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1 Introduction

The multiple zeta value (MZV for short) is a real number defined by

$\zeta(k)=\zeta(k_{1}, k_{2}, \ldots, k_{n})=\sum_{m_{1}>m_{2}>\cdots>m_{\mathfrak{n}}>0}\frac{1}{m_{1}^{k_{1}}m_{2}^{k_{2}}\cdots m_{m^{n}}^{k}}$ (1)

$= \int_{0}^{t}\frac{dt}{1-t}\cdots\int_{0}^{t}\frac{dt}{1-t}\frac{\int_{0}^{1}\frac{dt}{t}\int_{0}^{t}\frac{dt}{t}\cdots\int_{0}^{t}\frac{dt}{t}}{k_{1}-1}\frac{\int_{0}^{t}\frac{dt}{t}\cdots\int_{0}^{t}\frac{dt}{t}}{k_{n}-1}$

(2)

where $k=(k_{1}, k_{2}, \ldots, k_{n})$ is an index set of positive integers with $k_{1}>1$ . The con-
dition $k_{1}>1$ ensures the convergence of the series and the integral. For the value
$\zeta(k_{1}, k_{2}, \ldots, k_{n})$ , (strictly, for the index set ( $k_{1},$ $k_{2},$

$\ldots$ , $k_{n}$ )) we call the number $n$ depth
and $k=k_{1}+\cdots+k_{n}$ weight.

There are many linear and algebraic relations over $\mathbb{Q}$ among MZV’s of the same weight,
the simplest of which is $\zeta(3)=\zeta(2,1)$ found by Euler. To give a complete description of
them is one of the main goal of the study of MZV’s. From each representation (1) and (2),
we can show that the product of two MZV’s is written as a linear combination of MZV’s
with rational coefficients. Hence the Qvector space generated by MZV’s is equiPped with
a $\mathbb{Q}$-algebra structure. In this report we investigate the structure of this $\mathbb{Q}$-algebra and
give suPplementaly explanations of the results in [1] and [2].

2 Double shuffle relations

To describe the multiplication rules of MZV’s, we use an algebraic setup given by
Hoffman in [5]. Let $\mathfrak{H}=\mathbb{Q}\langle x, y\rangle$ be the non-commutative polynomial algebra over $\mathbb{Q}$ in
two indeterminates $x$ and $y$ , and $\mathfrak{H}^{1}*nd\mathfrak{H}^{0}$ its subalgebras $\mathbb{Q}+\ovalbox{\tt\small REJECT} y$ and $\mathbb{Q}+xfly$ respectively.
Let $Z:\mathfrak{H}^{0}arrow \mathbb{R}$ be the Qlinear map which sends the word $x^{k_{1}-1}yx^{k_{2}-1}y\cdots x^{k_{\hslash}-1}y$ to the
value $\zeta(k_{1}, k_{2}, \ldots, k_{n})$ (evaluation map”). The weight of $\zeta(k_{1}, k_{2}, \ldots, k_{n})$ corresponds to
the total degree of the word $x^{k_{1}-1}y\cdots x^{k_{n}-1}y$ , and the depth $n$ the partial degree in $y$ .

Put $z_{k}$ $:=x^{k-1}y$ , which corresponds to the Riemann zeta vaiue $\zeta(k)$ . Then the non-
commutative algebra $\mathfrak{H}^{1}$ is freely generated by the set $\{z_{k}|k=1,2,3, \ldots\}$ . Note that all
$z_{k}$ are in $\mathfrak{H}^{0}$ except for $z_{1}=y$ . We define the harmonic product $*on\mathfrak{H}^{1}$ inductively by
$1*w=w*1=w$ and

$z_{k}w_{1}*z_{l}w_{2}=z_{k}(w_{1}*z_{l}w_{2})+z_{t}(z_{k}w_{1}*w_{2})+z_{k+t}(w_{1}*w_{2})$ , (3)

where $k,$ $l\geq 1$ and $w,$ $w_{1},$ $w_{2}$ are any word in $\mathfrak{H}^{1}$ , and extending by Qbilinearity. In [5],
Hoffman showed that $\mathfrak{H}^{1}$ becomes an associative commutative algebra under the multipli-
$cation*and\mathfrak{H}^{0}$ a subalgebra. We will denote these algebras by sl and $\mathfrak{H}_{*}^{0}$ respectively.
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Then the first multiplication law of MZV’s can be stated that the map $Z$ is an alge-
bra homomorphism with respect to the harmonic product $*$ . For instance, the product
$z_{k}*z_{l}=z_{k}z_{l}+z_{l}z_{k}+z_{k+l}$ corresponds to the identity $\zeta(k)\zeta(l)=\zeta(k, l)+\zeta(l, k)+\zeta(k+l)$ .

The other commutative product $D1$ called shuffle product corresponding to the product
of two integrals, is defined on all of $\mathfrak{H}$ inductively by lm $w=wm1=w$ and

$uw_{1}mvw_{2}=u(w_{1}mvw_{2})+v(uw_{1}mw_{2})$ , (4)

where $w,$ $w_{1},$ $w_{2}$ are any word in $\mathfrak{H}$ and $u,$ $v\in\{x, y\}$ , and again extending by $\mathbb{Q}$-bilinearity.
Then the space $\mathfrak{H}$ make an associative commutative $\mathbb{Q}$-algebra ([11]) which we denote by
$\mathfrak{H}m$ . Obviously the subspaces $\mathfrak{H}^{1}$ and $\mathfrak{H}^{0}$ become $s$ubalgebras of Sm, denoted by $\mathfrak{H}_{m}^{1}$

and $\mathfrak{H}_{m}^{0}$ respectively. By the standard shufiIe product identity of iterated integrals, the
evaluation map $Z$ is again an algebra homomorphism with respect to the multiplication
$m$ .

Compareing the two products, we obtain the double shuffle relations (DSR for short)
of MZVs:

$Z(w_{1}mw_{2})=Z(w_{1}*w_{2})$ $(w_{1}, w_{2}\in \mathfrak{H}^{0})$ . (5)

The first example is $4\zeta(3,1)+2\zeta(2,2)=2\zeta(2,2)+\zeta(4)$ $(=\zeta(2)^{2})$ from which we get
$4\zeta(3,1)=\zeta(4)$ . However these double shuffle relations do not give the “all” relations. For
instance, the relation $\zeta(3)=\zeta(2,1)$ can not be obtained from the double shufHe relations.
Let $\mathcal{Z}_{k}$ be the $\mathbb{Q}$-vector space generated by all MZV’s of weight $k$ . Below is the table of the
conjectural dimension $d_{k}$ of $\mathcal{Z}_{k}$ and the upper bounds of the $\dim \mathcal{Z}_{k}$ which are obtained
by double shuMe relations. Therefore we need more larger class of relations to supply
sufficiently many relations. In Section 4 we will show its extended version stated in [1].

3 Regularization

Proposition 1 ([5],[11]) For each product $\bullet=*orm$ , we can regard $S^{1}$. as a $\mathfrak{H}^{0}$ -algebra
via the inclusion map $\mathfrak{H}^{0}$. $arrow \mathfrak{H}^{1}.$ . Then $\mathfrak{H}^{1}$. is freely 9enerated by the element $y$ over $\ovalbox{\tt\small REJECT}^{0}$ . In
other words, for any $f\in\delta^{1}$. there uniquely exist elements $f_{0},$

$\ldots$ , $f_{r}\in \mathfrak{H}^{0},$ $(f_{r}\neq 0)$ such
that

$f=f_{0}+f_{i}\bullet y+f_{2}\bullet y^{2}+\cdots+f_{r}\bullet y^{r}$ .

Proof. See [5] $forthecaee*and[11]$ form.

Definition 1 For each product $\bullet=*orm$ , we define two maps $Z^{\cdot}$ : $S^{1}.arrow \mathbb{R}[T]$ which
are uniquely characterized by the properties that they are algebra homomorphisms for $\bullet$

and both extend the evaluation map $Z:\mathfrak{H}^{0}arrow \mathbb{R}$ and send $y$ to T. In other words under
the notaion in Proposition 1, we have

$Z^{\cdot}(f)=Z(f_{0})+Z(f_{1})T+Z(f_{2})T^{2}+\cdots+Z(f_{r})T^{r}$ .
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For example,

$Z^{*}(yxy)=\zeta(2)T-\zeta(2,1)-\zeta(3)$ , $Z^{\bm{m}}(yxy)=\zeta(2)T-2((2,1)$ .
$Z^{*}(y^{2}xy)= \frac{1}{2}\zeta(2)T^{2}-(\zeta(3)+\zeta(2,1))T+\frac{1}{2}\zeta(4)+\zeta(3,1)+\zeta(2,1,1)$,

$Z^{m}(y^{2}xy)= \frac{1}{2}\zeta(2)T^{2}-2\zeta(2,1)T+3\zeta(2,1,1)$ .

We introduce the following power series $A(u)$ :

$A(u)= \exp(\sum_{n=2}^{\infty}\frac{(-1)^{n}}{n}\zeta(n)u^{n})$ .

Note that the coefficient for $u^{k}$ of $A(u)$ is an element of weight $k$ in the Qalgebra generated
by Riemann zeta values. Define an $\mathbb{R}$-linear automorphism $\rho:\mathbb{R}[T]arrow \mathbb{R}[T]$ by

$\rho(e^{Tu})=A(u)e^{Tu}$ . (6)

For example, $\rho(T)=T,$ $p(T^{2})=T^{2}+\zeta(2)$ , and $\rho(T^{3})=T^{3}+3\zeta(2)T-2\zeta(3)$ .
The foUowing theorem does originally to Zagier, and much work has been done by

other writers Racinet, Goncharov, Minh, Petitot, Boutet de Monvel, \’Ecalle,...

Theorem 1 We have

$Z^{m}\equiv\rho\circ Z^{*}$ on $\mathfrak{H}^{1}$ .

Proof. (Sketch) For more detail see [1]. For each multiplication rule, we define two kinds
of truncation of multiple zeta values: For $M>0$ and index set $k=(k_{1}, k_{2}, \ldots, k_{n})$ (not
necessarily $k_{1}>1$ ), set

$\zeta_{M}(k_{1}, k_{2}, \ldots, k_{n}):=\sum_{M>m_{1}>m_{2}>>m_{n}>0}\ldots\frac{1}{m_{1}^{k_{1}}m_{2}^{k_{2}}\cdots m_{n^{n}}^{k}}$ .

If $k_{1}>1$ then $\zeta_{M}(k)$ converges to $\zeta(k)$ as $Marrow\infty$ . We can write the product $\zeta_{M}(k)\zeta_{M}(k’)$

as a linear combination of $\zeta_{M}(k’’)s$ by the same rule as in the case of harmonic product.
With this fact and the classical formula $\zeta_{M}(1)=\sum_{M>m>0}1/m=\log M+\gamma+O(M^{-1})$ ,
we can show by induction that

$\zeta_{M}(k)=Z_{k}^{*}(\log M+\gamma)+O(M^{-1}\log^{J}M)$ for some $J$ as $Marrow\infty$ ,

where $Z_{k}^{*}(T)$ $;=Z^{*}(z_{k_{1}}\cdots z_{k_{\mathfrak{n}}})$ is the associated polynomial defined in Definition 1.
For $k=(k_{1}, k_{2}, \ldots, k_{n})$ and $0<t<1$ , put

$Li_{k}(t)= \sum_{m\iota>m_{2}>\cdots>m_{n}>0}\frac{t^{m_{1}}}{m_{1}^{k_{1}}m_{2^{2}}^{k}\cdots m_{n}^{k_{\mathfrak{n}}}}$

$= \int_{0}^{t}\frac{dt}{1-t}\int_{0^{\frac{dt}{t}\int_{k_{n}-1}}}^{t\ldots t}\frac{\int_{0}^{t}\frac{dt}{t}\int_{0}^{t}\frac{dt}{t}\cdots\int_{0}^{t}\frac{dt}{t}}{k_{1}-1}0$
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If $k_{1}>1$ then $Li_{k}(1)=\zeta(k)$ . We can write the product $Li_{k}(t)Li_{k’}(t)$ as a linear combi-
nation of $Li_{k’’}(t)s$ via the shufiIe product identity of iterated integrals. When $k_{1},$ $k_{1}’>1$ ,

$theformulaecializesatt=Li_{1}(t)=\log\frac{sp_{1}}{1-t},weconcludebyinductionthatltothatoftheshuffle$
product of $\zeta(k)\zeta(k’)$ . Together with

$Li_{k}(t)=Z_{k}^{m}( \log\frac{1}{1-t})+O$ ( $(1-t)$ log$J( \frac{1}{1-t})$ ) for some $J$ as $t\nearrow 1$ .

where $Z_{k}^{m}(T)$ $:=Z^{m}(z_{k_{1}}\cdots z_{k}.)$ is the associated polynomial in Definition 1.
For any index set $k$ , we have

$Li_{k}(t)= \sum_{m_{1}>m_{2}>\cdots>m_{n}>0}\frac{t^{m_{1}}}{m_{1}^{k_{1}}m_{2}^{k_{2}}\cdots m_{n^{n}}^{k}}$

$= \sum_{m=1}^{\infty}(\sum_{m>m_{2}>\cdots>m_{n}>0}\frac{1}{m^{k_{1}}m_{2}^{k_{2}}\cdots m_{n}^{k_{n}}})t^{m}$

$= \sum_{m=1}^{\infty}(\zeta_{m+1}(k)-\zeta_{m}(k))t^{m}=(1-t)\sum_{m=1}^{\infty}\zeta_{m}(k)t^{m-1}$ .

For any $P(T)\in \mathbb{R}[T]$ and $Q(T)$ $:=p(P(T))$ , we can show the following behavior as
$t\nearrow 1$ :

$Q( \log\frac{1}{1-t})=(1-t)\sum_{m=1}^{\infty}P(\log m+\gamma)t^{m-1}+O((1-t)\log^{J}\frac{1}{1-t})$ .

for some $J>0$ . We omit the proof of this equation, (see [1]). This fact establishes the
theorem. 1

4 Extended double shuffle relations

In this section, we explain the meaning ofTheorem 1 from the viewpoint of the algebra
structure on S.

Let $\hat{\mathfrak{H}}=\mathbb{Q}\langle\langle x, y\rangle\rangle$ be the algebra of non-commutative formal power series with $\mathbb{Q}-$

coefficients. The algebra $\hat{\mathfrak{H}}$ is complete with respect to the grading defined by deg $x=$

deg $y=1$ and then $\hslash$ is a dense subalgebra of S. A denvation $d$ on $\mathfrak{H}$ (resp. $\hat{\mathfrak{H}}$ ) is a $\mathbb{Q}-$

linear (resp. $+continious$) map satisfing the derivation,property for concatenation product:
$d(uv)=d(u)v+ud(v)$ for any $u,$ $v\in \mathfrak{H}$ (resp. $\in$ S5). The space of all derivations of

$\hat{\mathfrak{H}}$ form a Lie algebra, denoted by Der(S), with usual commutater bracket: $[d, d’]$ $:=$

$dod’-d’\circ d$ . On the other hand, the set of all algebra automorphisms of $\hat{\ovalbox{\tt\small REJECT}}$ (with respect to
the concatenation product) form a group, denoted by Aut(S). Note that both derivations
and autmorphisms on $\mathfrak{H}$ or $\hat{\mathfrak{H}}$ are determined by the values on generators $x,$ $y$ . Let $Der^{+}(\hat{\mathfrak{H}})$

be the Lie subalgebra consisting of derivations which increase the degree, or equivalently
which induce the zero derivation on the associated graded algebra gr(f) $=\oplus\hat{\mathfrak{H}}_{k}/\hat{\mathfrak{H}}_{k+1}$ ,
where $\hat{\mathfrak{H}}_{k}$ is the subspace of S) generated by the words of degree $\geq k$ . Let Autl (5) be the
subgroup of Aut (S) consisting of automorphisms $\phi$ such that $\phi(x)-x$ and $\phi(y)-y$ belong
to $\mathfrak{H}_{2}$ , or equivalently which induce the identity automorphism on $gr(\hat{\mathfrak{H}})$ .

In the discussion below it is usefull to keep in mind the following facts. There is a one
to one correspondence between the Lie subalgebra $Der^{+}(\hat{\mathfrak{H}})$ and the subgroup Autl $(\hat{\mathfrak{H}})$
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via the exponential and the logarithm maps; $\exp(d)=e^{d}=\sum_{m\geq 0_{m}^{d^{m}}}\neg$ , for $d\in Der^{+}(\hat{\mathfrak{H}})$ ,
$\log(\phi)=-\sum_{m\geq 1^{\frac{(1-\phi)^{m}}{m}}}$ , for $\phi\in Aut^{1}(\hat{\mathfrak{H}})$ .

Proposition 2 ([1]) Define the map $d$ : $\mathfrak{H}arrow \mathfrak{H}$ by $d(w)=ym$ w–yw. Then $d$ is a
derivation and we have

$\exp(du)(w)=(1-yu)(\frac{1}{1-yu}mw)$ , (7)

where $u$ is a formd pammeter.

Proof. Using (4), we can show the derivation property of $d$ and $\neg_{m}^{d^{m}(w)}1.=y^{m}mw-$

$y(y^{m-1}mw)$ by induction. Multiplying this by $u^{m}$ and summing over $m$ gives (7). 1

The analogous result for $*product$ is as follows. See [1] for the proof. Recall $z_{n}=$

$x^{n-1}y$ .

Proposition 3 ([1]) For $n\geq 1$ the map $\delta_{n}$ : $\mathfrak{H}^{1}arrow \mathfrak{H}^{1}$ defined by $\delta_{n}(w)$ $:=z_{n}*w-z_{n}w$
is a derivation and we have

exp $( \sum_{n\geq 1}\frac{(-1)^{n-1}}{n}\delta_{n}u^{n})(w)=(1-yu)(\frac{1}{1-yu}*w)$ .

These derivation $\delta_{n}$ extends to a derzvation on all of $\mathfrak{H}$ , with values on the generators
given by $\delta_{n}(x)=0$ , $\delta_{n}(y)=(x+y)z_{n}$ .

Proposition 4 ([1]) We define two automorphisms by

$\Psi_{u}$ $:=\exp(du)$ , $\Phi_{u}$
$:= \exp(\sum_{n\geq 1}\frac{\delta_{n}}{n}u^{n})$ .

Then the action on the generators is given by

$\Psi_{u}(x)=x(1-yu)^{-1}$ , $\Psi_{u}(y)=y(1-yu)^{-1}$ , $\Psi_{u}(z)=z(1-yu)^{-1}$ ,
$\Phi_{u}(x)=x$ , $\Phi_{u}(y)=(1-zu)^{-1}y$ , $\Phi_{u}(z)=(1-zu)^{-1}z(1-xu)$ ,

where we put $z=x+y$. In particular, both automorphisms $\Psi_{u}$ and $\Phi_{u}$ preserve $\mathfrak{H}^{0}$ .
Proof. By induction, we can check $\neg_{m}^{d(x)}1.m=xy^{m}$ , and $\frac{1}{m!}ff^{n}(y)=y^{m+1}$ , which gives
the result for $\Psi_{u}$ . For the $\Phi_{u}$ , see [1]. 1

Deflnition 2 Let $\Delta_{u}$ be the automorphism of $\mathfrak{H}$ defined by $\Delta_{u}=\Psi_{u}\circ\Phi_{u}^{-1}$ . The images
of the generators $x$ and $y$ of $\Delta_{u}$ are given by

$\triangle_{u}(x)=x(1-yu)^{-1}$ , $\Delta_{u}(y)=(1-zu)(1-yu)^{-1}y$ , $\Delta_{u}(z)=z$ .
where $z=x+y$.
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Definition 3 For each product $\bullet=*or\coprod 1$ we define algebra homomorphisms reg. :
$\ovalbox{\tt\small REJECT}^{1}.arrow \mathfrak{H}^{0}$ which is uniquely characterized by the properties that it is identity on $\ovalbox{\tt\small REJECT}^{0}$ and
sends $y$ to $0$ . Specifically reg. $(f)$ $:=f_{0}$ for $f\in$ S5, where $f_{0}$ is the element given in
Proposition 1.

By Definition 1 and Definition 3, for each $\bullet=*orm$ it clearly holds that

$Z\circ reg.(f)=Z^{\cdot}(f)|_{T=0}$ (8)

for au $f\in \mathfrak{H}^{1}$ .

Theorem 2 (Extended double shuffle relations) ([1]) The following statements are
true and equivalent:

(i) $Z^{m}-p\circ Z^{*}\equiv 0$ on $\ovalbox{\tt\small REJECT}^{1}$ ,

(ii) $Z\circ(\Delta_{u}-1)\equiv 0$ on $\mathfrak{H}^{0}$ ,

(iii) $Z[reg_{m}(w_{1}mw_{0}-w_{1}*w_{0})]=0$ for $w_{1}\in \mathfrak{H}^{1},$ $w_{0}\in \mathfrak{H}^{0}$ ,

(iv) $Z[reg_{*}(w_{1}mw_{0}-w_{1}*w_{0})]=0$ for $w_{1}\in \mathfrak{h}^{1},$ $w_{0}\in fl^{0}$ .

We call this equivalent dass of rdations of MZV’s “extended double shuffle relations “.

Conjecture 1 ([1]) The extended double shuffle relations give the all relations among
$MZVs$ .

Lemma 1 We have

$\exp_{m}(yu)=\frac{1}{1-yu}=\exp_{*}(\sum_{n>1,\prime}\frac{(-1)^{n-1}}{n}z_{n}u^{n}))$ .

where $exp.(f)=\sum_{n\geq 0_{n}^{\urcorner}}^{1}.f^{n}$ for $f\in \mathfrak{H}^{1}$ .

Proof. The first equation is direct from $y^{mn}=n!y^{n}$ . For second equation, see [1]. 1

Proof of Theorem 2. (Sketch) In Proposition 2, replace $w$ by $\Delta_{-u}(w_{0})$ and divide both
sides by $1-yu$ , and use the lemma,

$\frac{1}{1-yu}\Phi_{-u}^{-1}(w_{0})=\frac{1}{1-yu}m\triangle_{-u}(w_{0})=\exp_{m}(yu)m\Delta_{-u}(w_{0})$ , (9)

for $w_{0}\in \mathfrak{H}^{0}$ . On the other hand, use Proposition 3 and the lemma in the same way, we
have

$\frac{1}{1-yu}\Phi_{-u}^{-1}(w_{0})=\frac{1}{1-yu}*w_{0}=\exp_{*}(\sum_{n\geq 1}\frac{(-1)^{n-1}}{n}z_{n}u^{n}))*w_{0}$ . (10)

Apply $Z^{m}$ and $p\circ Z^{*}$ to (9) and (10) respectively, we have

$Z^{m}( \frac{1}{1-yu}\Phi_{-u}^{-1}(w_{0}))=Z(\Delta_{-u}(w_{0}))e^{Tu}$ , (11)

$\rho\circ Z^{*}(\frac{1}{1-yu}\Phi_{-u}^{-1}(w_{0}))=p(Z(w_{0})e^{Tu}A(u)^{-1})=Z(w_{0})e^{Tu}$ . (12)
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Since $\Phi_{-u}^{-1}$ acts as an automorphism of $\mathfrak{H}^{0}$ and since the elements $\frac{1}{1-yu}\mathfrak{H}^{0}$ span $\mathfrak{H}^{1}$ , the

equations (11) and (12) ensures the equivalence between (i) and (ii). Next we show that
$(iii)\Rightarrow(ii)$ .

$reg_{m}(\frac{1}{1-yu}mw_{0}-\frac{1}{1-yu}*wo)$

$= reg_{m}(\frac{1}{1-yu}mw_{0}-\frac{1}{1-yu}m\triangle_{-\tau\iota}(w_{0}))$

$= reg_{m}(\frac{1}{1-yu})(1-\Delta_{-u})(w_{0})=(1-\triangle_{-u})(w_{0})$,

where we used (9), (10) for the first equation and used the fact $reg_{m}(1-yu)^{-1}=1$ for
the last equation, which follows from $reg_{m}(y^{m})=0,$ $(m\geq 1).$ Ihking $\frac{1}{1-yu}$ for $w_{1}$ in (iii),
the above equation shows that (iii) $\Rightarrow$ (ii). By the same arguments we can show $(iv)\Rightarrow(\ddot{u})$ .
For $(i)\Rightarrow(i\ddot{u})$ , multiply $Z(w_{0})\in \mathbb{R}$ on both sides of $z^{m}(w_{1})=\rho(Z^{*}(w_{1}))$ and use the
$\mathbb{R}$-linearity of $\rho$ to get $z^{m}(w_{1}mw_{0})=\rho(Z^{*}(w_{1}*w_{0}))$ . Using (i) on the right, we obtain
$Z^{m}(w_{1}mw_{0}-w_{1}*w_{0})=0$ . From (8), comparing the constant term of this equation,
which shows (iii). The implication $(i)\Rightarrow(iv)$ is proved similarly. $\blacksquare$

5 Derivation and Ohno’s relations

Theorem 3 (Derivation relations, [1]) For $n\geq 1$ , let $\partial_{n}$ be the denvation on $\mathfrak{H}$ de-
fined by the following action on generators:

$\partial_{n}(x)=x(x+y)^{n-1}y$ , $\partial_{n}(y)=-x(x+y)^{n-1}y$ .
Then $\partial_{n}$ can be rzstricted to a derivation on $\mathfrak{H}^{0}$ and we have $Z[\partial_{n}(\mathfrak{H}^{0})]=0$ .

Define a space of linear endomorphisms on $\mathfrak{H}^{0}$ by

$\mathcal{N}=\{\varphi\in End_{\mathbb{Q}}(\mathfrak{H}^{0})|Z[\varphi(\mathfrak{H}^{0})]=0\}$

Note that the space $\mathcal{N}$ is a right ideal of $End_{\mathbb{Q}}(\mathfrak{H}^{0})$ under the composition of endomor-
phisms. Then the derivation relations can be restated as $\partial_{n}\in \mathcal{N}$ . For later use, we review
several relations of MZV’s.

Proposition 5 (Duality) Let $\tau$ : $\mathfrak{H}arrow \mathfrak{H}$ be the involutive anti-automorphism which
interchanges $x$ and $y:\tau(x)=y,$ $\tau(y)=x;\tau(uv)=\tau(v)\tau(u)$ for $u,v\in \mathfrak{H}$ . Then $1-\tau\in \mathcal{N}$,
where 1 denotes the identity map on $\mathfrak{H}^{0}$ .

Proposition 6 (Ohno’s relations, [9]) For $l\geq 0$ , let $\sigma_{l}$ : $\mathfrak{H}^{0}arrow \mathfrak{H}^{0}$ be the $\mathbb{Q}$-linear map
defined by

$\sigma_{l}(z_{k_{1}}z_{k_{2}}\cdots z_{k_{n}})=1+*2+\cdots+e_{n}=\iota*\geq 0\sum_{i}z_{k_{1}+e_{1}}z_{k_{2}+e_{2}}\cdots z_{k_{n}+e_{n}}$

.

Then $\sigma_{l}-\sigma_{l}\tau\in \mathcal{N}$ .
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For any endomorphism $\varphi\in End_{\mathbb{Q}}(\mathfrak{H}^{0})$ , put $\overline{\varphi}$ $:=\tau\varphi\tau$ . If $\varphi$ is a derivation or an
automorphism, then so is $\overline{\varphi}$ . Since $\tau^{2}=1$ , it holds

$\sigma_{l}-\overline{\sigma_{l}}=(\sigma_{l}-\sigma_{l}\tau)-(1-\tau)\overline{\sigma_{l}}$. (13)

Since $\vee\eta’$ is a right ideal, Proposition 5, 6 imply $\sigma_{l}-\overline{\sigma_{l}}\in \mathcal{N}$. We call these relations weak
Ohno $s$ relations. Indeed, from (13) the Ohno’s relations is deduced from its weak version
and duality.

We give a table of all derivations which have been defined above. Here $z$ denotes $x+y$ .

Define the derivations on $\hat{\emptyset}$ as foUows.

$\delta_{u}=\sum_{n\geq 1}\frac{\delta_{n}}{n}u^{n}$ , $\partial_{u}=\sum_{n\geq 1}\frac{\partial_{n}}{n}u^{n}$, $D_{u}= \sum_{n\geq 1}\frac{D_{n}}{n}u^{n}$ , $\overline{D}_{u}=\sum_{n\geq 1}\frac{\overline{D}_{n}}{n}u^{n}$ .

Theorem 4 ([1]) We have following equations among the corresponding automo$rp$hisms:

$\Delta_{u}$ $:=\exp(du)\exp(-\delta_{u})=\exp(\partial_{u})=\exp(\overline{D}_{u})\exp(-D_{u})$ .

Proof. It is enough to show that the images of generators for each automorphism coincides
with each other. From the definition of $D_{n}$ , we have $D_{u}^{n}(x)=0$ and $D_{u}^{n}(y)=(-\log(1-$

$xu))^{n}y$ for $n\geq 1$ . Hence this implies

$\exp(D_{u})(x)=x$, $\exp(D_{u})(y)=(1-xu)^{-1}y$ , (14)
$\exp(-D_{u})(x)=x$ , $\exp(-D_{u})(y)=(1-xu)y$ .

Consider the dual of (14), then we have

$\exp(\overline{D_{u}})(y)=y$, $\exp(\overline{D_{u}})(x)=x(1-yu)^{-1}$ .
Therefore we have

$\exp(\overline{D_{u}})(\exp(-D_{u})(x))=\exp(\overline{D_{u}})(x)=x(1-yu)^{-1}$ ,
$\exp(\overline{D_{u}})(\exp(-D_{u})(y))=\exp(\overline{D_{u}})((1-xu)y)=(1-x(1-yu)^{-1}u)y=(1-zu)(1-yu)^{-1}y$,

which coincides with that of $\triangle_{u}$ in Definition 2. For $\exp(\partial_{u})$ , it will be shown in a corollary
of Theorem 5 in the next section.

As a consequence of the theorem, we find a connection among the regularization,
derivation relations and Ohno’s relations:

Corollary 1 ([1]) The following three statements are true and equivalent:

(i) (Regularization) $\Delta_{u}-1\in \mathcal{N}$ ,

54



(ii) (Derivation relations) $\exp(\partial_{u})-1\in \mathcal{N}$ ,

(iii) (Weak Ohno’s relations) $\exp(\overline{D}_{u})-\exp(D_{u})\in \mathcal{N}$ .

Before the proof, we give the table of the upper bounds of the $\dim \mathcal{Z}_{k}$ which are obtained
by derivation relation and (weak) Ohno’s relations.

Proof. Since we have already shown (i) in Theorem 2, it is enough to prove the equivalence.
The equivalence between (i) and (ii) is directly deduced from Theorem 4. Multiply $e_{u}^{D}$

from the right to $e_{u}^{\partial}-1=e^{\overline{D}_{u}}e^{-D_{u}}-1$ , then (iii) is deduced from (ii). The reverse direction
is same augument. The reason to put the tag ‘weak Ohno’s relations’ is as folows; Since
$e^{D_{u}}(x)=x$ and $e^{D_{u}}(y)=(1-xu)^{-1}y$ , we have

$\exp(D_{u})(x^{k_{1}-1}y\cdots x^{k_{n}-1}y)=x^{k_{1}-1}(1-xu)^{-1}y\cdots x^{k_{n}-1}(1-xu)^{-1}y$

$= \sum_{>l,0}\sum_{e\iota+\cdots+e_{n}}x^{k_{1}+e_{1}-1}y\cdots x^{k_{\mathfrak{n}}+e_{n}-1}yu^{l}=\sum_{l\geq 0}\sigma_{l}(x^{k_{1}-1}y\cdots x^{k_{n}-1}y)u^{l}$
.

Hence we have $\exp(D_{u})=\sum_{l\geq 0}\sigma_{l}u^{l}$ , and $\exp(\overline{D_{u}})=\sum_{I\geq 0}\overline{\sigma_{l}}u^{l}$ .
Therefore $e^{\overline{D}_{u}}-e^{D_{u}}\in \mathcal{N}$ is equivalent to the weak Ohno’s relations $\sigma_{l}-\overline{\sigma_{l}}\in N(l\geq 0)$ .

6 Derivations and automorphisms

Following [2], we discuss the derivations and automorphisms more generally. In this
section we define a family of derivations which generalize $\{D_{n}\},$ $\{\overline{D}_{n}\},$ $\{\delta_{n}\},$ $\{\overline{\delta_{n}}\}$ and $\{\partial_{n}\}$

in previous section and discuss the corresponding automorphisms via exponential map.
Let $\{a, b\}$ be an arbitrary set of (topological) generators of S5, for example $a$ and $b$ are

both linear combinations of $x$ and $y$ which are not proportional. In general, the generators
$a$ and $b$ need not be of degree 1 homogeneous elements. We will fix such $\{a, b\}$ . In this
section we use the letter $D_{n}$ to express $D_{n}^{(\alpha,\beta,\gamma,i)}$ defined below, unlike the previous section.

Definition 4 ([2], [1]) For all $n>0$ and elements $\alpha,$
$\beta,\gamma,$ $\delta$ in $\mathbb{Q}$ , define the derivations

$D_{n}=D_{n}^{(\alpha,\beta,\gamma,\delta)}$ by

$D_{n}(a)=0$ , $D_{n}(b)=\alpha a^{n+1}+\beta a^{n}b+\gamma ba^{n}+\delta ba^{n-1}b$ ,

which are clearly in $Der^{+}(\hat{\mathfrak{H}})$ .

Proposition 7 ([2], [1]) Fix the elements $\alpha,\beta,$
$\gamma,$

$\delta\in \mathbb{Q}$, then the sequence of denvations
$\{D_{n}=D_{n}^{(\alpha,\beta,\gamma,\delta)}|n\geq 1\}$ commute with each other: $[D_{m}^{(\alpha,\beta,\gamma,\delta)}, D_{n}^{(\alpha,\beta,\gamma,\delta)}]=0$ for all
$m,n\geq 1$ .
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Proof. Clearly the $[D_{m}, D_{n}]$ is also a derivation on $\hat{\mathfrak{H}}$ . One can check easily the images of
$a$ and $b$ are both $0$ . 1

To consider any linear combination of $D_{n}’ s$ , we use the notation $D_{f}$ which was intro-
duced in [1]:

Definition 5 Let $f(X)= \sum_{n\geq 1}c_{n}X^{n}\in X\mathbb{Q}[[X]]$ be a formal power series in one inde-
terminate $X$ without constant term. We define the derivation $D_{f}\in Der^{+}(\hat{\mathfrak{H}})$ by $D_{f}=$

$\sum_{n\geq 1}c_{n}D_{n}$ .

The action on generators $\{a, b\}$ is given by $D_{f}(a)=0$ and

$D_{f}(b)= \alpha f(a)a+\beta f(a)b+\gamma bf(a)+\delta b\cdot\frac{f(a)}{a}b=f(a)u+b\frac{f(a)}{a}v$

where $u=\alpha a+\beta b$ and $v=\gamma a+\delta b$. The element $- f \bigcup_{a}a\in\hat{\mathfrak{H}}$ is given by substituting $a$ for
$X$ in the power series $fL^{X}x^{\Delta}\in \mathbb{Q}[[X]]$ .

Next, we give the automorphism corresponding to $D_{f}$ via the exponential map.

Definition 6 ([2]) Let $h(X)\in 1+X\mathbb{Q}[[X]]$ be a power series with constant term 1. $We$

define an automorphism $\Delta_{h}$ as follows: Denote by $\epsilon$ and $\epsilon’$ the two roots of the quadratic
equation $T^{2}+(\beta+\gamma)T+\alpha\delta=0$ and put $\omega=\epsilon-\epsilon’$ . The elements $\epsilon,$

$\epsilon’$ and $\omega$ belong to a
quadratic extensiton $K$ of $\mathbb{Q}$ , but the elements $\epsilon+\epsilon’=-(\beta+\gamma)$ and $\epsilon\epsilon’=\alpha\delta$ are in $\mathbb{Q}$ .

Let $\Delta_{h}\in Aut^{1}(\hat{\mathfrak{H}})$ be the automorphism defined by the following action on generators:
$\Delta_{h}(a)=a$ and

$\Delta_{h}(b)=h(a)^{\beta+e}[b+\frac{h(a)^{-w}-1}{-\omega}(\alpha a-\epsilon b)]\cross[1+\frac{h(a)^{\omega}-1}{\omega a}(\epsilon a-\delta b)]^{-1}h(a)^{\gamma+\epsilon}$ (15)

$=h(a)^{\beta}[(h(a)^{\epsilon}-h(a)^{\epsilon’})\alpha a-(\epsilon’h(a)^{\epsilon}-\epsilon h(a)^{\epsilon’})b]$

$\cross[(\epsilon h(a)^{\epsilon}-\epsilon’h(a)^{\epsilon’})-\frac{h(a)^{\epsilon}-h(a)^{\epsilon’}}{a}\delta b]^{-1}h(a)^{-\beta}$ (16)

where $h(a)^{\lambda}=\exp(\lambda\log h(a))$ for any $\lambda\in K$ , and the quotients $(h(a)^{w}-1)/\omega a$ and
$(h(a)^{\epsilon}-h(a)^{\epsilon’})/a$ define the elements of $K\langle\langle x, y\rangle\rangle$ , since each numemtor has no constant
term, one can divide it by $a$ . In the case $\omega=0$ , we regard the elements $(h(a)^{-w}-1)/(-\omega)$

and $(h(a)^{\omega}-1)/\omega a$ as log $h(a)$ and $(\log h(a))/a$ respectively. Since the expression (16) is
symmetric in $\epsilon$ and $\epsilon’$ , it defines an element of S.

First we check the expression (15) equals (16):

$A_{h}$

$:=h(a)^{\beta+\epsilon}( \alpha a-\epsilon b)]=h(a)^{\beta}[\frac{h(a)^{\epsilon}[b+\frac{h(a)^{-w}-1}{-h(a)_{\alpha a}^{\epsilon’}\omega-\omega}}{}+(h(a)^{\epsilon}-\frac{\epsilon(h(a)^{\epsilon}-h(a)^{\epsilon’})}{\omega})b]$

$=h(a)^{\beta}[ \frac{h(a)^{\epsilon}-h(a)^{\epsilon’}}{\omega}\alpha a-\frac{\epsilon’h(a)^{\epsilon}-\epsilon h(a)^{\epsilon’}}{w}b]$ . (17)
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On the other hand, we have

$B_{h}^{-1}$ $:=[1+ \frac{h(a)^{\omega}-1}{\omega a}(\epsilon a-\delta b)]^{-1}h(a)^{\gamma+\epsilon}=[1+\frac{h(a)^{\omega}-1}{\omega a}(\epsilon a-\delta b)]^{-1}h(a)^{-(\beta+\epsilon’)}$

$=[h(a)^{\epsilon’}+ \frac{\epsilon(h(a)^{\epsilon}-h(a)^{e’})}{\omega}-\frac{h(a)^{\epsilon}-h(a)^{\epsilon’}}{\omega a}\delta b]^{-1}h(a)^{-\beta}$

$=[ \frac{\epsilon h(a)^{\epsilon}-\epsilon’h(a)^{\epsilon’}}{\omega}-\frac{h(a)^{\epsilon}-h(a)^{\epsilon’}}{\omega a}\delta b]^{-1}h(a)^{-\beta}$ . (18)

Thus we have $s$hown that (15) $=(16)$ . Since the equation (18) defines an invertible element
of $\hat{\mathfrak{H}}$ , we denote the inverse by $B_{h}$ . Hence we have $\Delta_{h}(b)=A_{h}B_{h}^{-1}$ .
Theorem 5 ([2]) For any $f(X)\in X\mathbb{Q}[[X]]$ , set $h(X)=e^{j(X)}\in 1+X\mathbb{Q}[[X]]$ . Then we
have

$\Delta_{h}=\exp(D_{f})$ . (19)

Proof. For the derivation $D_{f}$ we can consider the l-dimensional commutative Lie subal-
gebra $\{tD_{f}=D_{tj}\}$ spaned by $D_{f}$ . Then the image of the Lie algebra under the exponen-
tial map forms a l-parametor subgroup $\{e^{tD_{f}}=e^{D_{tf}}\}$ of Autl $(\hat{\mathfrak{H}})$ . The tangent vector
along the path at the unit (identity automorphism on $\hat{\mathfrak{H}}$ ) corresp$0$nds to $\log(e^{D_{f}})=D_{f}$ .
Therefore it is enough to show that (i) $\tau_{t}^{\Delta_{h^{t}}}d|_{t=0}=D_{f},$ .and $(\ddot{u})\Delta_{gh}=\Delta_{g}\Delta_{h}$ for
$g,$ $h\in 1+X\mathbb{Q}[[X]]$ , i.e., the map $hrightarrow\Delta_{h}$ is a group homomorphism.

For (i), from the definition of $D_{f}$ and $\Delta_{h}$ it is clear that $\frac{d}{dt}\Delta_{h^{t}}(a)|_{t=0}=D_{f}(a)=0$ .
Next we have from (15)

$\Delta_{h^{t}}(b)=h^{(\beta+\epsilon)t}[b+\frac{h^{-wt}-1}{-w}(\alpha a-\epsilon b)][1+\frac{h^{wt}-1}{\omega a}(\epsilon a-\delta b)]^{-1}h^{(\gamma+e)t}$ ,

where we write $h$ for $h(a)$ for simplicity. By using the formula $\frac{d}{dt}h^{\lambda t}|_{t=0}=\frac{d}{dt}e^{\lambda tf(a)}|_{t=0}=$

$\lambda f(a)$ for $\lambda\in K$ , we have

$\frac{d}{dt}\triangle_{h^{t}}(b)|_{t=0}=(\beta+\epsilon)f(a)b+f(a)(\alpha a-\epsilon b)-b\frac{f(a)}{a}(\epsilon a-\delta b)+b(\gamma+\epsilon)f(a)$

$= \alpha f(a)a+\beta f(a)b+\gamma bf(a)+\delta b\frac{f(a)}{a}b=f(a)u+b\frac{f(a)}{a}v$ .

This coincides with the expression in Definition 5. For the proof of (ii) we need the
following lemma, which is proved in [2].

Lemma 2 For any $g,$ $h\in 1+X\mathbb{Q}[[X]]$ , we obtain

$\Delta_{g}(A_{h})B_{9}=A_{gh}$ , $\Delta_{g}(B_{h})B_{9}=B_{gh}$ (20)

where $A_{h},$ $B_{h}$ are the elements defined above.

Using this lemma we can prove (1i): $\triangle_{g}(\Delta_{h}(a))=a=\Delta_{gh}(a)$ and

$\Delta_{9}(\Delta_{h}(b))=\Delta_{9}(A_{h}B_{h}^{-1})=(A_{gh}B_{g}^{-1})(B_{gh}B_{9}^{-1})^{-1}=A_{gh}B_{gh}^{-1}=\Delta_{gh}(b)$ .

1
The following theorem is a special case of Theorem 5, but is worth stating separately

because of the conciseness of the expression.
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Theorem 6 ([2]) Suppose that $\alpha,$ $\beta,$
$\gamma,$

$\delta\in \mathbb{Q}$ satisfy $\alpha\delta-\beta\gamma=0$ . Then the derivation
$D_{f}$ is defined by the images $D_{j}(a)=0,$ $D_{f}(b)=w_{a}^{\Delta^{a}1}w’$ on the generators for some
$w,$ $w’\in \mathbb{Q}a+\mathbb{Q}b$ and the automorphism $\triangle_{h}=\exp(D_{f})$ for $h=e^{f}$ sends the generators to

$\triangle_{h}(a)=a$ , $\Delta_{h}(b)=[b+\frac{h(a)^{\beta-\gamma}-1}{\beta-\gamma}u][1-\frac{h(a)^{\beta-\gamma}-1}{(\beta-\gamma)a}v]^{-1}$ , (21)

where $u=\alpha a+\beta b,$ $v=\gamma a+\delta b$ .

Corollary 2 We have

$\exp(\partial_{u})(x)=x(1-yu)^{-1}$ , $\exp(\partial_{u})(z)=z$ ,

where $\partial_{u}$ is a derzvation defined in Section 5.

Proof. Ibke the generator $\{a, b\}$ as $\{z=x+y, x\}$ and $(\alpha, \beta, \gamma, \delta)$ as $(0,0,1, -1)$ , which
satisfies the assumption of Theorem 6. Moreover put $f(X)=-\log(1-uX)$ for parameter
$u$ , then $D_{f}^{(\alpha,\beta,\gamma,\delta)}=\partial_{u}$ . In this case we obtain $\exp(\partial_{u})(x)=x(1-yu)^{-1}$ , and $\exp(\partial_{u})(z)=$

$z$ from the theorem. 1

7 Linearized double shuffle relations
In this section we estimate the number of generators of the algebra of MZV’s of given

weight $k$ and depth $n$ by considering the extended double shuMe relation modulo elements
of lower depth and products.

Let $\mathcal{Z}=\oplus_{k\geq 0}\mathcal{Z}_{k}$ be the graded algebra generated by all MZV’s over $\mathbb{Q}$ , where $\mathcal{Z}_{k}$ is
the $\mathbb{Q}$-vector space generated by MZV’s of weight $k$ . The space $\mathcal{Z}_{k}$ has a natural filtration
$\mathcal{Z}_{k}=\bigcup_{n\geq 0}\mathcal{Z}_{k}^{(n)}$ , where $\mathcal{Z}_{k}^{(n)}$ is the $\mathbb{Q}-$-vector space spanned by MZV’s of weight $k$ and
depth $\leq n$ . Thus $\mathcal{Z}^{(n)}=\oplus_{k\geq 0}\mathcal{Z}_{k}^{(n)}$ gives a corresponding filtration $\mathcal{Z}=\bigcup_{n\geq 0}\mathcal{Z}^{(n)}$ on
the algebra Z. Let $\mathcal{I}=\oplus_{k\geq 1}Z_{k}$ be the augumentation ideal of $\mathcal{Z}$ and $\mathcal{I}^{2}$ its square
ideal. The grading and filtration are induced to the cotanjent space $\mathcal{T}=\mathcal{I}/\mathcal{I}^{2}$ . The
dimension of the space $\mathcal{T}_{k}$ , the weight $k$ component of $\mathcal{T}$, coincides with the minimum
number $D_{k}$ of algebra generators of $\mathcal{Z}$ in weight $k$ . We can consider the bigraded vector
space $\mathcal{M}=gr(\mathcal{T})$ associated to the graded filtered space $\mathcal{T}$:

$\mathcal{M}=\bigoplus_{k)n\geq 1}\mathcal{M}_{k}^{(n)}$
, $\mathcal{M}_{k}^{(n)}=\mathcal{T}_{k}^{(n)}/\mathcal{T}_{k}^{(n-1)}\simeq \mathcal{Z}_{k}^{(n)}/(\mathcal{Z}_{k}^{(n-1)}+\mathcal{Z}_{k}^{(n)}\cap \mathcal{I}^{2})$ .

Then the dimension $D_{k,n}$ of $\mathcal{M}_{k}^{(n)}$ equals the number of algebra generators of $\mathcal{Z}$ of weight
$k$ and depth $n$ , and we have $D_{k}= \sum_{n=1}^{k-1}D_{k,n}$ . There is a conjectural formula giving these
dimensions $D_{k,n}$ , due to Broadhurst and Kreimer.

Conjecture 2 ([3]) The number $D_{k,n}$ of algebra generaters of weight $k$ and depth $n$ are
given by

$n \geq 1\prod_{k\geq 2}(1-x^{k}y^{n})^{-D_{k,\mathfrak{n}}}=\frac{1}{1-x^{2}}(1-\frac{x^{3}y}{1-x^{2}}+\frac{x^{12}y^{2}(1-y^{2})}{(1-x^{4})(1-x^{6})})^{-1}$
.
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Following is the table of thi$s$ conjectural values of $D_{k,n}$ .

In [1], certain vector space $DS_{n}(d)$ was intrduced for each $n,d>0$ whose dimension
gives an upper bound of the numbers $D_{n+d,n}$ . In this section, we summarize a result in
[1] and estimate the dimensions of $DS_{n}(d)$ for small $n$ . As a consequence, we obtain a
non-trivial upper bound of $D_{k,n}$ for small $n$ .

Let $\mathfrak{S}_{n}$ be the symmetric group of degree $n$ and $\mathbb{Z}[\mathfrak{S}_{n}]$ its group algebra. We de-
note $\mathbb{Q}[x_{1}, \ldots, x_{n}]$ the space of (commutative) polynomials in $n$ variables with rational
coefficients and by $\mathbb{Q}[x_{1}, \ldots, x_{n}]_{(d)}$ its subspace of homogeneous polynomials of degree
$d$ . The group $\mathfrak{S}_{n}$ acts on these spaces by permutation of variables: $(f|\sigma)(x_{1}, \ldots, x_{n})=$

$f(x_{\sigma^{-1}(1)}, \ldots , x_{\sigma^{-1}(n)})$ . For any $\sigma$ and $\tau$ in $\mathfrak{S}_{n}$ , it holds $f|(\sigma\tau)=(f|\sigma)|\tau$ . We extend the
action $\mathbb{Z}$-linearly to an action of $\mathbb{Z}[\mathfrak{S}_{n}]$ .

Define the double shuffle subspace $DS_{n}$ of $\mathbb{Q}[x_{1}, \ldots, x_{n}]$ as follws: For each integer $l$

with $1\leq l<n$ , define the l-th shuffle element by $sh_{l}= \sum\sigma\in \mathbb{Z}[\mathfrak{S}_{n}]$ , where the sum runs
over the element $\sigma\in \mathfrak{S}_{n}$ satisfying $\sigma(1)<\cdots<\sigma(l)$ and $\sigma(l+1)<\cdot.\cdot\cdot<\sigma(n)$ . Then

$DS_{n}=$ { $f\in \mathbb{Q}[x_{1},$
$\ldots$ , $x_{n}]|f|sh_{l}=f^{\#}|sh_{l}=0$ for $1\leq l<n$} (22)

where for any polynomial $f\in \mathbb{Q}[x_{1}, \ldots, x_{n}]$ , we put

$f^{\#}(x_{1}, \ldots,x_{n})=f(x_{1}+x_{2}+\cdots+x_{n}, x_{2}+\cdots+x_{n}, \ldots, x_{n-1}+x_{n},x_{n})$

We write $DS_{n}(d)$ for the degree $d$ part of $DS_{n}$ . For example, the case $n=2$ is

$DS_{2}=\{f\in \mathbb{Q}[x_{1},x_{2}]|f(x_{1}+x_{2},x_{1})+f(x_{1}+x_{2}, x_{2})=0\}$ .$f(x_{1},x_{2})+f(x_{2},x_{1})=0$ ,

Theorem 7 ([1]) For all $k>n>0$ , we have

$D_{k,n}\leq\dim_{\mathbb{Q}}DS_{n}(k-n)$ .

It is conjectured that $D_{k,n}=\dim DS_{n}(k-n)$ for $n>1$ .
For example, the case $n=2$ and $d=6$, the space $DS_{2}(6)$ is spaned by a single

polynomial: $DS_{2}(6)=(2x_{1}^{5}x_{2}-2x_{1}x_{2}^{5}-5x_{1}^{4}x_{2}^{2}+5x_{1}^{2}x_{2}^{4}\rangle_{\mathbb{Q}}$. By the therem, $D_{8,2}\leq 1$ is
deduced. We will sketch a proof of the theorem after some $pre\lim\dot{i}$aries. A part of the
proof is different from the original one given in [1].

Recall that $\mathfrak{H}^{1}$ is generated by $z_{k}=x^{k-1}y,$ $(k\geq 1)$ . For a fixed $n$ , consider the
generating function

$F_{n}(x_{1}, \ldots, x_{n})=\sum_{k}z_{k_{1}}\cdots z_{k_{\hslash}}x_{1}^{k_{1}-1}\cdots x_{n}^{k_{n}-1}\in \mathfrak{H}^{1}[[x_{1}, \ldots, x_{n}]]$

59



where the sum runs over all index sets $k=(k_{1}, \ldots, k_{n})$ (allowing $k_{1}=1$ ) of depth $n$ ,
and fl $[[x_{1}, \ldots, x_{n}]]$ is the algebra of formal power series in $n$ variables with coefficients
ring $\mathfrak{H}^{1}$ . For each product $\bullet$ , $(\bullet =., *orm)$ , we can consider the algebra structure on
$\mathfrak{H}^{1}[[x_{1}, \ldots, x_{n}]]$ which is isomorphic to the tensor algebra $\mathfrak{H}^{1_{\otimes}^{\wedge}}.\mathbb{Q}[[x_{1}, \ldots , x_{n}]]$ . For $n\geq 2$

and $1\leq l<n$ , we have easily

$F_{i}(x_{1}, \ldots, x_{l})\cdot F_{n-l}(x_{l+1}, \ldots, x_{n})=F_{n}(x_{1}, \ldots, x_{n})$ .

Proposition 8 For any $n\geq 2$ and $1\leq l<n$ , we have

(i) $F_{l}(x_{1}, \ldots, x_{l})*F_{n-l}(x_{l+1}, \ldots, x_{n})$

$=F_{1}(x_{1})\cdot(F_{l-1}(x_{2}, \ldots , x_{l})*F_{n-l}(x_{l+1}, \ldots , x_{n}))$

$+F_{1}(x_{l+1})\cdot(F_{l}(x_{1}, \ldots,x_{l})*F_{n-l-1}(x_{t+2}, \ldots,x_{n}))$

$+ \frac{F_{1}(x_{1})-F_{1}(x_{l+1})}{x_{1}-x_{l+1}}$ . $(F_{l-1}(x_{2}, . ..,x_{l})*F_{n-l-1}(x_{l+2}, \ldots,x_{n}))$ .

(ii) $F_{l}(x_{1}, \ldots, x_{l})mF_{n-l}(x_{l+1}, \ldots,x_{n})$

$=F_{1}(x_{1}+x_{l+1})\cdot(F_{l-1}(x_{2}, \ldots,x_{l})mF_{n-l}(x_{l+1}, \ldots, x_{n}))$

$+F_{1}(x_{1}+x_{l+1})\cdot(F_{l}(x_{1}, \ldots ,x_{l})mF_{n-l-1}(x_{l+2}, \ldots, x_{n}))$ .

Proof. Rom (3) and (4), it is enough to show the case $n=2$ and $l=1$ . For (i), we have

$F_{1}(x_{1})*F_{1}(x_{2})=( \sum z_{k_{1}}x_{1}^{k_{1}-1})*(\sum z_{k_{2}}x_{2}^{k_{2}-1})=\sum z_{k_{1}}*z_{k_{2}}x_{1}^{k_{1}-1}x_{2}^{k_{2}-1}$

$= \sum(z_{k_{1}}z_{k_{2}}+z_{k_{2}}z_{k_{1}}+z_{k_{1}+k_{2}})x_{1}^{k_{1}-1}x_{2^{2}}^{k-1}$

$= \sum z_{k_{1}}z_{k_{2}}x_{1}^{k_{1}-1}x_{2^{2}}^{k-1}+\sum z_{k_{2}}z_{k_{1}}x_{1}^{k_{1}-1}x_{2^{2}}^{k-1}+\sum z_{k_{1}+k_{2}}x_{1}^{k_{1}-1}x_{2^{2}}^{k-1}$

$=F_{2}(x_{1},x_{2})+F_{2}(x_{2}, x_{1})+ \frac{F_{1}(x_{1})-F_{1}(x_{2})}{x_{1}-x_{2}}$ .

For (ii), we use $F_{1}(x_{i})= \sum_{k_{1}\geq 1}x^{k_{1}-1}yx_{i}^{k_{1}-1}=(1-xx_{i})^{-1}y=y+xx_{i}F_{1}(x_{t})$, for $i=1,2$ ,
and (4), then

$F_{1}(x_{1})mF_{1}(x_{2})=(y+xx_{1}F_{1}(x_{1}))m(y+xx_{2}F_{1}(x_{2}))$

$=ymy+ymx(x_{1}F_{1}(x_{1})+x_{2}F_{1}(x_{2}))+xx_{1}F_{1}(x_{1})mxx_{2}F_{1}(x_{2})$

$=ymy+yx(x_{1}F_{1}(x_{1})+x_{2}F_{1}(x_{2}))+x(ym(x_{1}F_{1}(x_{1})+x_{2}F_{1}(x_{2})))$

$+x(x_{1}F_{1}(x_{1})+xx_{2}F_{1}(x_{2}))+x(xx_{1}F_{1}(x_{1})+x_{2}F_{1}(x_{2}))$

$=ymy+y(F_{1}(x_{1})-y+F_{1}(x_{2})-y)+x(ym(x_{1}F_{1}(x_{1})+x_{2}F_{1}(x_{2})))$

$+x(x_{1}F_{1}(x_{1})m(F_{1}(x_{2})-y))+x((F_{1}(x_{1})-y)mx_{2}F_{1}(x_{2}))$

$=y(F_{1}(x_{1})+F_{1}(x_{2}))+x(x_{1}+x_{2})(F_{1}(x_{1})mF_{1}(x_{2}))$ .
Therefore

$F_{1}(x_{1})mF_{1}(x_{2})=(1-x(x_{1}+x_{2}))^{-1}y(F_{1}(x_{1})+F_{1}(x_{2}))$

$=F_{1}(x_{1}+x_{2})(F_{1}(x_{1})+F_{1}(x_{2}))=F_{2}(x_{1}+x_{2}, x_{1})+F_{2}(x_{1}+x_{2},x_{2})$.
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1
We can define a filtered graded structure on $S^{1}.$ . The grading and filtration are defined

by the total degree and partial degree in $y$ respectively. The space $\mathfrak{H}^{0}$. is a filterd graded
subalgebra of $\mathfrak{H}^{1}$. for each $\bullet=*orm$ . Then the both evaluation map $Z$ : $\mathfrak{H}^{0}arrow \mathcal{Z}$ and
regualization map reg. : $\mathfrak{H}^{1}.arrow \mathfrak{H}^{0}$ are morphisms preserving the grading and filtration.

Let $\iota_{k}^{(n)}$ : $\mathcal{Z}_{k}^{(n)}arrow \mathcal{M}_{k}^{(n)}$ be the natural surjection and $\iota^{(n)}$ : $z^{(n)}arrow \mathcal{M}^{(n)}$ be its
direct sum: $\iota^{(n)}=\oplus_{k}\iota_{k}^{(n)}$ . For each product $\bullet=*orm$ , consider the composition map

$\iota^{(n)}\circ Zoreg.$ : $\mathfrak{H}^{1,(n)}arrow \mathfrak{H}^{0,(n)}arrow \mathcal{Z}^{(n)}arrow \mathcal{M}^{(n)}$ ,

where $\mathfrak{H}^{1,(n)}$ is the n-th filtered subspace of $\mathfrak{H}^{1}.$ , namely which is generated by the words
whose partial degree in $y$ are less than or equal to $n$ . By the definition of $\mathcal{M}$ , the image
of the subspace $\mathfrak{H}^{1,(n-1)}$ in $\mathcal{M}^{(n)}$ via this composition map is $\{0\}$ . Furthermore, the image
of the product $f\bullet$ $f’\in \mathfrak{H}:,(n)$ in $\mathcal{M}^{(n)}$ is ako $\{0\}$ for $f\in \mathfrak{H}^{1,(l)}$ and $f’\in \mathfrak{H}^{1,(n-l)}$ .

Lemma 3 ([1]) We have a following equation in $\mathcal{M}^{(n)_{\otimes}^{\wedge}}\mathbb{Q}[[x_{1}, \ldots , x_{n}]]$

$\iota^{(n)}\circ Z\circ reg_{*}(F_{n}(x_{1}, \ldots, x_{n}))=\iota^{(n)}oZoreg_{m}(F_{n}(x_{1}, \ldots, x_{n}))$ ,

where the composition maps acts on the coefficient part.

Proof. From (8), the gap between $Z\circ reg_{*}$ and $Z\circ reg_{m}$ is given by the map $\rho$ defined
in (6). The lemma follows from Theorem 1 and the fact that the coefficient of $\rho(\dot{T})$ is
$containe\underline{d}$in the algebra generated by Riemann zeta values i.e., MZV’s of depth 1. $\blacksquare$

Let $\mathcal{M}$ be the $\underline{bi}graded\mathbb{Q}$-algebra associated to the filterd graded algebra $\mathcal{Z}/\mathcal{I}^{2}$ . As
a Q-vector space $\mathcal{M}=\mathbb{Q}\oplus \mathcal{M}$ , here $\mathbb{Q}$ is regarded as the ($0,0\underline{)}$-degree component of $\overline{\mathcal{M}}$.
In the fonowing, we think $\mathcal{M}$ as a subspace of $\overline{\mathcal{M}}$. Consider $\mathcal{M}[[x_{1}, \ldots , x_{n}]]$ the algebra
of power series with $\overline{\mathcal{M}}$ coefficients and extend the $\mathbb{Z}[\mathfrak{S}_{n}]$-action to $\overline{\mathcal{M}}[[x_{1}, \ldots , x_{n}]]$ in the
obvious way.

Definition 7 Define a power series in $\overline{\mathcal{M}}[[x_{1}, \ldots, x_{n}]]$ by

$\overline{F_{n}}(x_{1}, \ldots, x_{n})$ $:=\iota^{(n)}\circ Z\circ reg_{*}(F_{n}(x_{1}, \ldots, x_{n}))=\iota^{(n)}\circ Zoreg_{m}(F_{n}(x_{1}, \ldots,x_{n}))$ .

Proposition 9 ([1]) For $1\leq l<n$ , we have

$(\overline{F_{n}}|sh_{l})(x_{1}, \ldots,x_{n})=(\overline{F}_{n}^{\neg}|sh_{l})(x_{1}, \ldots,x_{n})=0$.

Hence the Polynomial $\overline{F_{n}}(d)$ , the homogeneous degree $d$ part $of\overline{F_{n}}$ , is in $\overline{\mathcal{M}}\otimes DS_{n}(d)$ .

Proof. For each product $\bullet=*orm$ , apply $\iota^{(n)}\circ Zoreg$. $toProposition8$ , then

$0=\overline{F_{1}}(x_{1})(\overline{F_{l-1}}(x_{2}, \ldots, x_{l})\overline{F_{n-l}}(x_{l+1}, \ldots,x_{n}))$

$+\overline{F_{1}}(x_{l+1})(\overline{F_{l}}(x_{1}, \ldots, x_{l})\overline{F_{n-l-1}}(x_{l+2}, \ldots,x_{n}))=(\overline{F_{n}}|sh_{l})(x_{1}, \ldots,x_{n})$.
and

$0=\overline{F_{1}}(x_{1}+x_{l+1}, )\cdot(\overline{F_{l-1}}(x_{2}, \ldots, x_{l})\overline{F_{n-l}}(x_{l+1}, \ldots,x_{n}))$

$+\overline{F_{1}}(x_{1}+x_{l+1})\cdot(\overline{F_{l}}(x_{1}, \ldots, x_{l})\overline{F_{n-l-1}}(x_{l+2}, \ldots,x_{n}))=(F_{n}|sh_{l})(x_{1}, \ldots,x_{n})\neg$ .
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Thus we conclude the proof. 1

Proof of Theorem 7. As a corollary of Proposition 9, we can show that the dimension
of the $\mathbb{Q}$-vector subspace of $\mathcal{M}_{k}^{(n)}$ spaned by the coefficients of $\overline{F_{n}}(k-n)$ is less than or
equal to the dimension of $DS_{n}(k-n)$ . Since images of all MZV’s of weight $k$ and depth $n$

in $\mathcal{M}_{k}^{(n)}$ are appered as the coefficients of $\overline{F_{n}}(k-n)$ , we have dim $\mathcal{M}_{k}^{(n)}\leq\dim DS_{n}(k-n)$ ,
which proves the theorem.

In the rest of this section we give some estimates of the space $DS_{n}(d)$ .
Let $T_{n}=(_{nn-1}^{12}\ldots n1)\in \mathfrak{S}_{n}$ . For $n,$ $d\geq 1$ , define the space

$W_{n}^{7}(d):=\{f\in \mathbb{Q}[x_{1}, \ldots,x_{n}]_{(d)}|f^{\#}|sh_{l}=0(1\leq l<n), f|T_{n}=(-1)^{n-1}f\}$ .

Proposition 10 ([1]) We have (i) $DS_{n}(d)\subset W_{n}(d)$ , (ii) $W_{n}(d)=\{0\}$ if $d$ is odd.

Proof. Omitted. The space $W_{n}(d)$ is equal to the space $ShC_{n}(d)$ in [1].

Corollary 3 (Parity result) If $d$ is odd, then $DS_{n}(d)=\{0\}$ for every $n>0$ . Conse-
qently $D_{k,n}=0$ if $k\not\equiv n$ mod 2.

This result was proved independently by Tsumura [13] by a different method.

For small $n$ , we can compute explicitly the dimension of the space $W_{n}(d)$ , which gives
a non-trivial upper bound of the number $D_{n+d,n}$ .

Proposition 11 ([6]) Let $E_{n}(t)= \sum_{d\geq 0}$ dim $W_{n}(d)t^{d}$ be the Poincar\’e series of the spaces
$W_{n}^{\gamma}(d)$ . Then,

(i) $E_{2}(t)= \frac{t^{6}}{(1-t^{2})(1-t^{6})}$ ,

(ii) $E_{3}(t)= \frac{t^{2}}{(1-t^{2})^{2}(1-t^{6})}$ ,

(iii) $E_{4}(t)= \frac{t^{4}(1+t^{4})}{(1-t^{2})^{3}(1-t^{10})}$ ,

(iv) $E_{5}(t)= \frac{t^{2}(1+t^{2}+4t^{4}+2t^{6}+5t^{8}+4t^{10}+4t^{12}+t^{14}+2t^{16})}{(1-t^{2})^{2}(1-t^{6})^{2}(1-t^{10})}$ .

We give the table of dim $W_{n}(k-n)$ up to $n\leq 5$ and $k\leq 19$ as follows.

Acknowledgements I wish to express my appriciation to Prof. Yasuo Ohno for giving
the opportunity to talk.

62



References

[1] K. Ihara, M. Kaneko, D. Zagier, Demvations and double shuffle relations for multiple
zeta values, preprint (2004), ${\rm Max}- Planck$-Institut f\"ur Mathematik preprint series
2004-100.

[2] K. Ihara, Derivations and automorphisms on the algebra of non-commutative power
serees, Math. J. of Okayama university, to appear.

[3] D. J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive
knots via Feynman diagmms up to 9 loops, Physics Lett. $B$ 393 (1997), 403-412.

[4] A. B. Goncharov, Multiple $\zeta$ -values, Galois groups and geometry of modular varieties,
Progres$s$ in Math. 201 (2001), 361-392

[5] M. Hoffman, The algebra of multiple harmonic senes, J. of Algebra 194 (1997), 477-
495.

[6] K. Ihara, M. Kaneko, D. Zagier, The double shuffle vector space, planned.

[7] H. N. Minh, M. Petitot and J. V. D. Hoeven, Shuffle algebra and polyloganthms,
Discrete Math. 225 (2000), 217-230.

[8] L. Boutet de Monvel, Remarques sur les s\’eries logarithmiques divergentes, lecture at
the workshop “Polylogarithmes et conjecture de Deligne-Ihara”, C.I.R.M. (Luminy)
(2000).

[9] Y. Ohno, A generalization of the duality and sum formula8 on the multiple zeta values,
J. of Number Th. 74 (1999), 39-43.

[10] G. Racinet, Doubles m\’elanges des polylogarithmes multiples aux racines de l’unit\’e,
Publ. Math. Inst. Hautes \’Etudes Sci. 95 (2002), 185-231

[11] C. Reutenauer, fkee Lie Algebras, Oxford Science Publications (1993).

[12] T. Terasoma, Mixed Tate motives and multiple zeta values, Invent. Math. 149 (2002),
339-369

[13] H. Tsumura, Combinatorial relations for Euler-Zagier sums , Acta Arith. 111.1
(2004), 27-42.

[14] D. Zagier, Values of zeta functions and their applications, Progress in Math. 120
(1994), 497-512.

63


