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1 Introduction
The $p1_{\mathfrak{B}1}nodium$ of true $sl\ddagger me$ mold Physarum polyoephdum $i\epsilon$ alarge moeba$\cdot$

like organi\S m. $It_{8}$ body $contai\iota 18$ atube network by $me\bm{t}8$ of which nutrients and
signak circulate through the body in $eff\propto tive$ maelner.

When food $souroe\epsilon$ were praeented to a staeved plaemodium that wae spread
over the entire agw surface, it conoentrated at every food source, $raep\infty tivdy$.
Almoet the entire plasmodium accumtat\’e at the food $sourc\infty$ and coveoed euh
of them in order to akorb nutrients [3]. Only afew tube $rem\dot{u}nedcom\propto ting$ the
$qu\dot{m}-seprat\text{\’{e}}$ component8of the Plaemodium through the $8hort$ path. Naigaki
et al. showd that this simple organism had the $abil\ddagger ty$ to find the minimum-length
$8olution$ of a $ma\mathbb{Z}e[4,5]$ . The $connect\ddagger ng$ tube truae the shortaet path even In
acomplicated maze. Hydrodynmic8theory imPliae that thi&short tubes are
in principle the most effective for transportation. And this adaptation procaes
of the tube network is bae\’e on an underlying $physiolo\dot{p}cal$ mechanism, that is,
atube $becom\infty$ thicker $w$ aflux in the tube is larger. This ioight might be
basd on the $r\infty e\pi ch$ on the rhythmic oscillation of $Physa|um$ polycephdum [6].
Tero et $d$. made amathematical model in consideration of the qualitative mei-
anisms cl\pi ifl\’e by experiments [7]. According to numerical simulation $r\infty \bm{t}ts$,
the minimum-length $8olution$ of amaze can be obtain\’e $u$ an $a\epsilon ymptotic8tedy$

state of the ODEs model $[7, 8]$ .
$\bm{t}$ 2006, we have prov\’e that the equiribrium point corraePonding to the short-

aet path in the $\epsilon ystem$ is globally aeymPtotically stable in two kind of \S imPler
$network\epsilon,$ $nUIlely$, the ring-shaped network and the Wheatstone $bridg\triangleright shaped$

network [1]. $Rp\propto ially$ in the Wheatstone bridg8hap\’e caee, we have provd
it without $\infty n8tructing$ any Lyapunov function. Therefore this $i8d\infty$ akind of
interesting work $bom$ amathematically teinical point of view.

$\bm{t}$ this note, we consider about the problem in whi&network $hu$ double dgae.
In some $caee8$ of $nonline\pi$ terms, it is well-known that the $8hort\infty t$ path doae not
survive, if the initid $cond\ddagger tion$ is taken adequately. This fact hae baen proved
mathematically rigorously in the ring-shaped network also In [1]. We first prove
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it in triangle shaped network in this note, too. But our real interest of this note is
in the case of network with double edges. In some actual chemical experiment, if
there are double edges, they often see the transfering point of stability changing,
nunely, a longer path survives longer time than in single ed$ge$ case. We would like
to investigate such a kind of case mathematically. In this note, we report some
mathematically regorous results gotten by the authors. About disscussions $hom$

the more applied-mathematical point of view, please see the forthcoming paper
[2].

2 Triangle-shaped network without double edge
We consider the triangleshaped network with three nodes $N_{1},$ $N_{2},$ $N_{3}$ and three

edges $M_{12},$ $M_{13},$ $M_{32}$ . To simplify the notation, we introduce new vaniables

$a= \frac{D_{12}}{L_{12}},b=\frac{D_{1S}}{L_{13}},$ $c=\frac{D_{32}}{L_{32}}$ . (2.1)

Then, the adaptation equation with adaptation function $f(\xi)=\xi^{\mu}$ becomes

$\{\begin{array}{l}=\frac{1}{L_{12}}(I_{0}\frac{ab+ac}{ab+bc+ca})^{\mu}-a\dot{b}=\frac{1}{L_{13}}(I_{0}\frac{k}{ab+bc+ca})^{\mu}-b\dot{c}=\frac{1}{L_{32}}(I_{O}\frac{bc}{ab+bc+ca})^{\mu}-c\end{array}$ (2.2)

In this section, we treat the case of $\mu>1$ . We prove that there $exi_{8}t$ two hetero-
clinic orbits.

Notice that $Q_{13}=Q_{32}$ from the conservation law of flux. So we obtain

$\dot{D}_{13}-\dot{D}_{32}=-(D_{13}-D_{32})$. (2.3)

Hence, the set
$\{(a,b, c)\in R_{+}^{3}|L_{13}b=L_{32}c\}$ (2.4)

is exponentially attracting and invaniant. We restrict the system on this suket.
The adaptation equation can be rewritten as

$\{\begin{array}{l}\dot{a}=\frac{1}{L_{12}}(1+\epsilon^{-1})^{\mu}(\frac{I_{O}a}{(1+s^{-1})a+s^{-1}b})^{\mu}-a\dot{b}=\frac{1}{L_{13}}s^{-\mu}(\frac{Iob}{(1+\epsilon^{-1})a+s^{-1}b})^{\mu}-b\end{array}$ (2.5)

(2.6)

where $s=L_{13}/L_{S2}$ .
Notice that the rectangular domain

$\{(a,b)\in R_{+}^{2}|a\in[0,$ $\frac{I_{0}^{\mu}}{L_{12}}]b\in[0,$ $\frac{I_{0}^{\mu}}{L_{13}}]\}$

is attracting and invriant $becau8e-a\leq\dot{a}\leq I_{O}^{\mu}/L_{12}-aand-b\leq\dot{b}\leq I_{O}^{\mu}/L_{13}-b$

hold.
Three equilibrium points are written as

$A_{1}=( \frac{I_{O}^{\mu}}{L_{12}},0)A_{2}=(0,$ $\frac{I_{0}^{\mu}}{L_{13}})$ ,

$C=( \frac{T-1}{L_{1’S}+L_{32}}(\frac{I_{O}}{T})^{\mu}\frac{1}{L_{13}}(\frac{Io}{T})^{\mu})$
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where
$T=1+(L_{13}+L_{32})[ \frac{(L_{13}+L_{\theta 2})^{\mu}}{L_{12}}]^{\frac{1}{1-\mu}}$ .

Under the assumption of $\mu>1$ , the Jacobi matrices for these equilibrium points
are calculated as

$J(A_{1})=(_{0}^{-1}$ $\frac{-\mu}{1+s^{-1},-1})J(A_{2})=(\begin{array}{ll}-l 0-\mu s -l\end{array})$ ,

$J(C)=(^{\frac{\mu\epsilon}{r\frac{-\mu^{\theta}s+t_{\epsilon+1)}^{rs}}{r+\epsilon+rs}}-1}$ $\frac{\mu r(s\frac{-\mu r}{r+s+r\epsilon+1)}}{r+s+r\epsilon}-1)$ ,

where
$r=L_{32}( \frac{(L_{13}+L_{32})^{\mu}}{L_{12}})^{arrow-\mu}$ .

$J(A_{1})$ and $J(A_{2})$ have an eigenvalue $-1$ with mttiplicity 2. Hence, $A_{1}$ and
$A_{2}$ are aeymptoticaUy stable on phaee plane. The eigenvectors of $J(A_{1}),$ $J(A_{2})$

wociat\’e with-l are ${}^{t}(1,0)$ and ${}^{t}(0,1)$ , respectively. On the other, $J(C)$ has two
eigenvalues $(\mu-1)$ and $-1$ . Hence, $C_{1}$ is a saddle point if $\mu>1$ . The following
$\eta uditi\infty$ hold:

$J(C)(\begin{array}{l}r\epsilon^{-1}1\end{array})=-(\begin{array}{l}rs^{-1}l\end{array})$ , $J(C)(^{\frac{-1}{l+11}})=$ ($\mu$ 一 1) $(\begin{array}{l}\frac{-1}{\iota+1}1\end{array})$ . (2.7)

Notice that the straight line spaned by the eigenvector associated with the stable
eigenvdue of $C$ is invariant. This implication is obtaind by solving $r_{t}d(b/a)=0$

with respect to $(b/a)$ . On the phase plane, $a$-axis and $b$-axis are invariant for the
system, and $A_{1},A_{2}$ ffe located there. Any solution for the system starting from
the first quadrant is attracted to a bounded $r\infty tangular$ domain. And the inner
equilibrium point $C$ is saddle. Therefore, any limit cycle cannot exist. Boeause
the unstable manifold of $C$ transeversally intersects with the stable manifold of
$C$ , there exists two heteroclinic orbit from $C$ to $A_{1}$ and to $A_{2}$ .

3 hiangle-shaped network with double edge

$H3.1$ :graph
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We consider the graph as shown in Figure 3.1. For simplicity, we introduce four
variables

$a= \frac{D_{12}}{L_{12}},$ $b= \frac{D_{13}}{L_{1S}},$ $c= \frac{D_{32}^{1}}{L_{32}^{1}},$ $d= \frac{D_{32}^{2}}{L_{S2}^{2}}$ . (3.1)

The network Poisson equation for praesure is

$\{\begin{array}{l}a(p_{1}-p_{2})+b(p_{1}-p_{3})=I_{O}a(p_{1}-p_{2})+(c+d)(p_{\}-p_{2})=I_{O}b(p_{1}-p_{3})=(c+d)(p_{3}-p_{2})\end{array}$ (3.2)

By setting $p_{2}=0$ , we obtain

$p_{1}=I_{0} \frac{b+c+d}{ab+ac+ad+k+W}$ , $p_{3}=I_{0^{\frac{b}{ab+ac+ad+bc+W}}}$ . (3.3)

For simPlicity, let $S=ab+ac+ad+bc+u$. Then the fluxes along each edge are
calculat\’e 邸

$\{\begin{array}{l}Q_{12}=\frac{I_{0}}{S}(ab+ac+ad)Q_{13}=\frac{I_{0}}{S}(bc+u)Q_{32}^{1}=\frac{I_{0}}{S}bcQ_{S2}^{2}=\frac{I_{0}}{S}u\end{array}$ (3.4)

lhemark 1. If $b=c=d=0$, the numerator and denominator of $Q_{:j}’s$ become
zero. But $Q_{1j}’s$ have finite limit value when $b,$ $c,$ $darrow 0$ . First, we can calculate
$Q_{12}$ as

$Q_{12}= \frac{I_{0}(ab+ac+ad)}{ab+ac+ad+bc+W}=\frac{I_{0}a}{a+(bc+u)/(b+c+d)}$ .
$N_{0}uoe$ that

$0 \leq\frac{k+W}{b+c+d}\leq\frac{b(c+d)}{c+d}=barrow 0$ $(b, c, darrow 0)$ .
Hence we obtain $Q_{12}arrow I_{O}$ as $b,$ $c,$ $darrow 0$ . Similarly, we obtain

$Q_{13}= \frac{I_{0}}{a(b+c+d)/(bc+M)+1}arrow 0$ $(b, c, darrow 0)$ .

Since $0\leq Q_{82}^{1}\leq Q_{1S}(i=1,2)$, we $dso$ have $Q_{32}^{1}arrow 0$ as $b,$ $c,$ $darrow 0$ .

Remark 2. In a similar way, we obtain $p_{1}arrow I_{0}/a$ as $b,$ $c,$ $darrow 0$ . However, the
limit of $p_{3}\dot{u}$ not dways same vdue. This is caused by the fact that the limit of
$(c+d)/b$ changes by how to approach. But it becomes finite when $a>0$ , in fact,
$0\leq p_{3}\leq p_{1}\leq I_{0}/ah_{0}u_{S}$.

3.1 $\mu=1$ ($Physarum$ solver)
First, we use Physarum solver. So we study the adaptation equation

$\{\begin{array}{l}=\frac{I_{0}}{L_{12}S}(ab+ac+ad)-a\dot{b}=\frac{I_{O}}{L_{13}S}(k+W)-b\dot{c}=\frac{I_{0}}{L_{32}^{1}S}bc-c\dot{d}=\frac{I_{O}}{L_{S2}^{2}S}u-d\end{array}$ (3.5)
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There are three equilibrium points corresponding to three paths connecting $N_{1}$

and $N_{2}$ . They are

$A_{1}=( \frac{I_{O}}{L_{12}},o,o,0),A_{2}=(0,$ $\frac{I_{0}}{L_{13}},$ $\frac{I_{0}}{L_{32}^{1}})A_{3}=(0,$ $\frac{I_{0}}{L_{13}},0,$ $\frac{I_{0}}{L_{32}^{2}})$ . (3.6)

In this caee, we can restrict the system on twudimensional rectangle.

Lemma 1. Let

$W=\{(a, b, c,d)\in R_{+}^{4}; L_{12}a+L_{1}sb=I0, L_{1\theta}b=L_{32}^{1}c+L_{32}^{2}d\}$ . (3.7)

Then $W\dot{u}$ an attracting invariant subset of (3.19).

Proof. Let $P_{1}=L_{12}a+L_{13}b$ and $P_{2}=L_{13}b-L_{32}^{1}c-L_{32}^{2}d$ . From the network
Poisson equation, we obtain A $=I_{0}-R$ and $\dot{R}=-\hslash$ . This implies that $W$ is
exponentially attracting and invariant for the flow of (3.19). $\square$

Therefore, we only have to consider the behavior of two $varIablae(c,d)$ . Then
we can determine $a$ and $b$ by $L_{13}b=L_{32}^{1}c+L_{32}^{2}d$ and $L_{12}a+L_{13}b=I_{O}$ . Three
equilibrium points are represented by

$A_{1}=(0,0),$ $A_{2}=( \frac{I_{0}}{L_{32}^{1}},0),$ $A_{3}=(0,$ $\frac{I_{0}}{L_{32}^{2}})$ (3.8)

Lemma 2. Let

$R= \{(c, d)\in R_{+}^{2};0\leq c\leq\frac{I_{O}}{L_{32}^{1}},0\leq d\leq\frac{I_{0}}{L_{S2}^{2}}\}$ (3.9)

Then $R\dot{u}$ an aumcting invariant subset of (3.19) restricted on $W$ .
Proof. Obviously, $-D_{32}^{1}\leq\dot{D}_{32}^{i}\leq I_{0}-D_{\theta 2}^{:}(i=1,2)$ holds. Therefore, $c$ and $d$ are
attracted to $R$ and this rectangle is invariant. $\square$

$\otimes 3.2$ : Invariant rectangle

Lemma 3. 1. If the path $M_{13}arrow M_{32}^{1}$ is the shortest, then $A_{2}$ is globally
aspnptotically stable. Othewis$e,$ $A_{2}$ is unstable.

2. If the $\mu mM_{13}arrow M_{32}^{2}$ is the shortest, then $A_{3}$ is globally $as\psi nptoti\iota ally$

stable. Othewise, $A_{3}\dot{u}$ unstable.
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Proof. The path $M_{13}arrow M_{32}^{1}$ is the shortest if

$L_{13}+L_{32}^{1}<L_{12}$ and $L_{32}^{1}<L_{32}^{2}$ . (3.10)

Eigenvalues of $A_{2}$ are calculated as

$\frac{L_{32}^{1}-L_{32}^{2}}{L_{32}^{2}}$ $\frac{L_{32}^{1}+L_{13}-L_{12}}{L_{12}}$ (3.11)

Therefore, if the path $M_{13}arrow M_{32}^{1}$ is the shortest, then $A_{2}$ is asymptoticaly
stable. Othewise, $A_{2}$ is unstable.

Now we consider the function

$V=L_{32}^{1}$ log $c-L3_{2}$ log $d$. (3.12)

The derivative with respect to time is calculated as

$\dot{V}=L_{32}^{2}-L_{32}^{1}$ . (3.13)

If the path $M_{13}arrow M3_{2}$ is the shortest, we have $\dot{V}>0$ . As the variabl\infty are
bounded, $darrow 0$ as $tarrow\infty$ . Then the graph is $\infty entidly$ ring-shaped and we
$obt\dot{a}naarrow 0,barrow I_{0}/L_{13}$ and $carrow I_{0}/L_{32}^{1}$ . Therefore, the solution converges to
$A_{2}$ 邸 $tarrow\infty$ .

On the other, the path $M_{13}arrow M_{32}^{2}$ is the shortest if

$L_{1\theta}+L_{32}^{2}<L_{12}$ and $L_{32}^{2}<L_{32}^{1}$ . (3.14)

Eigenvalues of $A_{3}$ are calculated as

$\frac{L_{S2}^{2}-L_{32}^{1}}{L_{32}^{1}}$ $\frac{L_{32}^{2}+L_{13}-L_{12}}{L_{12}}$ (3.15)

Therefore, the stability of $A_{3}$ is determined by the length of each path connecting
$N_{1}$ and $N_{2}$ .

Similarly, we consider the function $V$ . If the Path $M_{13}arrow M_{32}^{2}$ is the shortest,
we have $\dot{V}<0$ . As the vaniables are bounded, $carrow 0a\epsilon tarrow\infty$ . Then we obtain
$aarrow 0,$ $barrow Io/L_{13}$ and $darrow Io/L_{32}^{2}$ . Therefore, the solution convergae to $A_{\theta}$ as
$tarrow\infty$ . 口

We can’t determine the linear stability of $A_{1}$ . However, we can show that $A_{1}$

is global asymptoticaby stable if the path $M_{12}$ is the shortest.

Lemma 4. If $V\iota e$ path $M_{12}$ is the shortest, $A_{1}$ is globd asymptotically stable.

Proof. In this case, the length of each edge must satisfy

$L_{12}<L_{13}+L_{S2}^{1}$ and $L_{12}<L_{13}+L_{32}^{2}$ . (3.16)

Now we consider two functions

$\{\begin{array}{l}V_{1}=L_{12}a-L_{13}b-L_{32}^{1}cV_{2}=L_{12}a-L_{13}b-L_{32}^{2}d\end{array}$ (3.17)

The derivatives with respect to time are calculat\’e as

$\{\begin{array}{l}\dot{V}_{1}=-L_{12}+L_{13}+L_{32}^{1}\dot{V}_{2}=-L_{12}+L_{13}+L_{32}^{2}\end{array}$ (3.18)
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In this case, we have $\dot{V}_{1}>0$ and $\dot{V}_{2}>0$ . As the variables are bounded and
$L_{12}<L_{1S}+L_{S2}^{1}$ , we obtain $barrow 0$ or $carrow 0$ as $tarrow\infty$ . As $L_{12}<L_{13}+L_{32}^{2}$ , we
obtain $barrow 0$ or $darrow 0$ as $tarrow\infty$ .

First, we assume $barrow 0$. As we consider the dynamics on $W$ , we have $aarrow$

$I_{0}/L_{12},$ $carrow 0$ and $darrow 0$ . Next, we assume $carrow 0$ and $darrow 0$ . For the same
reason, we have $aarrow I_{O}/L_{1}$’ and $barrow 0$ . Therefore, the solution converges to $A_{1}$

邸 $tarrow\infty$ . 口

Theorem 5. Physarum solver can find the shortest path connecting $N_{1}$ and $N_{2}$

on the gmph as shoum in Figure S. 1.

3.2 $\mu>1$

Next, we use $f(\xi)=\xi^{\mu}(\mu>1)$ as an adaptaion function. In this subection,
we study the adaptation equation

$\{\begin{array}{l}\dot{a}=\frac{1}{L_{12}}(\frac{I_{0}}{S}(ab+a\epsilon+ad))^{\mu}rightarrow a6=\frac{1}{L_{1S}}(\frac{I_{0}}{S}(bc+W))^{\mu}-b\dot{c}=\frac{1}{L_{32}^{1}}(\frac{I_{Q}}{S}bc)^{\mu}-c\dot{d}=\frac{1}{L_{32}^{2}}(\frac{I_{0}}{S}u)^{\mu}-d\end{array}$ (3.19)

3.2.1 Equilibrium points and their $8tability$

The system (3.19) has seven equilibrium points. The situations in which only
one of three paths survives and the others vanish correspond to equilibrium points

$A_{1}=( \frac{I_{o}^{\mu}}{L_{12}},o,o,$ $0),$ $A_{2}=(0,$ $\frac{I_{O}^{\mu}}{L_{13}},$ $\frac{I_{0}^{\mu}}{L_{32}^{1}},0),A_{s}=(0,$ $\frac{I_{0}^{\mu}}{L_{1\}},$ $0,$ $\frac{I_{O}^{\mu}}{L_{\theta 2}^{2}})$ .

The situation in which only the edge $M_{12}$ vanishes and the other edges survive
corresponds to

$B=(0,$ $\frac{I_{0}^{\mu}}{L_{13}},$ $\frac{1}{L_{32}^{1}}[\frac{I_{O}}{1+(L_{32}^{2}/L_{32}^{1})\mu\star-}]^{\mu}\frac{1}{L_{32}^{2}}[\frac{I_{0}}{1+(L_{32}^{1}/L_{32}^{2})^{r_{-T}}\mu}]^{\mu})$ .

The situation in which only the edge $M_{32}^{1}$ vanishes and the other edges survive
corresponds to

$C_{1}=( \frac{T_{1}-1}{L_{13}+L_{32}^{1}}(\frac{I_{0}}{T_{1}})^{\mu}\frac{1}{L_{13}}(\frac{I_{0}}{T_{1}})^{\mu},$ $\frac{1}{L_{\theta 2}^{1}}(\frac{I_{O}}{T_{1}})^{\mu},0)$ ,

where
$T_{1}=1+(L_{1d}+L_{82}^{1})[ \frac{(L_{13}+L_{S2}^{1})^{\mu}}{L_{12}}]^{arrow-\mu}$ .

Similarly, the situation in which only the edge $M_{32}^{2}$ vanishes and the other edges
survive corresponds to

$C_{2}=( \frac{T_{2}-1}{L_{1S}+L_{32}^{2}}(\frac{I_{0}}{T_{2}})^{\mu},$ $\frac{1}{L_{13}}(\frac{I_{O}}{T_{2}})^{\mu},0,$ $\frac{1}{L_{32}^{2}}(\frac{I_{O}}{T_{2}})^{\mu})$ ,
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where
$T_{2}=1+(L_{13}+L_{32}^{2})[ \frac{(L_{13}+L_{32}^{2})^{\mu}}{L_{12}}]^{\overline{1}-\overline{\mu}}\perp$ .

Finally, the situation in which all edges surveve corresponds to

$D=(\alpha d_{D},\beta d_{D},\gamma d_{D}, d_{D})$ ,

where
$d_{D}= \frac{1}{L_{32}^{2}}(\frac{I_{0}\beta}{\alpha+\beta+\alpha\beta+\beta\gamma+\gamma\alpha})^{\mu}$ ,

and $\alpha,\beta$ and $\gamma$ are given by

$\alpha=[\frac{L_{12}}{L_{32}^{2}}(\frac{\beta}{\beta+\gamma+1})^{\mu}]^{\mu-T},\beta=\Delta\frac{L_{ 2}^{2}}{L_{13}}(\gamma+1)^{\mu},\gamma=(\frac{L_{32}^{1}}{L_{32}^{2}})^{\mu-}\star$ .
First, we analyze liner stability of these equilibrium points.

Lemma 6. If $\mu>1$ , the folloutngs hold:
1. $A_{2}$ and $A_{3}$ are asymptotically stable.
2. $B\dot{u}$ a saddle poin$t$.
S. $C_{1}$ and $C_{2}$ are saddle points.

4. $D\dot{u}$ a saddle point.

Proof. 1. Let $J(A_{2})$ be a Juobi matrix at $A_{2}$ . $J(A_{2})$ is calculate as

$J(A_{2})=(--\mu\mu((LL_{13}1\^{-1}++L_{32}^{1}L_{32}^{1}))t^{L_{1S}}0L_{32}^{1}$ $-1000$ $\frac{00}{0}1$ $–001\mu)$ .

The charuteristic equation of $J(A_{2})$ is

$\det(\lambda I-J(A_{2}))=(\lambda+1)^{4}=0$ ,

and we obtain $\lambda=-1$ . Therefore, $A_{2}$ is linear stable.
2. Let $J(B)$ be a Jacobi matrix at $B$ . Since $a=0$ and $Q_{12}=0$ , the shape of

$J(B)$ is as follows:

$J(B)=( \frac{F}{T\partial q\partial d} a$
$\frac{0}{00}1$

$\frac{\partial\dot{c}00}{T\partial d\epsilon_{B}}t$ $\frac{\partial\dot{c}00}{T\epsilon_{d}\partial 3}1$ .

The $\bm{i}wact\pi i_{8}tic$ Polynomial becomes

$\det(J(B)-\lambda I)=(\lambda+1)^{2}$ det $(\partial\tau_{T_{c}}^{-\lambda}\partial\dot{c}_{\partial d}$ $\frac{\partial\dot{d}}{\partial d}\partial-\lambda\tau_{d}^{\dot{j}})$ .

Hence, $B$ has eigenvalue $-1$ . To determine the $8tabihty$ of $B$, we consider the
matrix

$J’(B)=( \frac{\partial\dot{c}}{T_{c}\partial S\partial d}$ $\mathfrak{N}\tau_{3)}\partial\partial\delta$ .

Let $\gamma=(L_{32}^{1}/L_{S2}^{2})\muarrow-$ and $\overline{\gamma}=1/\gamma$ , then $J’(B)$ is calculated as

$J’(B)=(^{\mu\frac{\overline{\gamma}}{1\frac{+\overline{\gamma}-\mu}{1+\gamma}}-1}$ $\mu\frac{\frac{-\mu}{1+\overline{\gamma}\gamma}}{1+\gamma}-1)$ .
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We can easily caluclate eigenvalues of $J’(B)$ as $-1,\mu-1$ . Since $\mu>1$ , the
equilibrium point $B$ has one positive eigenvalue.

3. Since $d=0$ and $Q_{32}^{2}=0$ , the shape of $J(C_{1})$ is as follows:

$J(C_{1})=(**0*$ $0***$ $0***$ $-1***)$ .

So-l is one of the eigenvalues of $J(C_{1})$ and we only have to consider the matrix

$J’(C_{1})=(\ovalbox{\tt\small REJECT}_{t}^{c}\tau_{b}$
$\frac{\partial\dot{b}}{T^{a}\#_{r}^{s}}c$ $\frac{F@\partial\dot{b}}{\frac{\S_{a}^{q}}{\partial a}})$ .

Now we set
$r=L_{32}^{1}( \frac{L_{12}}{(L_{13}+L_{32}^{1})^{\mu}})^{\mu-T}\lrcorner$ $s= \frac{L_{32}^{1}}{L_{13}}$ .

$J’(C_{1})$ is cdculat\’e as

$J’(C_{1})=( \frac{\frac{\mu r}{\frac{r+s+rs\mu r}{\epsilon(r+s+rs)-\mu r}}-1}{(\epsilon+1)(r+s+rs)}$
$\frac{\frac{\frac{\mu rs^{2}}{r+s+rs\mu rs-}}{r+s+rs-\mu rs^{2}}1}{(s+1)(r+s+r\epsilon)}$ $\frac{\frac{-\mu\epsilon(s+1)}{\frac{r+s+rs-\mu(s+1)}{r+s+rs\mu s}}}{r+s+rs}-1)$ .

The characteristic equation becomes

$\det(\lambda I-J’(C_{1}))=(\lambda+1)^{2}(\lambda-\mu+1)=0$ .
Hence, eigenvalues of $J(C_{1})ue-1$ ($multiplicity$ is 3) and $\mu-1$ . Therefore, $C_{1}$ is
a saddle point.

4. For simplicity, we denote $P=\alpha+\beta+\alpha\beta+\beta\gamma+\gamma\alpha$. Jacobi matrix $J(D)$ is
calculated as

$[ \frac{-+1)\frac{\mu\beta(\gamma+1)}{\mu\beta(\beta+\gamma P}-1}{\frac{-\mu\gamma(\beta+\gamma+1)P}{\frac{-\mu(\beta+\gamma+1)P}{P}}}$ $\frac{\frac{-\mu\alpha(\gamma+1)^{2}}{\mu\alpha(\gamma+1)_{-}P(\beta+\gamma+1)}}{\frac{\mu\alpha\gamma(\gamma+1)P}{\frac{\mu\alpha(\gamma+1)P\beta}{P\beta}}}1$ $\frac{\mu(\alpha\frac{-\mu\alpha\beta^{2}}{P(\beta.1)\frac{\mu\alpha\beta^{2}+\gamma+}{+\beta+P(\gamma+1)}\alpha\beta)}}{\frac{-\mu(\alpha+\beta)P}{P}}-1$
$\frac{\mu(\alpha\beta\frac{-\mu\alpha\beta^{2}}{\frac{P(\beta 1)-\beta)\frac{\mu\alpha\beta^{2}+\gamma+}{P(\gamma+1)\mu\gamma(\alpha+}}{+\beta\gamma+\gamma\alpha P})}}{P}-1)$

The characteristic equation of $J(D)$ becomes

$\det(\lambda I-J(D))=(\lambda+1)^{2}(-\lambda+\mu-1)^{2}=0$ .

Hence, eigenvalues of $J(D)$ we $-1$ and $\mu\simeq 1$ (multiplicity is 2). Therefore, $D$ is
a $8addle$ point. $O$

Remark 3. Jacobi mahioes shown in 晒釣 section are obtained under $m_{e}$ assump-
tion of $\mu>1$ . They do not hold for $\mu<1$ .

Next, we consider the stability of $A_{1}$ .

Lemma 7. $A_{1}\dot{u}l\infty ally$ asymptotically stable.
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$\not\equiv 1$ : (Linear) stability types of equihbria. $n+is$ a number of unstable
eigenvalues and n-is a number of stable eigenvalues.

Prvof. Let $x=(a,b, c, d)$ . We have

$\frac{(Q_{13})^{\mu}}{b}=b^{\mu-1}(p_{1}-p_{\theta})^{\mu}arrow 0$ ,

$\frac{(Q_{S2}^{1})^{\mu}}{c}=c^{\mu-1}p_{S}^{\mu}arrow 0$ ,

$\frac{(Q_{ 2}^{2})^{\mu}}{d}=d^{\mu-1}f_{3}arrow 0$ ,

when $xarrow A_{1}$ . Hence, $\dot{b},\dot{c}$ and $\dot{d}$ are negative in a sufficiently small neighborhood
of $A_{1}$ because

$\dot{b}=-b+o(b)$ , $\dot{c}=-c+o(c)$ , $\dot{d}=-d+o(d)$ (3.20)

when $xarrow A_{1}$ . Now $\ddot{a}$ is calculated as

$\ddot{a}=\frac{\mu}{L_{12}}Q_{12}^{\mu-1}Q_{12}-\dot{a}$

$= \frac{\mu}{L_{12}}Q_{12}^{\mu-1}(\frac{\partial Q_{12}}{\partial a}h+\frac{\partial Q_{12}}{\partial b}\dot{b}+\frac{\partial Q_{12}}{\partial c}\dot{c}+\frac{\partial Q_{12}}{\partial d}\dot{d})-\dot{a}$ .
Note that

$\frac{\partial Q_{12}}{\partial a}=\frac{I_{0}(b+c+d)(k+W)}{S}=\frac{Q_{12}Q_{13}}{aI_{0}}$

$\frac{\partial Q_{12}}{\partial b}=-\frac{\mu I_{0}}{L_{12}}\frac{a(c+d)^{2}}{S^{2}}\leq 0$,

$\frac{\partial Q_{12}}{\partial c}=\frac{\partial Q_{12}}{\partial d}=$ 一 $\frac{\mu I_{O}}{L_{12}}\frac{ab^{2}}{S^{2}}\leq 0$.

Hence, we obtain

$\ddot{a}\geq\frac{\mu}{L_{12}}Q_{12}^{\mu-1}\frac{\partial Q_{12}}{\partial a}\dot{a}-$

$= \frac{\mu}{L_{12}}(Q_{12})^{\mu}Q_{13}\frac{\dot{a}}{aIo}-\dot{a}$

$= \mu(\dot{a}+a)Q_{13}\frac{\dot{a}}{aI_{0}}-\dot{a}$

$= \mu\frac{Q_{13}}{aI0}(\dot{a})^{2}+(\mu\frac{Q_{13}}{I_{0}}-1)$ a

$\geq(\mu\frac{Q_{1\}}{I_{O}}-1)\dot{a}$ .
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Because $Q_{13}$ converges to $0$ as $xarrow A_{1}$ , we can choose $x=(a, b, c, d)$ such that
the coeMcient of $\dot{a}$ becomes negative. Therefore, $\dot{a}\geq 0$ holds asymptoticaUy, in
a sufficiently $smaU$ neighborhood of $A_{1}$ . Then, the derivative of square of the
distance between $x=(a,b, c, d)$ and $A_{1}$ is calculated as

$\frac{1}{2}\frac{d}{dt}|x-A_{1}|^{2}=\frac{1}{2}\frac{d}{dt}((\frac{I_{0}^{\mu}}{L_{12}}-a)^{2}+b^{2}+c^{2}+d^{2})$

$=-( \frac{I_{0}^{\mu}}{L_{12}}-a)\dot{a}+\dot{u}+c\dot{c}+d\dot{d}\leq 0$ .

Hence, $|x-A_{1}|arrow 0$ as $tarrow\infty$ . Thus, $A_{1}$ is locally asymptotically stable. 口

3.2.2 Heteroclinic orbits

In this section, we consider about the existence of heterodinic orbits connecting
each equilibrium point. As shown in the previous section, $A_{2}$ and $A_{3}$ have no
unstable manifold, $B,C_{1}$ and $C_{2}$ have onedimensional unstable manifold, and
that of $D$ is two-dimensional.

First, we study heteroclinic orbits from $B$ .
Lemma 8. Let $J(B)$ be a Jacobi matrix at $B$ and $v_{B}=^{t}(0,0, -1,1)$ , then

$J(B)v_{B}=(\mu-1)v_{B}$ (3.21)

$hoWs$, that $\dot{u}$, $v_{B}$ is an eigenvector of $J(B)$ associated with $\mu-1$ .

Pmof. This can be obtained by straightforward calculation. $\square$

This implies that the straight line $B^{u}(B)$ which is sppaned by $v_{B}$ tangents to
the unstable mmifold of $B$ at $B$ . Now we can easily verify that a subset

$\{(a,b, c, d)\in R_{+}^{4}|a=0, b=I_{0}^{\mu}/L_{13}\}$

is $inva\dot{n}ant$ for (3.19). In fact, if $a=0$ and $b=I_{0}^{\mu}/L_{13}$ , then $\dot{a}=\dot{b}=0$ .
We consider two-dimensional dynamics on this invariant suket. As this $cue$ is
obviously equivalent to the ring-shaped caee, the following is trivial.

Proposition 9. There are hetervclinic orbits fio$mB$ to $A_{2}$ and fiv$mB$ to $A_{3}$ .
Next, we study heteroclinic orbits from $C_{1}$ . The unstable manifold of $C_{1}$ tan-

gents to the straight line $E^{u}(C_{1})$ which is spanned by

$v_{C1}=^{t}(\frac{-s}{\epsilon+1},s,$ $1,0)$

at $C_{1}$ . It is obvious that a subset

$\{(a,b, c,d)\in R_{+}^{4}|d=0\}$

is invwigt for (3.19). We consider the dynamics on this invarimt subset. This
case is equivalent to the triangle-shaped $C\mathfrak{B}e$ , the following holds.

Proposition 10. $The r$ are heteroclinic orbits jfirom Ci to $A_{1}$ and to $A_{2}$ .
Similarly, a subset

$\{(a, b, c,d)\in R_{+}^{4}|c=0\}$

is also invariant, and the system restricted on this subset is equivalent to the
triangleshaped case. So we obtain the following.
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Proposition 11. Them are heteroclinic orbits ffom $C_{2}$ to $A_{1}$ and to $A_{3}$ .
Heteroclinic orbits $komB,$ $C_{1}$ and $C_{2}$ are completely specifled as shown above,

because their unstable manifolds are onedimensional. Next, we consider about
heteroclinic orbits $homD$. Complete detection might be difficult, but some of
them can be discovered as follows.

Lemma 12. The set
$\{(a, b, c, d)|c=\gamma d, b=\beta b\}$ (3.22)

is invari ant.

Proof. Differentiate $c/d$ with respect to time:

$\frac{d}{dt}(\frac{c}{d})=\frac{1}{d^{2}}(d-d)$

$= \frac{c}{d}(\frac{I_{O}b}{S})^{\mu}(\frac{c^{\mu-1}}{L_{S2}^{1}}-\frac{d^{\mu-1}}{L_{32}^{2}})$ .

If an initial value $i_{8}$ chosen to hold $c/d=\gamma$, then $\tau_{l}d(c/d)=0$ holds at $g$ time.
Therefore $\{c=\gamma d\}$ is invariant.

Next, differentiate $b/d$ with respect to time under $c=\gamma d$:

$\frac{d}{dt}(\frac{b}{d})=\frac{1}{d^{2}}(\dot{W}-\dot{u})$

$= \frac{1}{d}(\frac{I_{0}W}{S})^{\mu}(\frac{(1+\gamma)^{\mu}d}{L_{13}}-\frac{b}{L_{\theta 2}^{2}})$ .
If am initial vaSue is chosen to hold

$b= \frac{L_{32}^{2}}{L_{1S}}(1+\gamma)^{\mu}d=\beta d$ ,

then $\frac{d}{dt}(b/d)=0$ holds at all time. Hence (3.22) is an invariant subset. 口

Proposition 13. There are heteroclinic orbits fivm $D$ to $A_{1}$ and to $B$ .
Proof. The system restricted on (3.22) is given by

$\{\begin{array}{l}\dot{a}=\frac{I_{0}^{\mu}}{L_{12}}(\frac{(\beta+\gamma+1)a}{(\beta+\gamma+1)a+\beta(\gamma+1)d})^{\mu}-a\dot{d}=\frac{I_{0}^{\mu}}{L_{32}^{2}}(\frac{\beta d}{(\beta+\gamma+1)a+\beta(\gamma+1)d})^{\mu}-d\end{array}$ (3.23)

There are equilibrium points of (3.23) corresponding $A_{1},$ $B$ and $D$ . These are
calculoed as

$A_{1}=( \frac{I_{0}^{\mu}}{L_{12}},0)$ , $B=(0,$ $\frac{I_{0}^{\mu}}{L_{S2}^{2}}(1+\gamma)^{-\mu})$ , $D=(\alpha d_{D},d_{D})$ .
This can be easily verifled by $str\dot{u}gtforw\pi d$ calculation.

On the phase plain, $A_{1}$ and $Bge$ stable nodes, and $D$ is a saddle point.
Any solution of (3.22) is attracted to a bounded region. In this cue, hnit cycle
cannot exist. The ray $\{a=\alpha d\}$ is invariant and corresponds to a stable manifold
of $D$ . The unstable manifold of $Dinter8ect8$ with this ray. Therefore, there exist
heteroclinic orbits from $D$ to $A_{1}$ and to B. $\square$

We now make a $\infty nj\infty ture$ that the complete chart is Figure 3.3, but the com-
plete proof is not achieved so $f\pi$. We have already proved that there are the con-
necting orbits between unstable equilibrium points and stable equilibrium points.
On the other hand, it is not easy to prove the existence of the orbit connecting un-
stable equilibrium points to each other, although it is suggested by the simulation
result as shown in Figure 3.4.
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.

$A_{l}c$

$E3.3$ : Connecting orbits. The broken line means the orbit to which exis-
tenoe is not proved.

ec 3.4: An orbit that leaves near $D$ , and converges to $A_{2}(A_{3})$ after ap-
proaching $C_{1}$ (or $C_{2}$ ) . $(L_{12}=2.0, L_{13}=L_{32}^{1}=L_{32}^{2}=1.0, I_{0}=1.0,\mu=1.5)$
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