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1 Introduction

We consider $thrc degrcc$-of-freedom Hamiltonian system8 of the from

$\dot{x}=JD_{x}H_{0}(x, I)+\epsilon JD_{x}H_{1}(x,I,\theta)$ ,

$J=-\epsilon D_{\theta}H_{1}(x, I,\theta)$ , $(x, I,\theta)\in \mathbb{R}^{2}x\mathbb{R}^{2}x\mathbb{T}^{2}$ , (1)

$\ovalbox{\tt\small REJECT}=D_{I}H_{0}(x,I)+\epsilon D_{I}H_{1}(x, I,\theta)$ ,

where $\epsilon$ is a small parameter such that $0<\epsilon\ll 1,$ $H=H_{0}(x, I)+\epsilon H_{1}(x, I, \theta)$ is a real
analytic function and $J$ is 2 $x2$ symplectic matrix, i.e.,

$J=(\begin{array}{ll}0 l-1 0\end{array})$ .

When $\epsilon=0$ , Eq. (1) becomes

$\dot{x}=JD_{x}H_{0}(x,I)$ , $I=0$, $\dot{\theta}=D_{I}H_{0}(x,I)$ , (2)

which is integrable. Hence, Eq. (1) represents nearly-integrablc Hamiltonian systems.
For such a class of Hamiltonian systems, since the pioneer work of Arnold [1] there

has been great interest in global instability known as Amold diffusion [2-4]: If there
is a sequence of invariant tori such that they are connected by heteroclinic orbits, then
there exists an open sct of trajectories which visit their neighborhoods in succession and
$go$ far from the initial point8. A torus having stable and unstable manifolds are said
to be whiskered and such a sequence of whiskered tori is called transition chain. The
fact that these tori may be subjected to rcsonance raised a serious problem, which had
been actually unsolved for many years, for complete understanding of the mechanism for
Arnold diffusion. Recently, for a special case of (1) in which particularly $D_{t}H_{0}(x, I)$ is
independent of $x$ , Delshams et al. [4] overcame the difficulty and showed that diffusion is
more intense near resonant tori.
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Fig. 1. Unperturbed phase space

In this paper we are interested in the size of jumps of heteroclnic orbits connecting
whiskered tori in (1). We show that the jumps can be $\theta(\sqrt{\epsilon})$ for resonant tori while
they are $\theta(\epsilon)$ for nonresonant tori. This is a contrast to the result of [4] in which the
jumps of heteroclinic orbits are $\theta(\epsilon)$ even for resonant tori. Thus, in a gencral case where
$D_{I}H_{0}(x, I)$ is not independent of $x$ , diffusion near resonant tori can be cven more intense.
The proofs and technical details will be given elsewhere [5].

2 Unperturbed and perturbed phase space structures

Let .1 be a non-empty open set of $\mathbb{R}^{2}$ and let $\overline{J}=J\cup\partial J$. Denote $\omega(I)=$

$D_{I}H_{0}(x_{0}(I), I)$ . We make the following assumptions on (2).

(A1) There exists a function $x_{0}$ : $\overline{J}arrow \mathbb{R}^{2}$ such that for any $I\in\overline{J}$ the point
$x=x_{0}(I)$ i8 a hyperbolic saddle in the x-component of (2) and has a homoclinic orbit
$x^{I}(t)$ .

(A2) For any $I\in J$ we have

det $D_{I}w(I)=\det D_{I}[D_{I}H_{0}(x_{0}(I), I)]\neq 0$. (3)

In the unperturbed system (2)

$\mathscr{M}_{0}=\{(x,I,\theta)\in \mathbb{R}^{2}\cross JxT^{2}|x=x_{0}(I)\}$

is a four-dimensional, normally hyperbolic, invariant manifold whose stable and unstable
manifolds, $W^{\iota}(\mathscr{M}_{0})$ and $W^{u}(\mathscr{M}_{0})$ , coincide along a five-dimensional manifold

$\{(x, I,\theta)\in \mathbb{R}^{2}xJx\mathbb{T}^{2}|x=x^{I}(t),t\in \mathbb{R}\}$ .
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See Fig. 1. The invariant manifold $\mathscr{M}_{0}$ consists of a $tw(\succ parameter$ family of invariant
tori $g_{0^{I}}=\{(x_{0}(I), I,\theta)|\theta\in \mathbb{T}^{2}\}$ which satisfles a resonant condition

$k\cdot\omega(I)=0$ for some $k\in \mathbb{Z}^{2}/\{0\}$

or not, where ‘ represents the inner product. These invariant tori are $\prime u$)$hiskemd$ in the
meaning that they have stable and unstable manifolds.

For $\epsilon\neq 0$ sufficiently small it follows from the invariant mamifold $th\infty ry[6,7]$ that
there exists a four-dimensional, normally hypcrbolic, locally invariant manifold $\mathscr{M}_{\epsilon}$ in
an $\theta(\epsilon)$-neighborhood of $\mathscr{M}_{0}$ . Moreover, $\mathscr{M}_{e}$ has local stable and unstable manifolds
$W_{1oc}^{\epsilon}(\mathscr{M}_{0})$ and $W_{1oc}^{u}(\mathscr{M}_{0})$ , from which the global stablc and unstable manifolds $W^{\iota}(\mathscr{M}_{0})$

and $W^{u}(\mathscr{M}_{0})$ are obtained, near $W^{*}(\mathscr{M}_{0})$ and $W^{11}(\mathscr{M}_{0})$ . Define the Melnikov function as

$M^{I}( \theta)=\int_{-\infty}^{\infty}D_{x}H_{0}(x^{I}(t), I)\cdot JD_{x}H_{1}(x^{I}(t), I,\theta^{I}(t)+\theta)dt$, (4)

where
$\theta^{I}(t)=\int_{0}^{t}D_{I}H_{0}(x^{I}(t), I)dt$ . (5)

Using a standard argument in the Mclnikov method (see, e.g., [8]), we can prove the
folowing result.

$Th\infty rem1$ . SuPposc that for some point (I, $\theta$) $=(I_{0},\theta_{0})$ in $\mathbb{R}^{2}xT^{2}$

$M^{I}(\theta)=0$ , $D_{\theta}M^{I}(\theta)\neq 0$ .

Then for $\epsilon>0$ sufficiently small the stable and unstablc manifolds $W^{*}(\mathscr{M})$ and $W^{u}(\mathscr{M}_{\ell})$

of $\mathscr{M}_{e}$ intersect transversely in a four dimensional manifold.

We can show that on $\mathscr{M}_{e}$ there still exist many whiskered tori near the unperturbed
nonraeonant or resonant whiskered tori. The transverse intersection between $W^{\iota}(\mathscr{M}_{e})$

and $W^{u}(\mathscr{M}_{e})$ implies that the whiskered tori have homoclinic or heteroclinic orbits. The
ercistence of such heteroclinic orbits is especially of importance since they providos a
mechanism for Arnold diffusion, as stated in Section 1.

3 Heteroclinic jumps

We first treat the case of nonresonant tori. Let

$\overline{H}_{1}(x,I,\theta)=H_{1}(x,I,\theta)-H_{1}(x_{0}(I),I,\theta)$

and define
$\Delta I(I,\theta)=-\int_{-\infty}^{\infty}D_{\theta}\tilde{H}_{1}(x^{J}(t),I,\theta^{I}(t)+\theta)dt$ . (6)
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Using the averaging method [9], thc KAM theorem [10] and Thcorem 1, we can prove the
following result.

Theorem 2. Suppose that for some (I, $\theta$) $=(I_{0},\theta_{0})$ the hypothesis of Theorem 1
and Diophantine condition

$|k\cdot\omega(I)|\geq\gamma|k|^{-\tau}$ , $k\in \mathbb{Z}^{2}\backslash \{0\}$ , $\tau>1$ (7)

hold. Then for $\epsilon>0$ sufficiently small there cxist a pair of whiskered tori in an $\mathcal{O}(\epsilon)-$

neighborhood of $I=I_{0}$ on $\mathscr{M}_{\epsilon}$ such that the distance between them is $\epsilon\Delta I(I_{0},\theta_{0})+\theta(\epsilon^{2})$

and they have a heteroclinic orbit.

We next consider the case of resonant tori and assume that

$k_{*}\cdot\omega(I_{*})=0$ (8)

for some $I_{*}\in J$ and $k$. $\in Z^{2}\backslash \{0\}$ . Expand $H_{1}(x_{0}(I), I,\theta)$ to a Fourier serios as

$H_{1}(x_{0}(I),I, \theta)=\sum_{k\in \mathbb{Z}^{2}}h_{k}(I)c^{1k\theta}$
, $h_{k}(I)= \frac{1}{(2\pi)^{2}}\int_{T^{2}}H_{1}(x_{0}(I), I,\theta)e^{-1k\cdot\theta}d\theta$

and set
$h^{*}( \phi)=\sum_{j\neq 0}h_{jk}.(I.)e^{1j\phi}$

.

Define a function $\Delta h(\phi)$ as

$\Delta h(\phi)=h^{*}(\Delta\phi++\phi)-h^{*}(\Delta\phi_{-}+\phi)$ , $\Delta\phi\pm=\int_{()}^{\pm\infty}k_{*}\cdot D_{I}H_{0}(x^{I}(t), I_{*})dt$ . (9)

Again, we use the averaging method [9], thc KAM theorem [10] and Theorem 1 to prove
the following result.

Theorem 3. Suppose that for somc $\theta_{l}\in \mathbb{T}^{2}$ the hypothesis of Theorem 1 with
(I, $\theta$) $=(I.,\theta_{*})$ and

$\Delta h(k. \cdot\theta.)\neq 0$ . (10)

Then for $\epsilon>0$ sufficiently small there exist a pair of whiskered tori in an $\theta(\sqrt{\epsilon})-$

neighborhood of $I=I_{*}$ on $\mathscr{M}_{\epsilon}$ such that the distance between them is $\theta(\sqrt{\epsilon})$ and they
have a heteroclinic orbit.

4 Example

To illustrate the above $th\infty ry$, we consider the following example:

$H_{0}(x, I)= \frac{1}{3}(\cos x_{1}+2)I_{1}+I_{2}+\frac{1}{2}(x_{2}^{2}+I_{1}^{2}+I_{2}^{2})$ ,
(11)

$H_{1}(x, I,\theta)=(\cos(\theta_{1}\cdot-\theta_{2})+\cos\theta_{1}+\cos\theta_{2})$cos $x_{1}$ ,
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where $I_{1},$ $I_{2}>0$ . We easily sce that the unperturbed Hamiltonian $H_{0}$ satisfies assumptions
(A1) and (A2). In particular, in the x-component of the unperturbed system (2) the point
$x_{0}(I)=(0,0)$ is a hyperbolic saddlc and has a pair of homoclinic orbits

$x_{\pm}^{I}(t)=(\pm 2ar$csin $(\tanh\sqrt{\frac{I_{1}}{3}}t)+\pi,$ $\pm 2\sqrt{\frac{I_{1}}{3}}sc\bm{i}\sqrt{\frac{I_{1}}{3}}t)$ .

Moreover, the frequency vector is given by

$w(I)=(I_{1}+1, I_{2}+1)$ (12)

and satisfies the nondegeneracy condition (3).
We compute (5) as

$\theta_{\pm}^{I}(t)=((I_{1}+1)t-\frac{2}{3}\sqrt{\frac{3}{I_{1}}}\tanh\sqrt{\frac{I_{1}}{3}}t,$ $(I_{2}+1)t)$

and estimate the Melnikov function (4) as

$M^{I}(\theta)=4[A(\sqrt{\frac{3}{I_{1}}},$ $I_{1}$ 一 $I_{2})\sin(\theta_{1}-\theta_{2})$

$+A(\sqrt{\frac{3}{I_{1}}},$ $I_{1}+1)$ sin $\theta_{1}-A_{0}(\sqrt{\frac{3}{I_{1}}}(I_{2}+1))\sin\theta_{2}]$ ,

where

$A(a, b)= \int_{-\infty}^{\infty}$ tanh $\tau scch^{2}\tau$ cos $( \frac{2}{3}a$ tanh $\tau)$ sin ab $\tau dt$

$- \int_{-\infty}^{\infty}$ tanh $\tau sech^{2}\tau$ sin ( $\frac{2}{3}a$ tanh $\tau$) cos ab $\tau dt$ ,

$A_{0}( \nu)=\frac{\pi\nu^{2}}{2}$ cosech $( \frac{\pi\nu}{2})>0$ for $\nu>0$ .

Hence, the hypothesis of Theorem 1 holds for some $\theta_{0}=(\theta_{10}, \theta_{20})$ so that $W^{*}(\mathscr{M}_{e})$ and
$W^{\prime 1}(\mathscr{M}_{e})$ intersect transversely. In particular, if

$A_{O}(\sqrt{\frac{3}{I_{1}}}(I_{2}+1))\neq\pm A(\sqrt{\frac{3}{I_{1}}},I_{1}+1)$ , (13)

then we can take $\theta_{0}$ such that
$\theta_{10}\neq\theta_{20},\theta_{20}+\pi$ . (14)

Note that for any $I_{1}>0$ condition (13) holds for almost all $I_{2}>0$ .
Now we assume that the frequency vector (12) satisfies the Diophantine condition (7)

for $I=I_{0}$ . We have

$\tilde{H}_{1}(x,I,\theta)=(\cos(\theta_{1}-\theta_{2})+\cos\theta_{1}+\cos\theta_{2})(\cos x_{1}-1)$
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and e8timate (6) as

$\Delta I_{1}(I,\theta)=2\sqrt{\frac{3}{I_{1}}}[-B(\sqrt{\frac{3}{I_{1}}},$ $I_{1}-I_{2})\sin(\theta_{1}-\theta_{2})-B(\sqrt{\frac{3}{I_{1}}},$ $I_{1}+1)$ sin $\theta_{1}]$ ,

$\Delta I_{2}(I,\theta)=2\sqrt{\frac{3}{I_{1}}}[B(\sqrt{\frac{3}{I_{1}}},I_{1}-I_{2})\sin(\theta_{1}-\theta_{2})-B_{0}(\sqrt{\frac{3}{I_{1}}}(I_{2}+1))$ sin $\theta_{2}]$ ,

where

$B(a, b)= \int_{-\infty}^{\infty}sech^{2}\tau$ cos $( \frac{2}{3}a$ tanh $\tau)$ cos ab $\tau dt$

$+ \int_{-\infty}^{\infty}sech^{2}\tau$ sin ( $\frac{2}{3}$ a tanh $\tau$) sin ab $\tau dt$ ,

$B_{0}(\nu)=\pi\nu$ Coae出 $( \frac{\pi\nu}{2})>0$ for $\nu>0$ .

By $Th\infty rem2$ , in an $\theta(\epsilon)$-neighborhood of $I=I_{0}$ on $\mathscr{M}_{\epsilon}$ , there exist a pair of whiskered
tori which are at distance of $\epsilon\Delta I(I_{0},\theta_{0})+\theta(\epsilon^{2})$ and connected by a heteroclinic orbit.

Finally, we consider the case in which thc unperturbed tori are resonant and assumc
that $I_{1}=I_{2}$ so that the resonance condition (8) holds with $k$. $=(1, -1)$ . The Fourier
coefficients $h_{k}(I)$ of $H_{1}(x_{0}(I), I, \theta)$ are given by

$h_{k}(I)=\{\begin{array}{ll}\frac{1}{2} if (k_{1}, k_{2})=(\pm 1, \mp 1), (\pm 1,0) or (0, \pm 1);0 otherwise,\end{array}$

so that
$h\cdot(\phi)=\cos\phi$ .

We estimate
$\Delta\phi_{\pm}=\mp\frac{2}{3}\sqrt{\frac{I_{1}}{3}}$

to $obta\dot{i}$

$\Delta h(\phi)=coe(\phi-\frac{2}{3}\sqrt{\frac{I_{1}}{3}})-\cos(\phi+\frac{2}{3}\sqrt{\frac{I_{1}}{3}})$ .

Suppose that condition (13) holds. Then since as in (14) we can take $\theta_{0}=\theta$. for the
hypothesis of Theorem 1 to hold for $I_{1}=I_{2}$ , we have (10). Hence it follows from $Th\infty rem3$

that in an $\theta(\sqrt{\epsilon})$-neighborhood of $I_{1}=I_{2}$ on $\mathscr{M}$ , there exist a pair of whiskered tori
which are at distance of $\theta(\sqrt{\epsilon})$ and connected by a hctcroclinic orbit.
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