\right)=0, \quad\left(\frac{\partial y_{N}}{\partial t}(0)-y_{1}, v\right)=0, \quad v \in S_{N}
\end{array}\right\}
$$

We need the following well-known error estimate [6]: for any $s, r \in R$ with $0 \leq s \leq r$,

$$
\begin{equation*}
\left\|P_{N} u-u\right\|_{s} \leq C_{0}\left(1+N^{2}\right)^{(s-r) / 2}\|u\|_{r} \text { for } u \in H_{0}^{r}(I) \tag{2.7}
\end{equation*}
$$

where $P_{N}: H \rightarrow S_{N}$ is the projection operator, and C_{0} is a constant dependent on L. Using P_{N} the initial value problem (2.6) can be written in an equivalent form

$$
\left.\begin{array}{l}
y_{N}^{\prime \prime}+\alpha y_{N}^{\prime}+\beta A y_{N}+\delta P_{N} f\left(y_{N}\right)=P_{N} g, \quad t \in(0, T) \tag{2.8}\\
y_{N}(0)=P_{N} y_{0}, \quad y_{N}^{\prime}(0)=P_{N} y_{1} .
\end{array}\right\}
$$

The following Theorem for the error estimate is established in [3].
Theorem 2.2 Let $r>0$. If the solution y of (2.2) satisfy $y \in H_{0}^{r}(I)$, then there is a C_{1} such that

$$
\left|y(t)-y_{N}(t)\right| \leq C_{1}\left(1+N^{2}\right)^{-r / 2}, \forall t \in[0, T] .
$$

If the solution y of (2.2) satisfy $y \in H_{0}^{r+1}(I)$, then there is a constant $C_{2}>0$ such that

$$
\left\|y(t)-y_{N}(t)\right\| \leq C_{2}\left(1+N^{2}\right)^{-r / 2}, \forall t \in[0, T]
$$

3 Parameter identification problem

In this section we study a parameter identification problem for the one dimensional damped sine-Gordon equation of the form

$$
\left.\begin{array}{l}
y^{\prime \prime}+\alpha y^{\prime}+\beta A y+\delta \sin y=g, \quad t \in(0, T) \tag{3.1}\\
y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
\end{array}\right\}
$$

We will always assume that the conditions (2.3) in Theorem 2.1 are satisfied for the initial data y_{0}, y_{1} and the forcing term g. Recall that $P=\left\{q=(\alpha, \beta, \delta) \in R^{3} \mid \beta>0\right\}$ with the Euclidean norm. By Theorem 2.1 we have a well-defined solution map from P into $W(0, T) \subset C([0, T] ; H)$, denoted by $y(q)$, which is the solution of (3.1).

With the solution $y(q)$ of (3.1) let us define the cost functional by

$$
\begin{equation*}
J(q)=\int_{0}^{T}\left|y(q ; t)-z_{d}(t)\right|^{2} d t, \quad z_{d} \in L^{2}(Q), q \in P \tag{3.2}
\end{equation*}
$$

The parameter identification problem for (3.1) with the objective function (3.2) is to find $q^{*}=$ $\left(\alpha^{*}, \beta^{*}, \delta^{*}\right) \in P_{a d}$, which is an admissible subset of P, satisfying

$$
\begin{equation*}
J\left(q^{*}\right)=\inf _{q \in P_{a d}} J(q) \tag{3.3}
\end{equation*}
$$

The parameter q^{*} is called an optimal parameter. It is well known that the map $q \rightarrow y(q)$ from P into $C([0, T] ; H)$ is continuous, see [5]. Hence it is clear that the minimization problem (3.3) has at least one solution, provided $P_{a d}$ is bounded and closed.

The following Theorem and Corollary are proved in [5].
Theorem 3.1 The optimal parameter q^{*} for (3.3) with (3.1) is characterized by two equations and one constraint

$$
\begin{gather*}
\left\{\begin{array}{l}
y^{\prime \prime}+\alpha^{*} y^{\prime}+\beta^{*} A y+\gamma^{*} \sin y=g \text { in }(0, T), \\
y(0)=y_{0}, y^{\prime}(0)=y_{1},
\end{array}\right. \tag{3.4}\\
\left\{\begin{array}{l}
w^{\prime \prime}-\alpha^{*} w^{\prime}+\beta^{*} A w+\gamma^{*} \cos (y) w=y-z_{d} \text { in }(0, T), \\
w(T)=0, \quad w^{\prime}(T)=0,
\end{array}\right. \tag{3.5}\\
\int_{0}^{T}\left(\left(\alpha^{*}-\alpha\right) y^{\prime}+\left(\beta^{*}-\beta\right) A y+\left(\gamma^{*}-\gamma\right) \sin y+g, w\right) d t \geq 0, \forall q \in P_{a d} . \tag{3.6}
\end{gather*}
$$

The constraint (3.6) is known to express the necessary condition for q^{*}. One can obtain the formula for q^{*} under the assumptions in Corollary 3.1. This is called the bang bang control law.

Corollary 3.1 Assume that the admissible set is given

$$
P_{a d}=\left[\alpha_{1}, \alpha_{2}\right] \times\left[\beta_{1}, \beta_{2}\right] \times\left[\gamma_{1}, \gamma_{2}\right], \quad \beta_{1}>0
$$

Then the optimal parameter $q^{*}=\left(\alpha^{*}, \beta^{*}, \delta^{*}\right)$ subject to (1.2) and (1.1) is determined by the formulas

$$
\begin{aligned}
\alpha^{*} & =\frac{1}{2}\{\operatorname{sign}(a)+1\} \alpha_{2}-\frac{1}{2}\{\operatorname{sign}(a)-1\} \alpha_{1}, \\
\beta^{*} & =\frac{1}{2}\{\operatorname{sign}(b)+1\} \beta_{1}-\frac{1}{2}\{\operatorname{sign}(b)-1\} \beta_{1}, \\
\gamma^{*} & =\frac{1}{2}\{\operatorname{sign}(c)+1\} \gamma_{2}-\frac{1}{2}\{\operatorname{sign}(c)-1\} \gamma_{1}
\end{aligned}
$$

provided that

$$
\begin{aligned}
a & =\int_{Q} \frac{\partial y}{\partial t}(x, t) w(x, t) d x d t \neq 0 \\
b & =\int_{Q} \nabla y(x, t) \cdot \nabla w(x, t) d x d t \neq 0 \\
c & =\int_{Q} \sin y(t, x)(x, t) w(x, t) d x d t \neq 0
\end{aligned}
$$

Now for a numerical analysis let us introduce the cost functional corresponding to (3.2). It can be give by the form

$$
\begin{equation*}
J_{N}(q)=\int_{0}^{T}\left|y_{N}(q ; t)-z_{d}(t)\right|^{2} d t, \quad q \in P \tag{3.7}
\end{equation*}
$$

where $y_{N}(q)$ is the weak solution of (2.6) when $f(y)=\sin y$. Similarly to (3.3), the parameter identification problem for (3.7) is to find $q_{N}^{*} \in P_{a d}$ such that

$$
\begin{equation*}
J_{N}\left(q_{N}^{*}\right)=\min _{q \in P_{\text {ad }}} J_{N}(q) \tag{3.8}
\end{equation*}
$$

As in [5], one can easily prove that the cost functional (3.8) is continuous on $P_{a d}$. Therefore the minimization problem admits a minimum in $P_{a d}$.
The following Lemma and Theorem are proved in [3].
Lemma 3.1 There exists $C_{3}>0$ independent on N such that

$$
\left|J_{N}(q)-J(q)\right| \leq C_{3}\left(1+N^{2}\right)^{-\tau}
$$

Theorem 3.2 Let $\left\{q_{N}^{*}\right\}$ be a sequence satisfying (3.8) and q^{*} be its limit point. Then $J\left(q^{*}\right)=$ $\min _{q \in P_{a d}} J(q)$.

4 Numerical results

For our numerical experiments we chose to use a spectral method for the solution of the initial and boundary value problems (3.1) and (3.5), and Powell's minimization method for the minimization of the cost functional. See [6] for a detailed discussion of spectral methods and see $[7,2]$ for the Powell's minimization method.

To accommodate the zero boundary conditions in (3.1) functions $\mathrm{u}_{n}(x)=\sin (\pi n x / L), n=$ $1,2, \ldots$ are chosen as a (non-normalized) basis in $H=L_{2}(I)$. Let P_{N} be the projection operator onto $S_{N}=\operatorname{span}\left\{\mathrm{w}_{n}, n=1,2, \ldots, N\right\}$ in H, see (2.6)-(2.8) with $f(y)=\sin y$.

Expanding the functions in (2.6) with $f(y)=\sin y$ into the Fourier sine series, and using $v=\mathrm{w}_{\mathrm{k}}, \quad k=1,2 \cdots N$ there we get

$$
\left.\begin{array}{l}
Y_{k}^{\prime \prime}+\alpha Y_{k}^{\prime}+\beta_{k} Y_{k}+\delta S_{k}(t)=F_{k}(t), t \in(0, T) \tag{4.1}\\
Y_{k}(0)=Y_{k_{0}}, \quad Y_{k}^{\prime}(0)=Y_{k_{1}}
\end{array}\right\}
$$

where $\beta_{k}=\beta k^{2} \pi^{2} / L^{2}, S_{k}(t)$ is the $k-t h$ Fourier sine coefficient of $P_{N} \sin y_{N}(t)$, and $Y_{k}(t), F_{k}(t), Y_{k_{0}}$, and $Y_{k_{1}}$ are the Fourier coefficients of the solution $y_{N}(t)$ and the corresponding functions in (2.6). Finally the approximate solutions $y_{N}(t) \in S_{N}$ of (3.4) are given. Similarly one can define the approximate solutions $w_{N}(t) \in S_{N}$ of (3.5) by the equations

$$
\left.\begin{array}{l}
W_{k}^{\prime \prime}-\alpha W_{k}^{\prime}+\beta_{k} W_{k}+\delta C_{k}(t) W_{k}=Y_{k}(t)-Z_{k}(t), t \in(0, T) \tag{4.2}\\
W_{k}(T)=0, \quad W_{k}^{\prime}(T)=0
\end{array}\right\}
$$

where $C_{k}(t)$ is the $k-t h$ Fourier sine coefficient of $P_{N} \cos y_{N}(t)$.
To test the assumptions on a, b, c in Corollary 3.1 and obtain q^{*} let $z_{d}(t)=P_{N} z_{d}(t)=$ $\sum Z_{k}(t) \mathrm{w}_{n}$ and introduce the time-discretized cost functional $J_{N}(q)$ defined by

$$
\begin{equation*}
J_{N}(q)=\frac{L}{2} \sum_{i=1}^{M} \sum_{k=1}^{N}\left[Y_{k}\left(q ; t_{i}\right)-Z_{k}\left(t_{i}\right)\right]^{2}, \quad q \in P_{a d} \tag{4.3}
\end{equation*}
$$

where $Y_{k}(q ; t)$ is the solution $Y_{k}(t)$ of (4.1) for the given values of the parameters $q=(\alpha, \beta, \delta) \in$ $P_{a d}$. Lemma 3.1 and Theorem 3.2 hold for the cost functional (4.3), see [3].

The minimization problem for $J_{N}(q)$ is solved using a modification of Powell's minimization method. The modified method for solving our problem is described in [3].

To simulate the data let $\hat{q} \in P_{a d}$. Since real data always contain some noise, we set

$$
\begin{equation*}
z_{d}(t, x)=y(\hat{q} ; t, x)+\epsilon \eta(x) \tag{4.4}
\end{equation*}
$$

where $\eta(x)$ is a random variable uniformly distributed on interval $[-1,1]$, and ϵ is a small constant. If $\epsilon=0$, then $z_{d}(t)=y(\hat{q} ; t)$ for all $t \in[0, T]$. Therefore, in this case one can check the performance of the parameter identification algorithm (i.e. if the algorithm finds the original set of parameters \hat{q}) by choosing sufficiently large N and M in (3.7).

We conducted two sets of numerical simulations with $\epsilon=0$. See [3] for $\epsilon \neq 0$. The problem is to identify three unknown parameters α, β and δ.

In all simulations the initial value problem (4.1) and (4.2) are solved using a Leap-Frog Method with the time step $h=0.01$ as follows. For example, let $Y_{k}^{j}, k=1,2, \cdots, N$ be defined by

$$
\begin{aligned}
& Y_{k}^{-1}=Y_{k_{0}}-h Y_{k_{1}} \\
& Y_{k}^{j+1}=\frac{2 Y_{k}^{j}-\left[\beta_{k} Y_{k}^{j}-F_{k}\left(t_{j}\right)+\delta S_{k}\left(t_{j}\right) h^{2}\right]+(1-\alpha h / 2) Y_{k}^{j-1}}{1+\alpha h / 2}
\end{aligned}
$$

表 1: Parameter values for numerical simulations

Time and spatial intervals	$[0, T] \times[0, L]=[0,4] \times[0, \pi]$
Admissible set	$P_{a d}=[0.001,1] \times[0.1,1] \times[0.1,1] \times[0.1,1]$
Initial conditions	$y_{0}(x)=0$
	$y_{1}(x)=\exp \left[-100(x-\pi / 2)^{2}\right]$
Forcing function	$f(t, x)=0.01$
N	16
Observation times	$t_{i}=(T / M) i, i=1,2, \cdots, M$

for $j=0,1,2, \cdots$. Then Y_{k}^{j} is an approximation of $Y_{k}(t)$ at $t=t_{j}=h j$.
The number of observations M varied in different simulations, but it is fixed as $M=400$. The results of various observations are in [3].
Finally, let $q_{0} \in P_{a d}$ be an arbitrarily chosen set of parameters, and q_{1}, q_{2}, \ldots be the sequence of the sets of parameters iteratively obtained in the Powell's minimization method. The stopping criterion for this iterative process is

$$
\begin{equation*}
\frac{\left|J_{N}\left(q_{m}\right)-J_{N}\left(q_{m-1}\right)\right|}{\left|J_{N}\left(q_{0}\right)\right|}<10^{-6} . \tag{4.5}
\end{equation*}
$$

Simulation 4.1 In this simulation let us consider $\hat{q}=(0.02,0.7,0.5)$ which is an interior point of $P_{a d}$, and z_{d} be computed according to (4.4). Let $q_{N}^{*}=q_{m}$ be the set of parameters attained when the Powell's minimization method was terminated according to the stopping criterion (4.5). The minimizers q_{N}^{*} together with the number of iterations m are shown in Tables 1 for the noise level $\epsilon=0$, and the number of observations M.

Table 2	$\epsilon=0$		
M	m	q_{N}^{*}	$J_{N}\left(q_{N}^{*}\right)$
400	5	$(0.02000,0.70000,0.50001)$	0.000000
a	b	c	
-0.101522×10^{-8}	0.101384×10^{-6}	-0.295462×10^{-9}	

Tables 2 shows the identification algorithm is successful. The excellent simulation results are given in [3] for a small number of observations. As we have mentioned in the Introduction one can observe that all the parameters a, b and c are almost equal to zero.

Simulation 4.2 In this simulation let us consider $\hat{q}=(0.01,1,0.1)$ which is a boundary point in $P_{a d}$. All the procedures are the same as in Simulation 4.1.

Table $3 \quad \epsilon=0$

M	m	q_{N}^{*}	$J_{N}\left(q_{N}^{*}\right)$
400	4	$(0.010040,0.999992,0.100026)$	0.000000
a	b	c	
-0.893024×10^{-7}	0.416599×10^{-7}	-0.517080×10^{-7}	

All the parameters a, b and c can be regarded as zeros for the error bound 10^{-6} ．Based on the results shown in Tables 2 and 3，one can guess that the assumptions on the parameters a, b, c specified in Corollary 3.1 for finding q^{*} may be not suitable in these cases．

参考文献

［1］R．Dautary and J．L．Lions，Mathematical Analysis and Numerical Methods for Science and Technology，Vol．5，Evolution Problems I，Springer－Verlag， 1992.
［2］S．Gutman，Identification of piecewise－constant potentials by fixed－energy phase shifts，Appl． Math．Optim．Vol．44（2001），pp．49－65．
［3］J．Ha and S．Gutman，Parameter estimation problem for a damped sine－Gordon equation， International Journal of．Appl．Math．and Mech．， 2 （2006），11－23．
［4］J．Ha and S．Nakagiri，Existence and regularity of weak solutions for semilinear second order evolution equations，Funcialaj Ekvacioj， 41 （1998），1－24．
［5］J．Ha and S．Nakagiri，Identification problems of damped sine－Gordon equations with con－ stant parapeters，J．Korean Math．Soc．Vol．39（2002），No．4，pp．509－524．
［6］B．Mercier，An Introdution to the Numerical Analysis of Spectral Methods，Lecture Notes in Physis 318，Springer－Verlag 1989.
［7］Press，W．H．，Teukolsky，S．A．，Vetterling，W．T．，Flannery，B．P．（1992）Numerical Recepies in FORTRAN（2nd Ed．），．Cambridge University Press，Cambridge．

