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Abstract

A mathematical model is proposed to interpret the spread of avian influenza
from the bird world to the human world. Our mathematical model warns that two
types of the outbreak of avian influenza may occur if the humans do not prevent
the spread of avian influenza. Moreover it suggests that we can not feel relieved
although the total infected humans are kept at low level. In order to prevent the
spread of avian influenza in the human world, we must take the policies not only
for the birds infected with avian influenza to exterminate but also$\cdot$ for the humans
infected with mutant avian influenza to quarantine when mutant avian influenza
has already occurred. In particular, the latter policy is shown to be important to
stop the second pandemic of avian influenza.

1 Introduction

In 1918, the great pandemic of influenza on modern history had occurred. About 40,000,000
humans died of this pandemic all over the world. After 1918, a pandemic of influenza had
occurred twice in 1957 and 1968. Since influenza virus contInues always evolving, there
exists a menace of pandemic by mutant influenza virus. Influenza virus which infects
usually only nonhuman animals sometimes infects humans. The spread of avian influenza
in Asia of late years is one of the examples.

In Hong Kong, in 1997, the news that a human was infected with avian influenza from
birds was reported. After that, infection to human of avian influenza occurred successively.
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It is known that already 133 humans have been infected in Asia since late 2003 and killed
68. In humans, avian influenza virus causes the similar symptoms as the other types of
influenza. These include fever, cough, sore throat, muscle aches, conjunctivitis and, in
severe case5, severe breathing problems and pneumonia that may be fatal. The severity
of the infection will depend to a large part on the state of the infected human’s immune
system and if the victims have been exposed to the same kind of virus before, and they
have partial immunity.

Since human-cells have receptor for human virus and avian-ceUs have receptor for avian
virus, it was formerly believed that avian influenza virus can not infect humans. Now, it
is true that avian influenza virus can infect humans. These cases warn that a pandemic of
avian influenza may occur in the human world. Moreover the (highly pathogenic) avian
influenza has a high death rate which is about 100 percent for birds and more than 70
percent for humans. This rate is extremely high, since the death rate of influenza virus in
1918 was several percent. Therefore a pandemic of avian influenza may cause the greater
influence to the human world than the pandemic of influenza occurred in 1918.

Fortunately, avian influenza can not be transmitted among humans yet. But if avian
influenza virus has the affinity for $humanrightarrow celk$, it denotes the possibility that avian in-
fluenza can be transmitted among humans. It is possible that avian influenza virus may
become to have the affinity for human-cells. When avian influenza mutates to be able to
be transmitted among humans, it is not clear whether mutant avian influenza will have
still high death rate or not. However it is predicted among experts that mutant avian
influenza which has the ability to be transmitted among humans will occur.

The World Health Organization (WHO) has warned of a substantial risk of pandemic
of avian influenza in the near future. Antiviral drugs “Tamiflu”, which can be used for
both treatment and prevention, are clinicaUy effective against avian influenza virus and
it seems to be our only medicine to fight against the virus. But these drugs are expensive
and supplies are limited. Thus it is important to know the mechanism of the spread of
avian influenza in the human world. Therefore we construct a mathematical model which
interprets the spread of avian influenza from the bird world to the human world. The
interested reader is referred to [3] and [4].

2 Model

We construct a mathematical model to interpret the spread of avian influenza $hom$ the
bird world to the human world with autonomous ordinary differential equations. First we
consider the bird system. The (highly pathogenic) avian influenza has the high virulence
for birds. Almost all birds infected with avian influenza are dead with the high death rate
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or remain infected. Thus we consider the bird system to be the following $SI$ model:

$X’=c-bX-\omega XY$,
(1)

$Y’=\omega XY-(b+m)Y$

This model describes the interactions among the birds. The population is divided into
two classes: susceptible birds, infected birds with avian influenza, with size $X$ and $Y$ ,
respectively. The paraneter $c$ is the rate at which new birds are born. Susceptible and
infected birds die at the rate $b,$ $b+m$, respectively, where $m$ is the additional death
rate mediated avian influenza. The parameter $\omega$ is the rate at which avian infiuenza is
contracted ffom an average bird individual, provided it is infective. Thus $\omega XY$ can be
viewed as the force of infection at time $t$ by infected birds with avian influenza.

Next we consider the human system. We assume that the human infected with avian
influenza can not infect susceptible humans and this disease also has the high virulence
for humans. Thus we consider the following $SI$ model:

$S’=\lambda-\mu S-\beta_{1}SY$,
(2)

$B’=\beta_{1}SY-(\mu+d)B$ .

This model describes the interactions between the birds and humans. The population
is divided into two classes: susceptible humans, infected humans with avian influenza,
with size $S$ and $B$ , respectively. The parameter $\lambda$ is the rate at which new humans are
born. Susceptible and infected humans die at rate $\mu,$ $\mu+d$, respectively, where $d$ is the
additional death rate mediated avian influenza. The parameter $\beta_{1}$ is the rate at which
avian influenza is contracted from an average bird individual, provided it is infective.
Thus $\beta_{1}SY$ can be viewed as the force of infection at time $t$ by infected birds with avian
influenza.

Moreover we assume that avian influenza can mutate with sufficiently small rate in
the human world. That is to say, we assume that the infected human with avian influenza
suddenly has the abihity to infect a susceptible human with avian influenza when avian
influenza mutates in vivo. We $caU$ avian influenza which mutates in vivo “mutant avian
influenza”. That is, the human infected with avian influenza mutates to one with mutant
avian influenza at sufficiently small constant rate. In realistic situation, this mutation
event must occur stochastically rather than deterministically. But we assume that mu-
tation rate is constant in order to avoid mathematically difftculty. Further we assume
that the infected human with mutant avian influenza can infect a susceptible human with
mutant avian influenza (and can not infect a human who infected with avian influenza
because of immunity against the same kind of virus) and this mutant avian influenza
has the lower virulence for human than avian infiuenza. In addition, the human infected
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with mutant avian influenza can recover with eternal immunity against avian influenza
and mutant avian influenza. That is to say, avian influenza is spread by infected birds
and mutant avian influenza is spread by infected humans in the human world. Thus we
consider the human system to be the following SIR model with the mutation process of
avian influenza:

$S’=\lambda-\mu S-\beta_{1}SY-\beta_{2}SH$,

$B’=\beta_{1}SY-(\mu+d)B-\epsilon B$ ,
(3)

$H’=\epsilon B+\beta_{2}SH-(\mu+\alpha)H-\gamma H$ ,
$R’=\gamma H-\mu R$ .

The population is divided into four classes: susceptible human, infected human with avian
influenza, infected human with mutant avian influenza, recovered human from mutant
avian influenza, with size $S,$ $B,$ $H,$ $R$ , respectively. The parameter $\epsilon$ is the mutation rate,
$\gamma$ is the recovery rate, $\alpha$ is the additional death rate mediated mutant avian infiuenza,
and $\beta_{2}$ is the rate at which mutant avian influenza is contracted from an average human
individual, provided it is infective. Thus $\beta_{2}SH$ can be viewed as the force of infection at
time $t$ by infected humans with mutant avian influenza.

Finally, we consider avian-human influenza epidemic model to be the following SI-SIR
model with the mutation process of avlan influenza:

$X’=c-bX-\omega XY$,
$Y’=\omega XY-(b+m)Y$,
$S’=\lambda-\mu S-(\beta_{1}Y+\beta_{2}H)S$,

(4)
$B’=\beta_{1}SY-(\mu+d+\epsilon)B$ ,
$H’=\beta_{2}SH+\epsilon B-(\mu+\alpha+\gamma)H$,
$R’=\gamma H-\mu R$ .

Remark that all constants are positive and $\epsilon$ is sufficiently small. Moreover $b$ is sufficiently
larger than $\mu(b\gg\mu),$ $\alpha$ is less than $d$ and $d$ is less than $m(m>d>\alpha)$ because of the
differences of the virulence.

3 Analysis

Firstly, we investigate the bird system (i.e. system (1)). Note that the bird system $is$

independent of the human system. System (1) has two equilibria. The first is the disease
free equihibrium:

$e_{0}=(X_{0},0)$ where $X_{0}= \frac{c}{b}$ ,
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which represents the state in which the infected birds with avian influenza are absent.
The second is bird-endemic equilibrium:

$e+=$ $(X^{*}, Y‘)$ where $X^{*}= \frac{b+m}{\omega},$ $Y^{*}= \frac{c}{b+m}-\frac{b}{\omega}$ ,

which represents the state in which the infected birds are present.
Here we define the basic reproduction number for avian influenza in the bird world,

$r_{0}$ , which is defined as the number of newly infected birds that are produced Rom any
one infected bird when all birds are susceptible. The rate at which one $\dot{i}$fected bird gives
rise to new infected birds is given by $\omega X$ . If all birds are susceptible then $X=c/b$. Since
the lifetime of an infected bird is $1/(b+m)$ , we obtain

$r_{0}= \frac{c\omega}{b(b+m)}$ .

Therefore, there exists $e_{+}$ in $\mathbb{R}_{+}^{2}$ if and only if $r_{0}>1$ . We obtain the following $th\infty rem$

for global stability of the two equilibria. The proof of this thmrem is similar to the proof
of Theorem 1.1.5 in [2].

Theorem 3.1. If $r_{0}\leq 1$ , then $e_{0}$ is globally asymptotically stable (GAS) on $\mathbb{R}_{+}^{2}$ . On the
other hand if $r_{0}>1$ , then $e+is$ GAS on Int $\mathbb{R}_{+}^{2}$ .

Fbom Theorem 3.1, we know the following: If $r_{0}\leq 1$ , then the avian influenza does not
spread in the bird world. On the other hand, if $r_{0}>1$ , then the avian influenza spreads
in the bird world.

Hereafter, we investigate the full system (i.e. system (4)). System (4) has three
equilibria. The first is the disease free equilibrium:

$E_{0}=(X_{0},0, S_{0},0,0,0)$ where $S_{0}= \frac{\lambda}{\mu}$ ,

which represents the state in which the infected birds with avian influenza, humans with
avian influenza and mutant avian influenza are absent.

The second is the human-endemic equilibrium (i.e. the boundary equihibrium):

$E_{b}=(X_{0},0,\overline{S}, 0,\tilde{H},\tilde{R})$

where $\tilde{S}=\frac{\mu+\alpha+\gamma}{\beta_{2}},\tilde{H}=\frac{\lambda}{\mu+\alpha+\gamma}-\frac{\mu}{\beta_{2}},\tilde{R}=\frac{\gamma}{\mu}\tilde{H}$ ,

which represents the state in which both the birds and humans infected with avian in-
fluenza are absent but the infected humans with mutant avian influenza are present.

The third is the full-endemic equilibrium (i.e. the interior equilibrium):

$E_{+}=(X^{*},Y^{*}, S^{*}, B^{*}, H^{*}, R^{\cdot})$

where $S^{*}= \frac{\lambda}{\mu+\beta_{1}Y+\beta_{2}H^{*}},$ $B^{t}= \frac{\beta_{1}Y^{*}}{\mu+d+\epsilon}S^{*},$ $R^{*}= \frac{\gamma}{\mu}H^{*}$
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which represents the state in which the infected birds with avian influenza, the infected
humans with avian influenza and one with mutant avian influenza are present. Here $H^{*}$

is the larger root of the following equation:

$F(H)= \beta_{2}(\mu+\alpha+\gamma)H^{2}+\{(\mu+\beta_{1}Y^{*})(\mu+\alpha+\gamma)-\beta_{2}\lambda\}H-\frac{\epsilon\beta_{1}\lambda Y^{*}}{\mu+d+\epsilon}=0’$ .

Note that $F(H)=0$ has two real roots and one of them is positive and the other is
negative because of $F(O)<0$ . Hence $E_{+}$ is unique if it exists.

Let $R_{0}$ be the basic reproduction number for mutant avian influenza in the human
world where

$R_{0}=\frac{\beta_{2}\lambda}{\mu(\mu+\alpha+\gamma)}$ .

Therefore, we obtain the following lemma for the existence of equilibria.

Lemma 3.1. There always $ex\dot{\iota}stsE_{0}$ in $\mathbb{R}_{+}^{6}$ . If $R>1$ , then there exists $E_{b}$ in $\mathbb{R}_{+}^{6}$ . If
$r_{0}>1$ , then there exists $E+in\mathbb{R}_{+}^{6}$ .

The Jacobian matrix of system (4) is given as

$J=(\begin{array}{ll}B 0C A\end{array})$

where
$B=(\begin{array}{ll}-b-\omega Y -\omega X\omega Y \omega X-(b+m)\end{array})$

$A=($ $-\mu-(\beta_{1}Y+\beta_{2}H)\beta_{20}H\beta_{1}Y$ $-(\mu+d+\epsilon)00\epsilon$ $\beta_{2}S-(\mu+\alpha+\gamma)-\beta_{2}S\gamma 0$ $-\mu 000$ ).
Therefore, $J$ evaluated at equilibrium $E_{0},$ $E_{b},$ $E_{+}$ is stable if and only if so are $A$ and $B$ .
From Theorem 3.1, the sub-matrix $B$ evaluated at $E_{0}$ and $E_{b}$ has only the eigenvalues
with negative real part if $r_{0}<1$ and one evaluated at $E_{+}$ has also only the eigenvalues
with negative real part if $r_{0}>1$ . Further $A$ is stable if and only if its ffist 3 $x3$ block is
stable. Denote it as $\overline{A}$ :

$\overline{A}=(\beta_{1}Y-(\mu+d+\epsilon)0\epsilon\beta_{2}S-(\mu+\alpha+\gamma)-h0^{S})$ .

Therefore, when we investigate the stability of the equilibrium $E_{0},$ $E_{b},$ $E+$ ’ we only check
the eigenvalues of sub-matrix $\overline{A}$ . We obtain the following theorem for the local stability
of these equilibria.

72



Theorem 3.2. If $r_{0}<1$ and $R_{0}<1$ , then $E_{0}$ is $LAS$. If $r_{0}<1$ and $R>1$ , then $E_{b}$ is
$LAS$. If $r_{0}>1$ , then $E+isLAS$.

In [1], we can get the global results for equilibria and give the detailed explaination
for our mathematical results. The interested reader is referred to [1].

4 Simulations

We investigate the spread of avian influenza and mutant avian influenza by numerical
simulations. Define

$\Omega=\{(X, Y, S, B, H, R);X>0, Y>0, S>0, B=0, H=0, R=0\}$ .

Here we are interested in the iitial value in $\Omega$ . The region $\Omega$ denotes that there do
not exist the infected humans with avian influenza and mutant avian influenza. Thus the
solution with an initial value in $\Omega$ predicts the spread of avian infiuenza and mutant avian
influenza in the human world. Thus the intial value is fixed at $X(O)=10,$ $Y(O)=2$,
$S(O)=100,$ $B(O)=0,$ $H(O)=0$ and $R(O)=0$ .

Firstly, the parameters are fixed at $c=26.5,$ $b=5,$ $\omega=2,$ $m=5,$ $\lambda=3,$ $\mu=0.015$ ,
$\beta_{1}=0.2,$ &=0.003, $\epsilon=10^{-3},$ $d=1,$ $\alpha=0.06$ and $\gamma=0.01$ . Hence we are led to $r_{0}=$

1.06 and $R_{0}\approx 7.1$ by substituting these parameters to $r_{0}$ and $R_{0}$ . The following figures
suggest that the pandemic will occur if the human do not prevent the spread of avian
influenza. Fig. 1 describes the humans size infected with avian influenza. It interprets that
the infected humans with avian infiuenza appear to be pandemic initially and afterward
are kept at low level. Fig.2 describes the humans size infected with mutant avian influenza.
This shows that the infected humans with mutant avian influenza suddenly outbreak and
afterward keep the relatively high level of the size. Fig.3 describes the total infected
humans siz$e$ . It is clear that the second outbreak is larger than the first one. Moreover it
suggests that we can not feel relieved although the total infected humans are kept at low
level after the first outbreak. Therefore, our mathematical model warns that the second
outbreak by mutant avian influenza will occur if the human do not prevent the spread of
avian influenza.

Next, the parameters are fixed at the same as the above example except for $\beta_{2}=$

0.0015. That is, the transmission rate of mutant avian influenza is reduced by half. We
have $r_{0}=1.06$ and $R_{0}\approx 3.5$ . The following figures also suggest that the pandemic
will occur if the human do not prevent the spread of avian influenza. Fig.4 describes
the humans size infected with avian influenza. It interprets that the infected humans
with avian influenza appear to be pandemic again and afterward become endemic. Fig.5
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Figure 1: The humans size infected with avian influenza ($r_{0}=1.06$ and $R\approx 7.1$ ).

Figure 2: The humans size infected with mutant avian iffiuenza ($r_{0}=1.06$ and $R_{0}\approx 7.1$).

Figure 3: The total infected humans size ($r_{0}=1.06$ and $R_{0}\approx 7.1$).
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describes the humans size infected with mutant avian influenza. Compare Fig.5 and 2.
We find no pandemic of the infected humans with mutant avian influenza in Fig.5. This
suggests that we have two types of pandemic, one is due to avian influenza and the other
is due to mutant one. When $R_{0}$ is relatively high we will have two pandemics (Fig.3) but
for small $R_{0}$ , we have only pandemic of the first type (Fig.6).

Figure 4: The humans size infected with avian influenza ( $r_{0}=1.06$ and $R_{0}\approx 3.5$).

Figure 5: The humans size infected with mutant avian influenza ( $r_{0}=1.06$ and $R_{0}\approx 3.5$).

$\epsilon*r$

Figure 6: The total infected humans size ( $r_{0}=1.06$ and $R\approx 3.5$).

Finally, the parameters are fixed at the same as the first example exept for $c=30$ and
$\omega=1.5$ . We have now $r_{0}=0.9$ and $R_{0}\approx 7.1$ . The following figures suggest that two types
of the pandemic will also occur if the humans do not prevent the spread of avian influenza
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although all the infected birds and the infect$ed$ humans with avian influenza were extinct.
See Figs 7-9. These figures imply that the second outbreak by mutant avian influenza will
occur if the human do not prevent the spread of avian influenza although all the infect$ed$

birds and the infected humans with avian influenza were extinct.

Figure 7: The humans size infected with avian influenza ($r_{0}=0.9$ and $R_{0}\approx 7.1$).

Figure 8: The humans size infected with mutant avian influenza ($r_{0}=0.9$ and $R\approx 7.1$ ).

Figure 9: The total infected humans size ($r_{0}=0.9$ and $R_{0}\approx 7.1$).

By comparing Figs 3 and 9, we notice that total number of the infected humans when
the infected birds are extinct (Fig.9, $r_{0}<1$ ) is larger than the number of the infected
humans when the infected birds are endemic (Fig.3, $r_{0}>1$ ). See Figs 1 and 7. The
humans infected with avian influenza become extinct for $r_{0}<1$ (Fig.7), but keeps some
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posive number for $r_{0}>1$ (Fig.1). The former (Fig.7) situation is more advantageous for
the mutant avian influenza. Thus the total number of the infected humans is larger for
the case $r_{0}<1$ (Fig.9). It suggests that the extermination of the infected birds with
avian influenza is not always the best policy after the incidence of mutant avian influenza
in the human world.

However, by comparing Figs 3,9 and Fig.6, we notice that the second outbreak will
not occur if $R_{0}$ is not large enough (Fig.6). This is because the infected humans with
mutant avian influenza do not have the sufficient power to spread mutant avian influenza
($see$ Fig.5). It suggests that to reduce a contact rate for susceptible humans with the
infected individuaJs with mutant avian influenza at low level is a good policy in order to
prevent the spread of avian influenza after the incidence of mutant avian influenza in the
human world.

5 Discussion
Formerly, it was thought that human can not be infected with avian influenza. But, in
Hong Kong, in 1997, the news that a human was infected with avian influenza $hom$ a
bird was reported. After this, infection to humans of avian influenza have been reported
successively. Fortunately, avian influenza can not be transmitted directly $hom$ humans
to humans yet. However it is said among experts that mutant avian influenza which has
the ability to be transmitted among humans will occur.

Therefore we construct a mathematical model to explain the spread of avian influenza
and mutant avian influenza. Here we show that mutant avian influenza spreads in the
human world when $R_{0}>1$ or $r_{0}>1$ . Moreover our simulations suggest that the second
outbreak by mutant avian influenza is larger than the first outbreak by avian influenza
when $R_{0}>1,$ $r_{0}<1$ or $R_{0}>1,$ $r_{0}>1$ and we can not feel relieved although the total
infect$ed$ humans are kept at low level after the first outbreak. Further these simulations
show that the extermination of the infected birds is not always the best policy in order to
prevent the spread of avian influenza in the human world. If mutant avian influenza has
already occurred, it is possible that this policy helps to spread mutant avian influenza.
On the other hand, to reduce a contact rate for susceptible humans with the individu\Delta ト

infected with mutant avian influenza is a good policy in order to prevent the spread of
avian influenza in the human world. Even if mutant avian influenza has already occurred,
we can prevent the second outbreak by mutant avian influenza.

Our mathematical model suggests that the spreads of mutant avian influenza are not
prevented even if we exterminate the infected birds after the incidence of mutant avian
influenza. For example, let us assume that avian influenza and mutant avian influenza
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have spread in the human world (i.e. Figs 1-3). Even if we were able to remove all infected
birds (i.e. Figs 7-9, $r_{0}<1$ ), we can not prevent mutant avian influenza spread, and further
this policy can help mutant avian influenza spread. But if we can control a rate to come
in contact with susceptible humans low (i.e. Figs 4-6, $R_{0}$ is not large enough), we can
prevent the second outbreak by mutant avian influenza. And it is also effective to treat
infected humans with antiviral drug because we can reduce $R_{0}$ as a result, even if mutant
avian influenza has already occurred. After all the best policy to prevent the spreads of
avian influenza in the human world is to exterminate the infected birds earlier than the
incidence of mutant avian influenza. If some birds were found to be infected with avian
influenza, we should remove all birds at that point because of the rapid spread for avian
influenza in the bird world. In order to prevent the spread of avian influenza in the human
world, we must take policy not only for infected birds with avian influenza but also for
infected humans with mutant avian influenza when mutant avian influenza has already
occurred.

It is not far future that mutant avian influenza may occur. Rom our mathematical
model, mutant avian influenza may spread in the human world and the pandemic may
occur.
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