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Orthogonal Drawings for Plane Graphs
with Specified Face Areas

Akifumi Kawaguchi and Hiroshi Nagamochi

Department of Applied Mathematics and Physics,
Graduate School of Informatics, Kyoto University, Japan

Abstract. We consider orthogonal drawings of a plane graph G with spec-
ified face areas. For a natural number k, a k-gonal drawing of G is an or-
thogonal drawing such that the outer cycle is drawn as a rectangle and each
inner face is drawn as a polygon with at most k corners whose area is equal
to the specified value. We show that several classes of plane graphs have a
k-gonal drawing with bounded k; A slicing graph has a 10-gonal drawing, a
rectangular graph has an 18-gonal drawing and a 3-connected plane graph
whose maximum degree is 3 has a 34-gonal drawing. In this paper, we show
10-gonal drawings of slicing graphs and the outline of algorithm to find the
drawing.

1 Introduction

Graph drawing has important applications in many areas in computer science such
as VLSI design, information visualization and so on. Various graphic standards are
used and studied for drawing graphs [3].

Orthogonal drawings, in which every edge is drawn as a sequence of alternate
vertical and horizontal segments, have applications in circuit design, geometry and
construction. Many aspects have been studied on orthogonal drawings. Studies of
an orthogonal drawing with specified face areas have begun recently. For a natural
number k, a k-gonal drawing of a graph is an orthogonal drawing such that the
outer cycle of the graph is drawn as a rectangle and that each inner face is drawn
as a polygon with k corners. Rahman, Miura and Nishizeki [4] proposed an 8-gonal
drawing for a special class of plane graphs called a good slicing graph. Recently,
de Berg, Mumford and Speckmann [1] proved that a general slicing graph admits
a 12-gonal drawing. They also showed that a rectangular graph admits a 20-gonal
drawing and a 3-connected plane graph whose maximum degree is 3 admits a
60-gonal drawing.

We show that a general slicing graph has a 10-gonal drawing, a rectangular
graph has an 18-gonal drawing and a 3-connected plane graph whose maximum
degree is 3 has a 34-gonal drawing. Our approach for a general slicing graph is
different from that by de Berg et al. [1]. We also show that every 3-connected
plane graph G whose maximum degree is 4 has an orthogonal drawing such that
each inner facial cycle ¢ is drawn as a polygon with at most 10p. + 34 corners if
no vertex whose degree is 4 is on the outer cycle of G, where p. is the number of
vertices of degree 4 in the cycle c.

2 Preliminary

A plane graph is denoted by G = (V, E, F, ¢y), where V, E, F’ and ¢y denote a set
of vertices, a set of edges, a set of inner faces and the outer face, respectively. Let



n = |V|,m = |E| and f = |F|. Since G is a plane graph, m = O(n) and f = O(n)
hold. A vertex of degree k is called a k-degree vertez. We denote the maximum
degree of a graph G by A(G). An orthogonal drawing of a plane graph G is a
drawing such that each edge e € F is drawn as an alternate sequence of vertical
and horizontal line segments, and any two edges do not intersect except at their
common end. It is known [2] that a plane graph G admits an orthogonal drawing
if and only if A(G) < 4. For a natural number k, an orthogonal drawing is called
a k-gonal drawing if the outer cycle of G is drawn as a rectangle, and each inner
facial cycle ¢; is drawn as a polygon with at most & corners.

We consider a plane graph G such that the area of each inner face ¢; € F is
specified by a real a; > 0. Let A be a set of areas a;, and we denote a plane graph
with the specified face areas by (G, A). For a plane graph (G, A), we consider
an orthogonal drawing such that the area of each face ¢; is equal to a;. Figure 1
illustrates an example of a plane graph with specified face areas, and its 10-gonal
drawing.

Fig. 1. (a) An example of a plane graph (G, A) with specified areas, where the number
in each face represents the area specified for the face; (b) A 10-gonal drawing of (G, A)

Let G be a plane graph that has exactly four 2-degree vertices a,b,c and d in
its outer cycle. We call these four vertices a,b,c and d corner vertices. The four
corners a, b, ¢ and d divide the outer cycle of G into four paths sharing end vertices;
the top path, the bottom path, the left path and the right path. We call each of these
four paths an unit path. A path 7 in G which does not pass through any other
outer vertex is called a vertical (horizontal) path of G if one end of 7 is on the
top (left) path and the other is on the bottom (right) path. Such a path = divides
the interior of G into two areas, each of which is enclosed by a cycle and induces a
subgraph of G (the subgraph consisting of edges and vertices in the area and the
cycle). We say that n slices G into these two subgraphs of G.

A slicing graph G is a plane graph that is defined recursively as follows; a cycle
G of length 4 with a single inner face is a slicing graph, and G has a vertical
or horizontal path m such that each of the two subgraphs generated from G by
slicing G with = is a slicing graph. Note that A(G) < 4 for every slicing graph
G. A vertical or horizontal path in slicing graph G is called a slicing path if two
subgraphs generated by slicing G with 7 are slicing graphs.

A slicing tree T is a binary tree which represents a recursive definition of a
slicing graph G. We call a non-leaf node of T' an internal node. Each node u in T
corresponds to a subgraph G, of G. Let u be an internal node in T, and v and w
be the left and right child of u, respectively. Then we denote by 7, the slicing path
that slices G, into G, and G,; If 7, is vertical (horizontal), then G, is the upper
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(left) subgraph of G,, and G, is the lower (right) subgraph of G,. The node u
is called a V-node if m, is vertical, and u is called an H-node if m, is horizontal.
For a leaf u' of T, the corresponded subgraph G, has one inner face c;. Figure 2

illustrates an example of a slicing tree and a slicing graph corresponded to each
node of T'.
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Fig. 2. (a) A slicing graph G and subgraphs G. and G of G; (b) A slicing tree with
nodes r,u and w

A rectangular graph is a plane graph whose outer face and each inner face can
be drawn as a rectangle. Note that A(G) < 4 for every rectangular graph G. A 3-
connected plane graph is a plane graph that remains connected even after removal
of any two vertices together with edges incident to them.

In this paper, we show the following result, where a “combined decagon” is
defined in the next section.

Theorem 1. Every slicing graph with specified face areas has a 10-gonal drawing
such that each inner face is draum as a combined decagon. Such a drawing can be

found in O(n) time if its slicing tree and four corner vertices on the outer rectangle
are given. O

For a rectangular graph and a 3-connected plane graph, we obtained the follow-
ing results by converting those graphs into slicing graphs and applying Theorem
1 (proofs are omitted due to space limitation).

Theorem 2. Every rectangular graph with specified face areas has an 18-gonal
drawing. Such a drawing can be found in O(nlogn) time if its outer rectangle and
its four corner vertices are given. a

Theorem 3. Every 3-connected plane graph (G, A) with A(G) = 3 has a 34-gonal
drawing. Such a drawing can be found in O(nlogn) time. o

Corollary 1. For every 3-connected plane graph (G, A) with A(G) = 4 such that
there are no 4-degree vertices on the outer cycle of G, there is an orthogonal



draunng such that (i) each face has at most 10p. + 34 corners, where p. is the
number of 4-degree vertices in its facial cycle of ¢ € F, and (ii) the number of
straight-lines in the entire drawing is at most 28n. 0

3 Drawings of Slicing Graphs

By definition, every inner face of a slicing graph can be drawn as a rectangle if we
ignore the area constraint. To equalize the area of inner face to the specified value,
we need to draw some edges with sequences of several straight-line segments.

We define a step-line as an alternate sequence of three vertical and horizontal
straight-line segments. A step-line has two corners, which we call bends. A verti-
cal step-line (VSL) is a sequence of vertical, horizontal and vertical straight-line
segments. A horizontal step-line (HSL) is a sequence of horizontal, vertical and
horizontal straight-line segments.

Based on step-lines, we introduce a polygon called a “combined decagon,”
which plays a key role to find a 10-gonal drawing of a slicing graph.

3.1 Combined Decagon

We introduce how to draw a cycle with four corner vertices as a k-gon with 4 <
k < 10. We consider a plane graph G of cycle G = ({a, b, ¢,d}, {(a,b), (b,¢), (c,d),
(d,a)}). Note that path ab is the top path, dc is the bottom path, ad is the left
path and be is the right path of G. We call path dab the top-left path of G.

We consider a k-gon (4 < k < 10) in which each path is drawn as a line
segment, a VSL, an HSL or a pair of these. We use several types of combinations
of lines for each of the top-left path, the right path and the bottom path; Five
types for the top-left path (Fig. 3), three types for the right path (Fig. 4), and
three types for the bottom path (Fig. 5).

We draw cycle (a, b, c,d) by choosing a drawing pattern A; (i = 1,2,3,4,5) for
the top-left path, B; (j = 1,2,3) for the right path and Ci (k = 1,2,3) for the
bottom path. Note that the resulting polygon has at most 10 corners. A combined
decagon P is defined as a polygon such that each unit path of P is drawn as a
straight-line or a step-line and at least one of its top and left paths is drawn as
a straight-line. Figure 6 illustrates examples of a combined decagon. We may let
A; denote the set of combined decagons such that the top-left path is drawn as a
pattern in A;. Similarly for B; and Cj.

Let P be a combined decagon. A line segment in the top-left path is called
connectable if it is incident to corner b or d. Similarly a line segment in the right
(bottom) path is called connectable if it is incident to corner c. Other line segments
are called unconnectable. In Figs. 3, 4 and 5, connectable segments are depicted
by thick lines.

We denote the connectable segment in the top path, the left path, the right
path and the bottom path of P by a:(P), a¢(P), a,.(P) and oy (P), respectively.
An unconnectable line segment in the top-left path is called a control segment if
it is incident to corner a. Similarly an unconnectable line segment in the right
(bottom) path is called a conirol segment if it is incident to corner b (d). In Figs.
3, 4 and 5, control segments are depicted by dashed lines. We denote the control
segment in the top path, the left path, the right path and the bottom path of P
by Be(P), Be(P), B.(P) and By(P), respectively. Let Siax(P) be a control segment
whose length is maximum in P. A control segment e is called convez if both of
the two interior angles of P at the both ends of e are 90 degree.
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Fig. 6. Illustration of combined decagons Pi and P,

The width w(P) of P is the distance from the leftmost vertical segment to the
rightmost one, and the height h(P) of P is the distance from the top horizontal
segment to the bottom one. We denote by zy the line segment with end points z



and y. We denote the length of segment zy by |zy|, the area of a polygon P by
A(P), and the sum of the areas specified for all inner faces of a plane graph G
by A(G). For a node u of a slicing tree T, we call the following condition the size
condition of combined decagon P,; A(P,) = A(G,).

3.2 Outline of Algorithm

This subsection outlines our algorithm for slicing graphs with specified areas. The
algorithm is a divide-and-conquer based on slicing trees. We are given a slicing
graph G with specified areas, its slicing tree T, and rectangle P, with corner
vertices for the outer cycle of G. At this point, the positions of all vertices have not
been determined yet. A vertex whose position is determined during the algorithm
is called fired We first draw the outer cycle of G as the specified rectangle F,
fixing the corner vertices. We then visit all internal nodes in T in preorder and
slice P, recursively to obtain an entire drawing of G. For a node u of T', suppose
that the outer cycle of G, is to be drawn as a combined decagon P, which satisfies
the size condition.

Let u be a V-node. Then G, has the vertical slicing path ,, and let z; and
2z, be end vertices of 7, on the top and bottom path of G, respectively. First,
we try to slice P, into two combined decagons which satisfy the size condition by
choosing a (unique) vertical straight-line segment L as its slicing path =, (see Fig.
7). If L can be drawn correctly, i.e., the end points z and z, of L are on as(Py)
and ay,(P,), respectively, then we slice P, by L to obtain two combined decagons.
Otherwise, we split P, by choosing a step-line as its slicing path =, (see Fig. 7).
We can show that the existence of such a suitable step-line =, is ensured if P,
satisfies the size condition and “boundary condition,” which will be described later
(the detail of the proof is omitted due to space limitation).

The slicing procedure for H-nodes u is analogous with that for V-nodes. An
entire drawing of the given slicing graph G will be constructed by applying the
above procedure recursively. We call the algorithm described above Algorithm
Decagonal-Draw.
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Fig. 7. Vertical slicing of P,
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To ensure that a combined decagon can be chosen as the polygon for the outer
facial cycle of each subgraph G, the positions of end vertices 2; and z, of m,, will be
decided so that certain conditions are satisfied. We now describe these conditions.

For each node u of T, let f: be the number of inner faces of G, that are
adjacent to the top path of G,, and fZ be the number of inner faces of G, that
are adjacent to the left path of G,.

Let a,;, be the minimum area of all areas for inner faces of G. Let W and H
be the width and height of the rectangle specified for the outer facial cycle of a
given slicing graph G. We define

Qnin
A= S (W, H)" )

We define some conditions on combined decagon P,.

A control segment e of P, is called (], f)-admissible if one of the followings
holds:

e is a convex and vertical segment, and fi) < le| < fA,

e is a convex and horizontal segment, and fi) < |e| < fA,

e is a non-convex and vertical segment, and |e| < (f — fi)A,

e is a non-convex and horizontal segment, and |e| < (f — f)A.

A combined decagon P, is called (A, f)-admissible if it satisfies the followings.

(8.1) |at(Pu)’ Z ﬁ‘Ay
(a2) |ae(Pu)| > fEA,
(a3) - Every control segment of P, is (), f)-admissible,
(ad) If P, € Ay, then |oe(Py)| 2 (f + fE)X or |ae(Pu)| 2 (f + fEA,
(ab) ¥ P, € A3 U Ay, then |ag(P,)| + |Be(Py)| 2 (f + FEA,
(a6) If P, € A3 U As, then |, (P.)| + |8:(Pu)l = (f + fL)A,
(a7) If Py, € A2 N By, then |Be(Py)| — |8 (Pu)l = filh,
(a8) If P, € A3 N Cs, then |B(P.)| — |Bo(Pu)| = fEX,
(a'g) If Pu € A4 N B2’ then ‘ﬁr(Pu)i - iﬁt(Pu)l 2 fqt;)‘a
(al0) If P, € As N Cy, then |By(Pu) — |Be(Pu)| = fEX

By (A, f)-admissibility of P,, P, is a simple polygon, and the distance of any pair
of vertical line segments or any pair of horizontal line segments of P, is at least A.

For a combined decagon P,, let a be the top-left corner vertex of P,, &/ be a
fixed vertex which is the nearest to a on the top path of P,, and d’ be a fixed vertex
which is the nearest to a on the left path of P,. We call the following conditions
the boundary condition of P,.

(bl) If there exists fixed vertices on the top path of P,, then these vertices are on
a:(P,). The distance of any pair of fixed vertices on c:(P,) is at least fZA,
and the distance from both ends of a;(P,) to any fixed vertex is at least fiA.

(b2) If there exists fixed vertices on the left path of P,, then these vertices are on
a¢(P,). The distance of any pair of fixed vertices on a,(P,) is at least fi),
and the distance from both ends of a,(P,) to any fixed vertex is at least fi).

(b3) K P, € A;, then the distance from b’ to the left path of P, is greater than
(f + fL)A or the distance from d’ to the top path of P, is greater than
(f + fO

(b4) If P, € Ay U Ay, then the distance from d’ to the top path of P, is greater
than (f + f)A.

(b5) If P, € A3z U As, then the distance from ¥ to the left path of P, is greater
than (f + f5)A.
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Let D be the set of all (A, f)-admissible decagons that satisfy the boundary
and size conditions.

The following lemma guarantees the correctness of the algorithm, whose proof
can be found in the full version of the paper.

Lemma 1. For a decagon P, € D, let P, and P,, be combined decagons generated
by slicing P, in Decagonal-Draw. Then P, and P, belong to D. ]

By this lemma, we can prove the existence of 10-gonal drawings in Theorem 1.

Lemma 2. Algorithm Decagonal-Draw finds a 10-gonal drawing of a slicing graph
G with specified face areas correctly.

Proof. Let P, be a rectangle given as the boundary of G. Clearly P, has no control
segments and satisfies the size condition. Hence, P, satisfies (), f)-admissibility.
Since P, satisfies the boundary condition, we have P, € D. By Lemma 1, every
face of G is drawn as a decagon in D recursively. Hence, algorithm Decagonal-Draw
finds a 10-gonal drawing of a slicing graph G with specified face areas. a

It is not difficult to observe the time complexity of the algorithm.

Lemma 3. Algorithm Decagonal-Draw can be implemented to run in O(n) time
and space. ‘ a

Lemmas 2 and 3 prove Theorem 1.

4 Conclusion

In this paper, we showed that every slicing graph has a 10-gonal drawing, and
we also gave a linear time algorithm to find such a drawing. Furthermore, we
obtained the results that every rectangular graph has an 18-gonal drawing, and
every 3-connected plane graph whose maximum degree is three has a 34-gonal
drawing by converting those graphs into slicing graphs.

It is left as a future work to derive lower bounds on the number k such that
every slicing graph admits a k-gonal drawing.
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