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1 Introduction

In this paper, we study an identification problem for physical parameters $\alpha,$
$\beta$ and $\delta$ appearing

in the one-dimensional damped sine-Gordon equation

$\frac{\partial^{2}y}{\partial t^{2}}+\alpha\frac{\partial y}{\partial t}-\beta\Delta y+\delta$ sin $y=g,$ $x\in(O, L),$ $t\in(O,T)$ ,
$y(t, O)=y(t, L)=0$ , $t\in(O, T)$ , (1.1)

$y(O,x)=y_{0}(x)$ and $\frac{\partial y}{\partial t}(0,x)=y_{1}(x),$ $x\in(O, L)$ .

The identification problem for (1.1) consists in finding the parameters $\alpha,$
$\beta$ and $\delta$ such that the

solution of (1.1) exhibits the desired behavior. More precisely, the parameter estimation problem
for (1.1) is described as follows. Let $P=\{q=(\alpha, \beta, \delta)\in R^{3}|\beta>0\}$ be equipped with the
Euclidean norm. Let $P_{ad}\subset P$ be an admissible set of parameters and define the cost functional
$J(q)$ by

$J(q)= \int_{0}^{T}\int_{0}^{L}(y(q;t, x)-z_{d}(t,x))^{2}dxdt$ , $q\in P$, (1.2)

where $z_{d}$ is a given function on $(0, T)\cross(0, L)$ . The data $z_{d}$ can be thought of as the targeted
behavior of (1.1). The parameter identification problem for (1.1) with the objective function
(1.2) is to find $q^{*}=(\alpha^{*}, \beta^{*}, \delta")$ $\in P_{ad}$ satisfying

$J(q^{*})= \inf_{q\in d}J(q),$ $P_{ad}\subset P$. (1.3)

Since $q^{*}$ is a set of constants, the bang bang control law can be derived from the state system
(1.1) and the related adjoint state system. That is, if one chooses $P_{ad}$ to be a closed subset
in $R^{3}$ , then, under certain conditions, $q^{*}$ is uniquely determined by the extremal values of the
parameters in $P_{ad}$ . These results were obtained in [5] and they will be reviewed in Theorem
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3.1. It is meaningful to check the conditions on $a,$ $b$ and $c$ which yield the bang bang control law

(see Theorem 3.1). Unfortunately, it may be difficult to find $q^{*}$ numerically by the bang bang

control law, since one observes that all the parameter values approach zero.
In this paper we focus on examining the optimal values of $a,$ $b$ and $d$ . The Powell’s minimization

method is used for the minimization of the cost functional $J$ . The numerical solution of (1.1) is

obtained by a Spectral Method [6].

The paper is organized as follows. In Section 2 we review error bounds for the solution of

(1.1) and its approximation in a finite dimensional spectral space. In Section 3 we treat the

parameter identification problem subject to (1.3) with (1.1). Finally, in Section 4 we present

numerical results for the bang bang control law and the parameter estimation problem using

the Powell’s minimization method.

2 Weak solutions for the damped Sine-Gordon system

Let $I=(O, L),$ $Q=I\cross(0, T),$ $H=L^{2}(I)$ , and $H_{0}^{r}(I)$ be the Sobolev space on $I$ with the norm
$\Vert v||_{r}$ . Let the Hilbert space $H$ have the norm $|v|$ and the inner product $(u, v)$ . When $r=1$ , we
denote the inner product in $H_{0}^{1}(I)$ by $((u,u))=(\nabla u, \nabla u)$ , and its norm by $||u||$ . Let $<u,v>$

denote the duality pairing between $V=H_{0}^{1}(I)$ and $V’=H^{-1}(I)$ . Then we can define a self-

adjoint operator $A$ with the domain $D(A)=H_{0}^{1}(I)\cap H^{2}(I)$ by the relation $<Au,v>=((u,v))$ ,

and $Au=-\Delta u$ for $u\in D(A)$ .
As in [1] the variational formulation for the weak solutions of (1.1) is given by

$< \frac{\partial^{2}}{\partial}t*,$ $v>+\alpha(\partial\neq tv)+\beta((y, v))+\delta(f(y), v)=(g(t), v)$ , $v\in V$, $t\in(0,T)$ ,
(2.1)

$y(O)=y_{0}$ and $\theta_{t}^{\partial}(0)=y_{1}$ .

Here we considered a general nonlinear function $f$ : $Varrow H$ instead of $\sin(y)$ , having in mind

other results involving more general equations, including the ones considered in (1.1). Assume

that $f$ is a Lipschitz continuous function with $f(0)=0$ . Problem (2.1) is an initial value problem

for a formal abstract second-order differential equation in $H$ :

$y”+\alpha y’+\beta Ay+\delta f(y)=g,$ $t\in(0,T)$ ,
(2.2)

$y(0)=y_{0},$ $y’(0)=y_{1}$ ,

where $’=d/dt$ and $=d^{2}/dt^{2}$ . The weak solutions of (2.1) are the solutions of (2.2) sought in

the Hilbert space

$W(0,T)=\{u|u\in L^{2}(0,T;V),u’\in L^{2}(0,T;H), u’’\in L^{2}(0,T;V’)\}$ .

The existence, uniqueness and regularity results for the weak solutions of (2.2) are summarized

in Theorem 2.1, see [4] for the proofs.
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Theorem 2.1 Let $\alpha,$ $\delta\in R,$ $\beta>0$ and let us assume that

$y_{0}\in V$, $y_{1}\in H$ , and $g\in L^{2}(0, T;H)$ . (2.3)

Then there exists a unique weak solution $y\in L^{2}(0,T;V)$ of (2.2). This solution satisfies $y\in$

$C([0, T];V)\cap W(O, T),$ $y’\in C([0,T];H)$ , and

$\Vert y(t)\Vert^{2}+|y’(t)|^{2}\leq C_{1}[\Vert y_{0}\Vert^{2}+|y_{1}|^{2}+\Vert g\Vert_{L^{2}(0,T;H)}^{2}],$ $\forall t\in[0,T]$ , (2.4)

where $C_{1}$ is a constant.
Furthermore, if

$y_{0}\in D(A),$ $y_{1}\in V$ and $g’\in L^{2}(0,T;H)$ , (2.5)

then $y\in C([0,T];D(A))$ and $y’\in C([0,T];V)$ .

Let $N$ be a positive integer. Now we establish error bounds for finite spectral approximations
$y_{N}(t)$ . Let $S_{N}$ be the subspace of $H$ spanned by the sine functions $\{u_{n}(x) :=\sin(n\pi x/L)\},$ $n=$

$1,$ $\cdots,$ $N$ . Let $y_{N}(t)=y_{N}(\cdot, t)\in S_{N}$ be the solution of

$(^{\underline{\partial}^{2}y}\theta t\#$ , $v)+\alpha(\theta y+tv)+\beta((y_{N},v))+\delta(f(y_{N}), v)=(g(t),v)$ ,

$v\in S_{N},$ $t\in(0,T)$ , (2.6)

$((y_{N}(O)-y(O),v))=0$ , $(\theta y\neq t(0)-y_{1},v)=0$ , $v\in S_{N}$ .

We need the following well-known error estimate [6]: for any $s,$ $r\in R$ with $0\leq s\leq r$ ,

$||P_{N}u-u||_{s}\leq C_{0}(1+N^{2})^{(s-r)/2}\Vert u\Vert_{r}$ for $u\in H_{0}^{f}(I)$ , (2.7)

where $P_{N}$ : $Harrow S_{N}$ is the projection operator, and $C_{0}$ is a constant dependent on $L$ . Using
$P_{N}$ the initial value problem (2.6) can be written in an equivalent form

$y_{N}’’+\alpha y_{N}’+\beta Ay_{N}+\delta P_{N}f(y_{N})=P_{N}g,$ $t\in(O,T)$ ,
(2.8)

$y_{N}(0)=P_{N}y_{0}$ , $y_{N}’(0)=P_{N}y_{1}$ .

The following Theorem for the error estimate is established in [3].

Theorem 2.2 Let $r>0$ . If the solution $y$ of (2.2) satisfy $y\in H_{0}^{r}(I)$ , then there is a $C_{1}$ such
that

$|y(t)-y_{N}(t)|\leq C_{1}(1+N^{2})^{-r/2},$ $\forall t\in[0,T]$ .

If the solution $y$ of (2.2) satisfy $y\in H_{0}^{r+1}(I)$ , then there is a constant $C_{2}>0$ such that

$||y(t)-y_{N}(t)||\leq C_{2}(1+N^{2})^{-r/2},$ $\forall t\in[0, T]$ .
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3 Parameter identification problem

In this section we study a parameter identification problem for the one dimensional damped

sine-Gordon equation of the form

$y”+\alpha y’+\beta Ay+\delta$ sin $y=9$ , $t\in(O,T)$ ,
(3.1)

$y(0)=y_{0}$ , $y’(0)=y_{1}$ .

We will always assume that the conditions (2.3) in Theorem 2.1 are satisfied for the initial data
$y_{0},$ $y_{1}$ and the forcing term $g$ . Recall that $P=$ {$q=(\alpha,$ $\beta,$ $\delta)\in R^{3}$ I $\beta>0$} with the Euclidean
norm. By Theorem 2.1 we have a well-defined solution map from $P$ into $W(O, T)\subset C([0,T];H)$ ,
denoted by $y(q)$ , which is the solution of (3.1).

With the solution $y(q)$ of (3.1) let us define the cost functional by

$J(q)= \int_{0}^{T}|y(q;t)-z_{d}(t)|^{2}dt$, $z_{d}\in L^{2}(Q),$ $q\in P$. (3.2)

The parameter identification problem for (3.1) with the objective function (3.2) is to find $q^{*}=$

$(\alpha^{*}, \beta^{*}, \delta^{*})\in P_{ad}$ , which is an admissible subset of $P$ , satisfying

$J(q^{*})= \inf_{q\in d}J(q)$ . (3.3)

The parameter $q^{*}$ is called an optimal parameter. It is well known that the map $qarrow y(q)$ from
$P$ into $C([0, T];H)$ is continuous, see [5]. Hence it is clear that the minimization problem (3.3)

has at least one solution, provided $P_{ad}$ is bounded and closed.

The following Theorem and Corollary are proved in [5].

Theorem 3.1 The optimal parameter $q^{*}$ for (3.3) with (3.1) is characterized by two equations
and one constraint

$\{\begin{array}{ll}y’’+\alpha^{*}y’ \beta^{*}Ay+\gamma^{*}\sin y=g in (0,T),y(0)=y_{0}, y’(0)=y_{1},\end{array}$ (3.4)

$\{\begin{array}{ll}w’’-\alpha^{*}w’+\beta^{*}Aw+\gamma^{*}\cos(y)w=y-z_{d} in (0,T),w(T)=0, w’(T)=0, \end{array}$ (3.5)

$\int_{0}^{T}$ ( $(\alpha^{*}-\alpha)y’+(\beta^{*}-\beta)Ay+(\gamma^{*}-\gamma)$ sin $y+g,w$) $dt\geq 0,$ $\forall q\in P_{ad}$ . (3.6)

The constraint (3.6) is known to express the necessary condition for $q^{*}$ . One can obtain the

formula for $q^{*}$ under the assumptions in Corollary 3.1. This is called the bang bang control law.

Corollary 3.1 Assume that the admissible set is given

$P_{ad}=[\alpha_{1}, \alpha_{2}]\cross$ [$\beta_{1}$ , th] $\cross[\gamma_{1}, \gamma_{2}]$ , $\beta_{1}>0$ .
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Then the optimal parameter $q^{*}=(\alpha^{*}, \beta^{*}, \delta^{*})$ subject to (1.2) and (1.1) is determined by the
formulas

$\alpha^{*}$ $=$ $\frac{1}{2}\{sign(a)+1\}\alpha_{2}-\frac{1}{2}\{sign(a)-1\}\alpha_{1}$ ,

$\beta^{*}$ $=$ $\frac{1}{2}\{sign(b)+1\}\beta_{1}-\frac{1}{2}\{sign(b)-1\}\beta_{1}$ ,

$\gamma^{*}$ $=$ $\frac{1}{2}\{sign(c)+1\}\gamma_{2}-\frac{1}{2}\{sign(c)-1\}\gamma_{1}$

provided that

$a$ $=$ $\int_{Q}\frac{\partial y}{\partial t}(x,t)w(x, t)$ $dxdt\neq 0$ ,

$b$ $=$ $\int_{Q}\nabla y(x, t)\cdot\nabla w(x, t)$ $dxdt\neq 0$ ,

$c$ $=$ $\int_{Q}\sin y(t,x)(x,t)w(x,t)$ $dxdt\neq 0$ .

Now for a numerical analysis let us introduoe the cost functional corresponding to (3.2). It
can be give by the form

$J_{N}(q)= \int_{0}^{T}|y_{N}(q;t)-z_{d}(t)|^{2}dt,$ $q\in P$, (3.7)

where $y_{N}(q)$ is the weak solution of (2.6) when $f(y)=\sin y$ . Similarly to (3.3), the parameter
identification problem for (3.7) is to find $q_{N}^{*}\in P_{ad}$ such that

$J_{N}(q_{N}^{*})= \min_{q\in P_{ad}}J_{N}(q)$ . (3.8)

As in [5], one can easily prove that the cost functional (3.8) is continuous on $P_{ad}$ . Therefore the
minimization problem admits a minimum in $P_{ad}$ .

The following Lemma and Theorem are proved in [3].

Lemma 3.1 There exists $C_{3}>0$ independent on $N$ such that

$|J_{N}(q)-J(q)|\leq C_{3}(1+N^{2})^{-r}$ .

Theorem 3.2 Let $\{q_{N}^{*}\}$ be a sequence satisfying (3.8) and $q^{*}$ be its limit point. Then $J(q^{*})=$

$\min_{q\in P_{ad}}J(q)$ .

4 Numerical results

For our numerical experiments we chose to use a spectral method for the solution of the
initial and boundary value problems (3.1) and (3.5), and Powell’s minimization method for the
minimization of the cost functional. See [6] for a detailed discussion of spectral methods and
see $[7,2]$ for the Powell’s minimization method.
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To accommodate the zero boundary conditions in (3.1) functions $u_{n}(x)=\sin(\pi nx/L),$ $n=$

1, 2, ,.. are chosen as a (non-normalized) basis in $H=L_{2}(I)$ . Let $P_{N}$ be the projection operator

onto $S_{N}=span\{w_{n}, n=1,2, \ldots, N\}$ in $H$ , see $(2.6)-(2.8)$ with $f(y)=\sin y$ .
Expanding the functions in (2.6) with $f(y)=$ sin $y$ into the Fourier sine series, and using

$v=w_{k}$ , $k=1,2\cdots N$ there we get

$Y_{k}’’+\alpha Y_{k}’+\beta_{k}Y_{k}+\delta S_{k}(t)=F_{k}(t),$ $t\in(O, T)$ ,
(4.1)

$Y_{k}(0)=Y_{k_{0}}$ , $Y_{k}’(0)=Y_{k_{1}}$ .

where $\beta_{k}=\beta k^{2}\pi^{2}/L^{2},$ $S_{k}(t)$ is the k-th Fourier sine coefficient $ofP_{N}$ sin $y_{N}(t)$ , and $Y_{k}(t),$ $F_{k}(t),$ $Y_{k_{0}}$ ,

and $Y_{k_{1}}$ are the Fourier coefficients of the solution $y_{N}(t)$ and the corresponding functions in (2.6).

Finally the approximate solutions $y_{N}(t)\in S_{N}$ of (3.4) are given. Similarly one can define the

approximate solutions $w_{N}(t)\in S_{N}$ of (3.5) by the equations

$W_{k}’’-\alpha W_{k}’+\beta_{k}W_{k}+\delta C_{k}(t)W_{k}=Y_{k}(t)-Z_{k}(t),$ $t\in(0,T)$ ,
(4.2)

$W_{k}(T)=0$ , $W_{k}’(T)=0$ ,

where $C_{k}(t)$ is the k–th Fourier sine coefficient of $P_{N}$ cos $y_{N}(t)$ .
To test the assumptions on $a,$ $b,$ $c$ in Corollary 3.1 and obtain $q^{*}$ let $z_{d}(t)=P_{N}z_{d}(t)=$

$\sum Z_{k}(t)w_{n}$ and introduce the time-discretized cost functional $J_{N}(q)$ defined by

$J_{N}(q)= \frac{L}{2}\sum_{i=1}^{M}\sum_{k=1}^{N}[Y_{k}(q;t_{i})-Z_{k}(t_{i})]^{2}$ , $q\in P_{ad}$ , (4.3)

where $Y_{k}(q;t)$ is the solution $Y_{k}(t)$ of (4.1) for the given values of the parameters $q=(\alpha, \beta,\delta)\in$

$P_{ad}$ . Lemma 3.1 and Theorem 3.2 hold for the cost functional (4.3), see [3].

The minimization problem for $J_{N}(q)$ is solved using a modification of Powell’s minimization
method. The modifled method for solving our problem is described in [3].

To simulate the data let $\hat{q}\in P_{ad}$ . Since real data always contain some noise, we set

$z_{d}(t, x)=y(\hat{q};t,x)+\epsilon\eta(x)$ , (4.4)

where $\eta(x)$ is a random variable uniformly distributed on interval [-1, 1], and $\epsilon$ is a small

constant. If $\epsilon=0$ , then $z_{d}(t)=y(\hat{q};t)$ for all $t\in[0, T]$ . Therefore, in this case one can check the

performance of the parameter identification algorithm (i.e. if the algorithm finds the original

set of parameters $\hat{q}$) by choosing sufficiently large $N$ and $M$ in (3.7).

We conducted two sets of numerical simulations with $\epsilon=0$ . See [3] for $\epsilon\neq 0$ . The problem is

to identify three unknown parameters $\alpha,$
$\beta$ and $\delta$ .

In all simulations the initial value problem (4.1) and (4.2) are solved using a Leap-Frog Method

with the time step $h=0.O1$ as follows. For example, let $Y_{k}^{j},$ $k=1,2,$ $\cdots$ , $N$ be defined by

$Y_{k}^{-1}=Y_{k_{0}}-hY_{k_{1}}$ ,

$Y_{k}^{j+1}=\ovalbox{\tt\small REJECT}_{1+\alpha h/2}2Y_{k}^{j}-[\beta_{k}Y_{k}^{j}-F_{k}(t_{j})+\delta S_{k}(t_{j})h^{2}]+(1-\alpha h/2)Y_{k}^{j-1}$
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X 1: Parameter values for numerical simulations

Time and spatial intervals $[0,T]\cross[0, L]=[0,4]\cross[0, \pi]$

Admissible set $P_{ad}=[0.001,1]\cross[0.1,1]\cross[0.1,1]\cross[0.1,1]$

Initial conditions $y_{0}(x)=0$

$y_{1}(x)=\exp[-100(x-\pi/2)^{2}]$

Forcing function $f(t, x)=0.O1$

$N$ 16
Observation times $t_{i}=(T/M)i,$ $i=1,2,$ $\cdots$ , $M$

for $j=0,1,2,$ $\cdots$ . Then $Y_{k}^{j}$ is an approximation of $Y_{k}(t)$ at $t=t_{j}=h\dot{j}$ .
The number of observations $M$ varied in different simulations, but it is fixed as $M=400$.

The results of various observations are in [3].
Finally, let $q_{0}\in P_{ad}$ be an arbitrarily chosen set of parameters, and $q_{1},$ $q_{2},$ $\ldots$ be the sequence of

the sets of parameters iteratively obtained in the Powell’s minimization method. The stopping
criterion for this iterative process is

$\frac{|J_{N}(q_{m})-J_{N}(q_{m-1})|}{|J_{N}(q_{0})|}<10^{-6}$ . (4.5)

Simulation 4.1 In this simulation let us consider $\hat{q}=(0.02,0.7,0.5)$ which is an interior point
of $P_{ad}$ , and $z_{d}$ be computed according to (4.4). Let $q_{N}^{*}=q_{m}$ be the set of parameters attained
when the Powell’s minimization method was terminated according to the stopping criterion
(4.5). The minimizers $q_{N}^{*}$ together with the number of iterations $m$ are shown in Tables 1 for
the noise level $\epsilon=0$ , and the number of observations $M$ .

Table 2 $\epsilon=0$

$\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} 4005(0.02000,0.70000,0.50001)0.000000Mmq_{N}^{*}J_{N}(q_{N}^{*})$

a $b$
$c$

$-0.101522\cross 10^{-8}$ 0.101384 $x10^{-6}$ -0.295462 $\cross 10^{-9}$

Tables 2 shows the identification algorithm is successful. The excellent simulation results are
given in [3] for a small number of observations. As we have mentioned in the Introduction one
can observe that all the parameters $a,$ $b$ and $c$ are almost equal to zero.

Simulation 4.2 In this simulation let us consider $\hat{q}=(O.O1,1,0.1)$ which is a boundary point
in $P_{ad}$ . All the procedures are the same as in Simulation 4.1.
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Table 3 $\epsilon=0$

$M$ $m$ $q_{N}^{*}$ $J_{N}(q_{N}^{*})$

400 4 (0.010040, 0.999992, 0.100026) 0.000000

a $b$ $c$

$\ovalbox{\tt\small REJECT}-0.893024\cross 10^{-7}0.416599\cross 10^{-7}-0.517080\cross 10^{-7}$

All the parameters $a,$ $b$ and $c$ can be regarded as zeros for the error bound $10^{-6}$ . Based on the

results shown in Tables 2 and 3, one can guess that the assumptions on the parameters $a,$ $b,$ $c$

specified in Corollary 3.1 for finding $q^{*}$ may be not suitable in these cases.
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