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1 Introduction

The plasmodium of true slime mold Physarum polycephalum is a large amoeba-
like organism. Its body contains a tube network by means of which nutrients and
signals circulate through the body in effective manner.

When food sources were presented to a starved plasmodium that was spread
over the entire agar surface, it concentrated at every food source, respectively.
Almost the entire plasmodium accumulated at the food sources and covered each
of them in order to absorb nutrients [3]. Only a few tube remained connecting the
quasi-separated components of the plasmodium through the short path. Nakagaki
et al. showed that this simple organism had the ability to find the minimum-length
solution of a maze [4, 5]. The connecting tube traces the shortest path even in
a complicated maze. Hydrodynamics theory implies that thick short tubes are
in principle the most effective for transportation. And this adaptation process
of the tube network is based on an underlying physiological mechanism, that is,
a tube becomes thicker as a flux in the tube is larger. This insight might be
based on the research on the rhythmic oscillation of Physarum polycephalum [6).
Tero et al. made a mathematical model in consideration of the qualitative mech-
anisms clarified by experiments {7]. According to numerical simulation results,
the minimum-length solution of a maze can be obtained as an asymptotic steady
state of the ODEs model [7, 8].

In 2006, we have proved that the equiribrium point corresponding.to the short-
est path in the system is globally asymptotically stable in two kind of simpler
networks, namely, the ring-shaped network and the Wheatstone bridge-shaped
network [1]. Especially in the Wheatstone bridge-shaped case, we have proved .
it without constructing any Lyapunov function. Therefore this is also a kind of
interesting work from a mathematically technical point of view.

In this note, we consider about the problem in which network has double edges.
In some cases of nonlinear terms, it is well-known that the shortest path does not
survive, if the initial condition is taken adequately. This fact has been proved
mathematically rigorously in the ring-shaped network also in [1]. We first prove
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it in triangle shaped network in this note, too. But our real interest of this note is
in the case of network with double edges. In some actual chemical experiment, if
there are double edges, they often see the transfering point of stability changing,
namely, a longer path survives longer time than in single edge case. We would like
to investigate such a kind of case mathematically. In this note, we report some
mathematically regorous results gotten by the authors. About disscussions from
the more applied-mathematical point of view, please see the forthcoming paper

[2].

2 Triangle-shaped network without double edge

We consider the triangle-shaped network with three nodes Ny, N2, N3 and three
edges Mj2, M3, Ms2. To simplify the notation, we introduce new variables
Dsa Dss D3z
= s b= , e = . 2.1
@ Lia Ly3 ¢ L3z (21)

Then, the adaptation equation with adaptation function f(£) = £* becomes

(4= L (7,_abtac '
T Liz \ "abt bc+ca !

, 1 be o
- Y - 2.2
i Lis (I°ab+bc+ca) b, (22)

S A O
\ * " Las2 0ab+ be + ca :

In this section, we treat the case of u > 1. We prove that there exist two hetero-
clinic orbits.
Notice that Q13 = Q32 from the conservation law of flux. So we obtain

D13 — D3z = —(D13 — Dsg). (2.3)

Hence, the set
{(a,b,c) € Ry|L13b = Lsac} (2.4)

is exponentially attracting and invariant. We restrict the system on this subset.
The adaptation equation can be rewritten as

. 1 —1\p Ipa o _
a—L12(1+8 ) ((1+8“1)a+8"1b) @

5y — 1 —u Iﬂb s
b= L1ss ((1+8”1)a+8_1b> b,

where s = L1a/Lsz.
Notice that the rectangular domain

(a,b) eRija € 0,2 | pe oL (2.6)
3 + ,LIQ ’ ,L13 .
is attracting and invariant because —a < a4 < I /Liz—a and —b < b< I /Lis—b

hold. :
Three equilibrium points are written as

I )
A = '_o_'io Az = 01-‘9— )
' (Lu ) * ( Lla)

= (m+m (7) 2 (7))
Liys+Laa \T) 'Lz \T ’

(2.5)
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where

4 w1 T—=0
T =1+ (Ls + Ls2) [(L_”i‘ﬁl.] “

L1z

Under the assumption of u > 1, the Jacobi matrices for these equilibrium points
are calculated as

o R _(-1 o0
J(Al)—(o T+e )J(A,) (G %)

us _ —~pur
_lr+s T+s+ 18
J(C) = —us s+1) pr(s+1) 1]’

r+s+rs r+s+rs

where
_ ((Lls + Lsa)") e
r = L33 | ~———rte .
L1

J(A:1) and J(A3) have an eigenvalue —1 with multiplicity 2. Hence, A; and
A2 are asymptotically stable on phase plane. The eigenvectors of J(A1), J(Aa)
associated with —1 are *(1,0) and *(0, 1), respectively. On the other, J(C) has two
eigenvalues (4 — 1) and —1. Hence, C; is a saddle point if 4 > 1. The following
equalities hold:

10 (" )=-("7) vo(F)=6-0(F). @

Notice that the straight line spaned by the eigenvector associated with the stable
eigenvalue of C is invariant. This implication is obtaind by solving £ (b/a) = 0
with respect to (b/a). On the phase plane, a—axis and b—axis are invariant for the
system, and A;, A3 are located there. Any solution for the system starting from
the first quadrant is attracted to a bounded rectangular domain. And the inner
equilibrium point C is saddle. Therefore, any limit cycle cannot exist. Because
the unstable manifold of C transeversally intersects with the stable manifold of
C, there exists two heteroclinic orbit from C to A; and to Az.

3 Triangle-shaped network with double edge

M
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M

M,
N

M

X 3.1: graph



We consider the graph as shown in Figure 3.1. For simplicity, we introduce four

variables

__Dha D3 D3, D3,
= ,d =
T Lig’ b= Lig’ €= L3, L3,

The network Poisson equation for pressure is
a(p1 — p2) + b(p1 — ps) = Io,
a(p1 — p2) + (c + d)(ps — p2) = lo, (3.2)
b(p1 — ps) = (c+ d)(ps — pa).
By setting ps = 0, we obtain
b+c+d b
abractadibortd PTG Tacredt bt

For simplicity, let S = ab+ ac+ad+ bc+ bd. Then the fluxes along each edge are
calculated as

(3.1)

n=Uh (3.3)

( Q12 = -{g(ab+ac+ad)

Qis = —(bc+bd)

< 1 IO (3’4)
Q32 = Ebc
I
L gz = gobd

Remark 1. If b = ¢ = d = 0, the numerator and denominator of Q;;’s become
zero. But Q;;’s have finite limit value when b,c,d — 0. First, we can calculate
Qu as

Q12 = Iy(ab + ac+ ad) Ipa
2= Sbtactad+bctbd a+ (be+bd)/(b+c+d)
Notice that
o betbd _bletd) _, o (b,¢c,d — 0).

“b+ec+d c+d
Hence we obtain Q12 — Io as b,c,d — 0. Similarly, we obtain

Qus = fo
BT a®+c+d)/(bec+ bd) + 1

Since 0 < Qiz < Qis(i = 1,2), we also have Q4; — 0 as b,c,d — 0.

Remark 2. In a similar way, we obtain p1 — Ig/a as b,c,d — 0. However, the
limit of ps is not always same value. This is caused by the fact that the limit of
(c+ d)/b changes by how to approach. But it becomes finite when a > 0, in fact,
0 <p3s <p1 < Io/a holds.

—0 (b,c,d —0).

3.1 u = 1(Physarum solver)

First, we use Physarum solver. So we study the adaptation equation

o
a—LuS(ab+ac+ad) a
i;=-’£-(bc+bd)—b
4 . ,o o, (3.5)
Ii.5
- Iy
(4= 1z gbd~¢
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There are three equilibrium points corresponding to three paths connecting N;
and N2. They are

_( Io (o Jo Io Io Io
e () e (e ) 4 (o). oo

In this case, we can restrict the system on two-dimensional rectangle.

Lemma 1. Let ‘ _
‘W = {(a,b,c,d) € R%; Liza + Liab = Iy, Lisb = Lizc+ L%,d} . (3.7)
Then W is an attracting invariant subset of (3.19).

Proof. Let P, = Lysa + Li3b and P, = Li3b — Lisc — L3;d. From the network
Poisson equation, we obtain B, = Iy — P and P = —P,. This implies that W is
exponentially attracting and invariant for the flow of (3.19). (]

Therefore, we only have to consider the behavior of two variables (c,d). Then
we can determine a and b by Lisb = Lic + L3;d and Liza + Lisb = Io. Three
equilibrium points are represented by

- (L _ (o Jo
A1 =(0,0),A2 = (Lé,'o) Az = (0, ng) (3.8)
Lemma 2. Let
R—-—{(c,d)eR 0<cs 2 ,ogdg-!-;’-} (3.9)
L3, L3,

Then R is an attracting invariant subset of (3.19) restricted on W.

Proof. Obviously, —D}; < Di; < I — Di,(i = 1,2) holds. Therefore, c and d are
attracted to R and this rectangle is invariant. (]

‘41 Az c

3.2: Invariant rectangle

Lemma 3. 1. If the path Myz — M3, is the shortest, then Az is globally
asymptotically stable. Othewise, A2 is unstable.

2. If the path Mis — M3, is the shortest, then As is globally asymptotically
stable. Othewise, Az is unstable.
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Proof. The path My3 — M3, is the shortest if
L13 + L;z < L12 and L;z < ng (3.10)

Eigenvalues of A2 are calculated as

L3, —2 L3, ’ Lis + Lys — Ln. (3.11)

Laz L2

Therefore, if the path Myjs — M3, is the shortest, then Az is asymptotically
stable. Othewise, A2 is unstable.
Now we consider the function

V = Lizlogc— L3z logd. (3.12)
The derivative with respect to time is calculated as
V =L2% — Li,. (3.13)

If the path Mis — M}, is the shortest, we have V > 0. As the variables are
bounded, d — 0 as t — oo. Then the graph is essentially ring-shaped and we
obtain @ — 0,b — Io/L1s and ¢ — Ig/L};. Therefore, the solution converges to
Az ast — oo.

On the other, the path M3 — M#%; is the shortest if

Ly + ng < L and ng < L:ln. (3.14)
Eigenvalues of A3 are calculated as

L3; — L3, L3 + Lis — Li2
L:132 ' Lz .

Therefore, the stability of As is determined by the length of each path connecting
N1 and Nz.

Similarly, we consider the function V. If the path M3 — M3, is the shortest,
we have V < 0. As the variables are bounded, ¢ — 0 as t — oo. Then we obtain
a— 0,b— Iy/L1s and d — Io /L§2. Therefore, the solution converges to As as
t — oo. (]

(3.15)

We can’t determine the linear stability of Ai. However, we can show that A,
is global asymptotically stable if the path M;2 is the shortest.

Lemma 4. If the path Mz is the shortest, A is global asymptotically stable.
Proof. In this case, the length of each edge must satisfy
Lia < Lys+ LY, and Liz < Lis+ L3, (3.16)

Now we consider two functions

Vi = Lizloga — Lialogb — L3, loge,
1 12 108 13 10g :2 g (3.17)
Va = Liz2loga — Lizlogb — L3; logd.
The derivatives with respect to time are calculated as
Vi = —Li2 + L1a + Li3,
.1 12 13 :2 (3.18)
Va2 = —Lia + L1a + L3a.

149



In this case, we have Vi > 0 and V; > 0. As the variables are bounded and
Li2 < Lis + L3, we obtain b— O orc — 0 ast — oo. As Ly < Lya + L3,, we
obtain b—0ord — 0 as t — co.

First, we assume b — 0. As we consider the dynamics on W, we have a —
Io/Liz,c — 0 and d — 0. Next, we assume ¢ — 0 and d — 0. For the same
reason, we have a — Io/Li2 and b — 0. Therefore, the solution converges to A;
as t — 00. ()

Theorem 5. Physarum solver can find the shortest path connecting N1 and Na
on the graph as shoun in Figure 8.1.

3.2 u>1

Next, we use f(£) = £#(u > 1) as an adaptaion function. In this subsection,
we study the adaptation equation

r__ 1 IO B
a—m(-s—(ab+ac+ad)) -a,

. »

b=-1 (L pctba)) —»,

L13 S

{ (3.19)
s L (T, N,

=I5, \s :

.1 (o, \*

i- 7 (3) -e

" 3.2.1 Equilibrium points and their stability

The system (3.19) has seven equilibrium points. The situations in which only
one of three paths survives and the others vanish correspond to equilibrium points

Ik L I¢ It I
A = 2 ,0,0,0),42 = 0, 2 ) g ’ )v =( 3 2 ) > )-
' (Ln ) § ( Lis’ L3, 0):As=\0g,50 L3

The situation in which only the edge Mia vanishes and the other edges survive
corresponds to

B_(olé‘__l_[ Io ]“_1_ Io ])
"Lis" Lsa {14 (L3/Ly,)R | LR (14 (Lh/L) R )

The situation in which only the edge M3; vanishes and the other edges survive
corresponds to

- (v (7) =(@) & (E) )
1T L18+L31;2 T "Iis \Th ’L}m Ty ! !

(L1s + Léa)"] e _

where

Lys

Similarly, the situation in which only the edge M3, vanishes and the other edges
survive corresponds to

Ca = (_T=::_1_ (ﬁl)" 1 (!9_)“ 0 -L (10_)“
2 Lis+L3, \T2) "Lis \T2/) ' "L} \T ’

Ti = 1+ (L1s + L33) [
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where
(L1s + ng)“] =
L,z ’
Finally, the situation in which all edges surveve corresponds to

D = (adp,Bdp,vdp,dp),

Ty =1+ (Lis + L3,) [

where

i = L ( I )“
P I \a+B+aB+Br+a/
and o, 3 and v are given by
a= B (2) 7 o= Bt ar = (B2) ™.
LI, \B+~v+1 ’ Lis ’ L3,
First, we analyze linear stability of these equilibrium points.

Lemma 6. If u > 1, the followings hold:
1. Az and A3 are asympiotically stable.
2. B is a saddle point.
8. Ci and C; are saddle points.
4. D is a saddle point.

Proof. 1. Let J(Az) be a Jacobi matrix at A2. J(A3) is calculate as

-1 0 0 0

—p(Lis + L3z)/Lis -1 0 0
—w(Lis+Ly)/Li; O -1 —p
0 0 0 -1

J(Az) =

The characteristic equation of J(A3) is
det(Al — J(A2)) = (A +1)* =0,

and we obtain A = —1. Therefore, A is linear stable.
2. Let J(B) be a Jacobi matrix at B. Since a = 0 and Q12 = 0, the shape of
J(B) is as follows:

-1 0 0 0
% _1 0 o0
B o g o
gﬁ 0 ag 83
%a 3 34

The characteristic polynomial becomes
8e _ )Y aé
det(J(B) — AI) = (A + 1) det (O_‘rag Kz ) .
o &d

Hence, B has eigenvalue —1. To determine the stability of B, we consider the
matrix

, 8 8¢

J(B) = (33 ﬁ) -
3 dd

Let v = (L}3/L3%;)#T and 4 = 1/, then J’(B) is calculated ss

J’(B): lt’L 17"-"/

14~



We can easily caluclate eigenvalues of J'(B) as —1,u — 1. Since p > 1, the
equilibrium point B has one positive eigenvalue.
3. Since d = 0 and Q3; = 0, the shape of J(C)) is as follows:

*
*
-1

J(C1) =

O ¥ ¥ *
C * % *
O * * *

So —1 is one of the eigenvalues of J(C1) and we only have to consider the matrix

ab
J(Ch) = (%
‘8b

N G S S
P\ T+ L) ’ '

sigziesle
B
SN———

Now we set

J'(Ch) is calculated as

ur 1 urs? —ps(s+1)
r+s4rs r+s847s8 r+(si€g
by br prs —p(s
J(C) = s(r+s+rs) r+s+rs r+s+rs
—ur —prs’ ps

\ ~1
(s+1)(r+s+rs) (s+1l)(r+s+7rs) r+s+rs

The characteristic equation becomes
det(A = J'(C1)) = (A +1)*A—pu+1)=0.

Hence, eigenvalues of J(C1) are —1(multiplicity is 3) and u — 1. Therefore, C; is
a saddle point.

4. For simplicity, we denote P = o+ 8+ af + B + va. Jacobi matrix J(D) is
calculated as

[ wBy+1) | —po(y+1) —paf’ —naf?
P PB+y+1)  PB+y+1) P+ +1)
—wBB+y+1) paly+1) pof? pof
P P P(y+1 P(y+1)
—wyB+y+1)  poy(y+1l) ple+fBref) | —py(e+B)
P PB P P
\ —p(B+y+1) po(y +1) —p(a+B) plaB+By+va) )
P PB P P

The characteristic equation of J(D) becomes
det(AM — J(D)) = (A +1)*(-2+pu—-1)>=0.

 Hence, eigenvalues of J(D) are —1 and p — 1 (multiplicity is 2). Therefore, D is
a saddle point. O

Remark 3. Jacobi matrices shoun in this section are obtained under the assump-
tion of p > 1. They do not hold for p < 1.

Next, we consider the stability of A;.

Lemma 7. A; is locally asymptotically stable.
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equilibria type Ny | n-
Ao stable node | O 4
As stable node | O 4
B saddle 1 3
C, saddle 1 3
Cs saddle 1 3
D saddle 2 2

# 1: (Linear) stability types of equilibria. n., is a number of unstable

eigenvalues and n_ is a number of stable eigenvalues.
Proof. Let x = (a,b, ¢c,d). We have
m
(Q?) =¥ —pa)* =0,
1 .

[+
2_\u
(Q?:) - d}l—lps N 0’

when x — A;. Hence, b, ¢ and d are negative in a suﬁicienﬂy small neighborhood

of A; because

b=-b+o(b), é=—-c+o(c), d=—d+ o(d) (3.20)

when x — A;. Now & is calculated as

i=7-Qi'Qu-a
12

— B -1 0Q12, , OQua;  OQrz2, OQhz;\ .
Liz v12 (60 G+ 2t 5 ¢t aq ¢) %
Note that

Q12 _ Io(b+c+d)(bc+bd) Qi12Q1s

Oa - S - “alg

8Qiz _  plo a(c+d)? <0

8b = Lys S? =7

8@z _ 0Quz _ _ plo ab? <0

8 ~ 6d T Lz §2 —

Hence, we obtain

. a .
= p(a +G)Q13;'I; —a
_ @3 .2 Qs _ ) .
=hor (a)* + (M—Io l)a

> (p% —1) é.
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Because Q13 converges to 0 as x — A;, we can choose x = (a, b, ¢,d) such that
the coefficient of @ becomes negative. Therefore, @ > 0 holds asymptotically, in
a sufficiently small neighborhood of A;. Then, the derivative of square of the
distance between x = (a, b, c,d) and A; is calculated as

1d 2 1d Iy 2,32, 2, 52
—2-3?|x Al =2EZ((L12 a)"+b" +c" +d
n . X
=—(-£9——a)d+bb+cc'+dd50.
L3

Hence, |x — A1| — 0 as t — oo. Thus, A; is locally asymptotically stable. a

3.2.2 Heteroclinic orbits

In this section, we consider about the existence of heteroclinic orbits connecting
each equilibrium point. As shown in the previous section, Az and As have no
unstable manifold, B,C) and C, have one-dimensional unstable manifold, and
that of D is two-dimensional.

First, we study heteroclinic orbits from B.

Lemma 8. Let J(B) be a Jacobi matriz at B and vp =* (0,0,—1,1), then
J(B)veg =(u—1)vp (3.21)

holds, that is, vp is an eigenvector of J(B) associated with u — 1.

Proof. This can be obtained by straightforward calculation. a

This implies that the straight line E*(B) which is sppaned by vg tangents to
the unstable manifold of B at B. Now we can easily verify that a subset

{(arbac’d) € Rildzo,b= I(‘)‘/Ll-‘!}

is invariant for (3.19). In fact, if @ = 0 and b = I{/Li3, then 6 = b = 0.

We consider two-dimensional dynamics on this invariant subset. As this case is

obviously equivalent to the ring-shaped case, the following is trivial.
Proposition 9. There are heteroclinic orbits from B to A2 and from B to As.

Next, we study heteroclinic orbits from C;. The unstable manifold of C; tan-
gents to the straight line E*(C;) which is spanned by

—-t - —_s
Vel = (8"!‘1,3’ 110)
at C,. It is obvious that a subset
{(a,b,c,d) € R{|d = 0}

is invariant for (3.19). We consider the dynamics on this invariant subset. This
case is equivalent to the triangle-shaped case, the following holds.

Proposition 10. There are heteroclinic orbits from C, to Ay and to A,.

Similarly, a subset
{(a,b,c,d) e R} |c =0}
is also invariant, and the system restricted on this subset is equivalent to the
triangle-shaped case. So we obtain the following.
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Proposition 11. There are heteroclinic orbits from C2 to A, and to As.

Heteroclinic orbits from B, C; and C» are completely specified as shown above,
because their unstable manifolds are one-dimensional. Next, we consider about
heteroclinic orbits from D. Complete detection might be difficult, but some of
them can be discovered as follows.

Lemma 12. The set
{(a,b, ¢, d)|c = 7vd, b= Bb} (3.22)

15 invariant.
Proof. Differentiate ¢/d with respect to time:
d rc 1., ;
7 (3) = m(ed-d
=& (Lb)* (e __d"")
“d\ S L, L )
If an initial value is chosen to hold c¢/d = v, then $(c/d) = 0 holds at all time.

Therefore {c = «d} is invariant.
Next, differentiate b/d with respect to time under c = vd:

4(2)-3w-u

_ 1 (Lbd\* (1+’Y)"d___b_)
“d\ S Ly3 L3;)°
If an initial value is chosen to hold
L” T2(1+)d = pd,

then £ (b/d) = 0 holds at all time. Hence (3.22) is an invariant subset. O

Proposition 18. There are heterocl:mc orbits from D to A1 and to B.
Proof. The system restricted on (3.22) is given by

I ( (B+7+1a )"_a’

“"'LE (ﬂ+7+1);;-ﬁ('7+1)d ) (3.23)
‘= Laa((ﬂ+’¥+1)a+ﬁ('7+1)d) a

There are equilibrium points of (3.23) corresponding A1, B and D. These are
calculaed as

(% (o 1o —n =
Al—(L 0) B-—(O,ng(l-i-'y) ), D = (adp,dp) .

This can be easily verified by straightforward calculation.

On the phase plain, A; and B are stable nodes, and D is a saddle point.
Any solution of (3.22) is attracted to a bounded region. In this case, limit cycle
cannot exist. The ray {a = ad} is invariant and corresponds to a stable manifold
of D. The unstable manifold of D intersects with this ray. Therefore, there exist
heteroclinic orbits from D to A; and to B. 0

‘We now make a conjecture that the complete chart is Figure 3.3, but the com-
plete proof is not achieved so far. We have already proved that there are the con-
necting orbits between unstable equilibrium points and stable equilibrium points.
On the other hand, it is not easy to prove the existence of the orbit connecting un-
stable equilibrium points to each other, although it is suggested by the simulation
result as shown in Figure 3.4.
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X 3.3: Connecting orbits.
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The broken line means the orbit to which exis-

tence is not proved.

L2 ]

e

0.4

1 -~
04787 (7
0.9 - / %
p -
¢ .- [
( R J $
i [ i
: /
B i
)
:‘ .8 H
, !
‘
!
Lo SR h
~, [X] 4
e et S ———
4/'
e [X] .
- I e N
N e e .
N
> S — . "
. [ » » - » » » ] . " » » - » - » [ ]
tise tine

& 3.4: An orbit that leaves near D, and converges to A2(A3) after ap-

proaching C(or C3). (Li2 =

20 L13—-L32——L32-—-1OI()-——10,U.—15)
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