Quantifier Elimination for Products of Ordered Abelian Groups

Shingo Ibuka, Graduate School of Science and Technology, Kobe University

Introduction

Komori [1] and Weispfenning [2] gave an axiomatization for $\mathbb{Z} \times \mathbb{Q}$ in the language of Presburger, $\{+,-,<,0,1,\equiv_n\}_{n\geq 1}$, and showed quantifier elimination, where $x\equiv_n y$ is interpreted as $\exists z(x-y=nz)$, and 1 as (1,0).

If H is an ordered abelian group with extra relations and constants, the lexicographic product $H \times \mathbb{Q}$ can be naturally viewed as a structure for the language of H. Suzuki [3] generalized Komori's result and proved that when H admits quantifier elimination, so $H \times \mathbb{Q}$ does, by adding another relation $I = \{0\} \times \mathbb{Q}$ to $H \times \mathbb{Q}$.

Suzuki's proof is model-theoretic but rather complicated. By incorpolating some syntactical argument, Tanaka and Yokoyama [4] gave a simpler one.

Adapting their argument, we show quantifier elimination for $H \times \mathbb{Z}$ in the extended language by $I = \{0\} \times \mathbb{Z}$ and the language of Presburger.

1 Preliminaries

We write N⁺ for the natural numbers greater than 0, and \bar{x} for the sequence of variables (x_1, x_2, \dots, x_n) . Let $L_{og} = \{+, -, 0, <\}$, the language of the ordered abelian groups, and $L_{Pr} = L_{og} \cup \{1\} \cup \{\equiv_n\}_{n \in \mathbb{N}^+}$, the language of Presburger Arithmetic, where 1 is a constant symbol and \equiv_n are binary relation symbols. The notation nx stands for the term $x + \dots + x$ (n times) for each $n \in \mathbb{N}^+$.

Let H be an ordered abelian group as an L_{og} -structure and have an additional interpretation of L_{RC} , where L_{RC} consists of relation and constant symbols. For simplicity, we define $L_{og+} = L_{og} \cup L_{RC} \cup \{I\}$ and $L_{Pr+} = L_{Pr} \cup L_{RC} \cup \{I\}$, where I is a unary relation symbol which does not appear in $L_{Pr} \cup L_{RC}$.

Here, we give a structure expanding the direct sum of two structures.

Definition 1.1 (Product interpretation) Suppose that K is an ordered abelian group as an L_{og} -structure (resp., a model of Presburger arithmetic as an L_{Pr} -structure). We call G the structure with the *product interpretation* of H and K for L_{og+} (resp., L_{Pr+}) if G is the direct product of H and K with the following interpretation of L_{og+} (resp., L_{Pr+}):

- (1) +, are calculated coordinatewise,
- (2) $0^G := (0^H, 0^K)$
- (3) $(x_1, y_1) <^G (x_2, y_2)$ if and only if $x_1 <^H x_2$ or $(x_1 = x_2 \text{ and } y_1 <^K y_2)$,
- (4) $c^G := (c^H, 0^K)$ for each constant symbol $c \in L_{RC}$,
- (5) $((x_1, y_1), \dots, (x_n, y_n)) \in \mathbb{R}^G$ if and only if $(x_1, \dots, x_n) \in \mathbb{R}^H$ for each relation symbol $R \in L_{\mathbb{R}C}$, and
- (6) $I^G := \{0^H\} \times K$.

The rest clauses (7), (8) are additional for the product interpretation for L_{Pr+} :

- $(7) \ \forall x (0 < x \rightarrow 1 \le x),$
- (8) $\forall xy(x \equiv_n y \leftrightarrow \exists z(x-y=nz))$ for each $n \in \mathbb{N}^+$.

Quantifier Elimination for the Product Structure with a Pres**burger Arithmetic**

Suzuki[3] showed the fact below.

Fact 2.1 (Suzuki) Suppose that H is an ordered abelian group in L_{og} and admits quantifier elimination in $L_{og} \cup L_{RC}$. If G is the structure with the product interpretation of $H \times \mathbb{Q}$ for L_{og+} , then G admits quantifier elimination.

Tanaka and Yokoyama [4] gave a simpler proof for Fact 2.1. We prove quantifier elimination for structures with the product interpretation with \mathbb{Z} in a similar way.

Lemma 2.2 For any quantifier-free $L_{og} \cup L_{RC}$ -formula ψ , there exists a quantifier-free L_{og+} -formula ψ' such that for all $\bar{y} \in H \times \mathbb{Z}$, $H \models \psi(\bar{y}^1) \Leftrightarrow H \times \mathbb{Z} \models \psi'(\bar{y})$

Proof. To obtain ψ' , replace all the occurrences of 0 < t with $0 < t \land \neg I(t)$, and t = 0 with I(t).

Definition 2.3 For each term t, t^1 denotes the term obtained from t by replacing 1 with 0, and t^2 by replacing c with 0 for each constant symbol c in L_{RC} .

Theorem 2.4 Suppose that H is an ordered abelian group in L_{og} and admits quantifier elimination in $L_{og} \cup L_{RC}$. If G is the structure with the product interpretation of H and Z for L_{Pr+} , then G admits quantifier elimination.

Proof. It suffices to eliminate each existential quantifier from the following two formulas with parameters \bar{y} :

$$\exists x \begin{cases} s(\bar{y}) < mx < t(\bar{y}) \\ \land \bigwedge_{i \in Pos} mx \equiv_{n_i} t_i(\bar{y}) \land \bigwedge_{i \in Neg} mx \not\equiv_{n_i} t_i(\bar{y}) \\ \land \bigwedge_{i} R(m_i x + t_i(\bar{y})) \land \bigwedge_{i} \neg R(m_i x + t_i(\bar{y})) \\ \land \bigwedge_{i} I(mx + t_i(\bar{y})) \land \bigwedge_{i} \neg I(mx + t_i(\bar{y})), \end{cases}$$
orm 2:

$$\exists x \begin{cases} s(\bar{y}) = mx \\ \wedge \bigwedge_{i \in Pos} mx \equiv_{n_i} t_i(\bar{y}) \wedge \bigwedge_{i \in Neg} mx \not\equiv_{n_i} t_i(\bar{y}) \\ \wedge \bigwedge_{i} R(m_i x + t_i(\bar{y})) \wedge \bigwedge_{i} \neg R(m_i x + t_i(\bar{y})) \\ \wedge \bigwedge_{i} I(mx + t_i(\bar{y})) \wedge \bigwedge_{i} \neg I(mx + t_i(\bar{y})), \end{cases}$$

where $s(\bar{y})$, $t(\bar{y})$ and $t_i(\bar{y})$ are L_{Pr+} -terms with parameters \bar{y} and m, m_i and n_i are in N^+ in the respective formulas. For taking some coefficients commonly, use that

$$x = 0 \leftrightarrow mx = 0$$

$$x \equiv_n 0 \leftrightarrow mx \equiv_{mn} 0$$
 and

$$I(x) \leftrightarrow I(mx)$$

for each $m, n \in \mathbb{N}^+$.

Henceforth we argue over form 1, because Form 2 can also be dealt in the same way. Considering that

$$t^{G}(\bar{y}) = (t^{1H}(\bar{y}^{1}), t^{2Z}(\bar{y}^{2}))$$

and

 $G \models t(\bar{y}) \equiv_n 0 \text{ iff } H \models t^{1H}(\bar{y}^1) \equiv_n 0 \text{ and } \mathbb{Z} \models t^{2\mathbb{Z}}(\bar{y}^2) \equiv_n 0,$ $G \models (\text{Form 1}) \text{ is equivalent to the disjunction of (a)-(d).}$

(a)
$$G \models I(s(\bar{y}) - t(\bar{y}))$$
 and
$$\begin{cases}
S^{1}(\bar{y}^{1}) = mx = t^{1}(\bar{y}^{1}) \\
 & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \land \bigwedge_{i \in S} mx \not\equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \\
 & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{2}(\bar{y}^{2}) \land \bigwedge_{i \in Neg \backslash S} mx \not\equiv_{n_{i}} t_{i}^{2}(\bar{y}^{2})
\end{cases}$$
(b) $G \models \neg I(s(\bar{y}) - t(\bar{y}))$ and
$$\begin{cases}
F \models \exists x & \wedge \bigwedge_{i \in Pos} mx = t^{1}(\bar{y}^{1}) \land \bigwedge_{i \in Neg \backslash S} mx \not\equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \land \bigwedge_{i \in Neg \backslash S} mx \not\equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \\
 & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \land \bigwedge_{i \in Neg \backslash S} mx \not\equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})
\end{cases}$$
(c) $G \models \neg I(s(\bar{y}) - t(\bar{y}))$ and
$$\begin{cases}
F \models \exists x & \wedge \bigwedge_{i \in Pos} mx = t^{1}(\bar{y}^{1}) \land \bigwedge_{i \in Neg \backslash S} mx \not\equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \land \bigwedge_{i \in Neg \backslash S} mx \not\equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})
\end{cases}$$

$$F \models \exists x & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \land \bigwedge_{i \in Neg \backslash S} mx \not\equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})
\end{cases}$$
(d) $G \models \neg I(s(\bar{y}) - t(\bar{y}))$ and
$$F \models \exists x & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \land \bigwedge_{i \in Neg \backslash S} mx \not\equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})$$

$$F \models \exists x & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \land \bigwedge_{i \in S} mx \not\equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})$$

$$F \models \exists x & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \land \bigwedge_{i \in S} mx \not\equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})$$

$$F \models \exists x & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \land \bigwedge_{i \in S} mx \not\equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})$$

$$F \models \exists x & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \land \bigwedge_{i \in Neg \backslash S} mx \not\equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})$$

$$F \vdash \exists x & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \land \bigwedge_{i \in Neg \backslash S} mx \not\equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})$$

$$F \vdash \exists x & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})$$

$$F \vdash \exists x & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})$$

$$F \vdash \exists x & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})$$

$$F \vdash \exists x & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})$$

$$F \vdash \exists x & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})$$

$$F \vdash \exists x & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})$$

$$F \vdash \exists x & \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1})$$

$$F \vdash \exists x & \wedge \bigwedge_{i \in Pos} mx \equiv$$

where $\varphi_{RI}(x, \bar{y})$ is a quantifier-free formula with predicates R and I. We show that (a)-(d) are representable by a quantifier-free formula.

Case (a). First, eliminate the negative part from the formula below appeared in (a).

$$\mathbb{Z} \models \exists x \left(\begin{array}{l} s^2(\bar{y}^2) < mx < t^2(\bar{y}^2) \\ \wedge \bigwedge_{i \in Pos} mx \equiv_{n_i} t_i^2(\bar{y}^2) \wedge \bigwedge_{i \in Neg \setminus S} mx \not\equiv_{n_i} t_i^2(\bar{y}^2) \end{array} \right) \cdots (1)$$

As the negative part is equivalent in \mathbb{Z} to

$$\bigwedge_{i \in Neg \setminus S} \bigvee_{j=1}^{n_i} mx \equiv_{n_i} (t_i + j)^2 (\bar{y}^2),$$

(1) can be rewritten by taking a disjunctive normal form as

$$\mathbb{Z} \models \exists x \bigvee \left(s^2(\bar{y}^2) < mx < t^2(\bar{y}^2) \land \bigwedge mx \equiv_{n_i} t_i^2(\bar{y}^2) \right) \qquad \cdots (2)$$

Furthermore, we can choose the n_i in (2) relatively prime to each other. Therefore, (a) is equivalent to the following form:

(a)'
$$G \models I(s(\bar{y}) - t(\bar{y}))$$
 and

$$\bigvee_{S \subseteq Neg} \left\{ \begin{array}{l} s^{1}(\bar{y}^{1}) = mx = t^{1}(\bar{y}^{1}) \\ \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \wedge \bigwedge_{i \in S} mx \not\equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \\ \wedge \varphi_{RI}(x, \bar{y}) \end{array} \right\} \text{ and }$$

$$\mathbb{Z} \models \exists x \left(s^{2}(\bar{y}^{2}) < mx < t^{2}(\bar{y}^{2}) \wedge \bigwedge_{i \in S} mx \equiv_{n_{i}} t_{i}^{2}(\bar{y}^{2}) \right).$$
And the property of Supplies to Supplies (Chipese) Remainder Theorem, there exists a unit

According to Sunzi's (Chinese) Remainder Theorem, there exists a unique solution modulo Πn_i to the system

$$\bigwedge v \equiv_{n_i} t_i^2(\bar{y}^2).$$
 Thus, the formula

$$\mathbb{Z} \models \exists x \Big(s^2(\bar{y}^2) < mx < t^2(\bar{y}^2) \land \bigwedge mx \equiv_{n_i} t_i^2(\bar{y}^2) \Big)$$

can be replaced with

$$Z \models \bigwedge_{i=1}^{\Pi n_i - 1} \left(\bigwedge m(s^2(\bar{y}^2) + i) \equiv_{n_i} t_i^2(\bar{y}^2) \to s^2(\bar{y}) + i < t^2(\bar{y}^2) \right). \qquad \cdots (3)$$

Notice that each step of transformations above depends only on the theory of Z. Under the condition $G \models I(s(\bar{y}) - t(\bar{y}))$ in (a)', (3) is equivalent to

$$H \times \mathbb{Z} \models \bigwedge_{i=1}^{\Pi n_i - 1} \left(\bigwedge m(s(\bar{y}) + i) \equiv_{n_i} t_i(\bar{y}) \to s(\bar{y}) + i < t(\bar{y}) \right).$$

On the other hand, as H admits quantifier elimination, there exists a quantifier-free $L_{og} \cup L_{RC}$ formula ψ such that $H \models \psi(\bar{y}^1)$ is equivalent to

$$H \models \exists x \begin{pmatrix} s^{1}(\bar{y}^{1}) = mx = t^{1}(\bar{y}^{1}) \\ \wedge \bigwedge_{i \in Pos} mx \equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \wedge \bigwedge_{i \in S} mx \not\equiv_{n_{i}} t_{i}^{1}(\bar{y}^{1}) \\ \wedge \varphi_{RI}(x, \bar{y}^{1}) \end{pmatrix},$$

where $\bar{y} \in H \times \mathbb{Z}$

By lemma(2.2), we have a formula ψ' such that $H \models \psi(\bar{y}^1)$ is equivalent to $H \times \mathbb{Z} \models \psi'(\bar{y})$ for $\bar{y} \in H \times \mathbb{Z}$. This completes Case (a). Note that the formula obtained finally is determined uniquely by the theory of H and \mathbb{Z} .

Case (b). After eliminating some negative parts by the same procedure, eliminate the quantifier from

$$\bigvee_{S \subseteq Neg} \bigvee \left\{ \begin{array}{l} H \models \exists x \left(\begin{array}{l} s^1(\bar{y}^1) < mx < t^1(\bar{y}^1) \\ \land \bigwedge_{i \in Pos} mx \equiv_{n_i} t_i^1(\bar{y}^1) \land \bigwedge_{i \in S} mx \not\equiv_{n_i} t_i^1(\bar{y}^1) \\ \land \varphi_{RI}(x, \bar{y}) \\ \mathbb{Z} \models \exists x \left(\begin{array}{l} \bigwedge mx \equiv_{n_i} t_i^2(\bar{y}^2) \end{array} \right). \end{array} \right.$$

This case is simple

$$\mathbb{Z} \models \exists x (\bigwedge mx \equiv_{n_i} t_i^2(\bar{y}^2))$$

is always true, (b) is equivalent to a quantifier-free formula by lemma(2.2) and that H has quantifier elimination.

(c), (d) are similar as (b).
$$\Box$$

As mentioned in the proof of Theorem 2.4, quantifier elimination for $H \times \mathbb{Z}$ depends only on the theories of H and \mathbb{Q} .

Corollary 2.5 Suppose that $H \equiv H'$ and $K \equiv \mathbb{Z}$, and let $\varphi(x, \bar{y})$ and $\psi(\bar{y})$ be quantifier-free formulas. If $H \times \mathbb{Z} \models \forall \bar{y} (\exists x \phi(x, \bar{y}) \leftrightarrow \psi(\bar{y})), then H' \times K \models \forall \bar{y} (\exists x \phi(x, \bar{y}) \leftrightarrow \psi(\bar{y})).$

3 Acknowledgements

I would like to express my gratitude to Prof.Hirotaka Kikyo for giving me these problems and valuable suggestions.

References

- [1] Yuichi Komori, Completeness of two theories on ordered abelian groups and embedding relations, *Nagoya Math.J.*, Vol.77(1980), pp. 33-39.
- [2] Volker Weispfenning, Elimination of quantifiers for certain ordered and lattice-ordered abelian groups, Bulletin de la Société Mathématique de Belgique, Ser.B 33(1981), pp.131-155.
- [3] Nobuya Suzuki, Quantifier elimination results for products of ordered ablian groups, *Tsukuba J. Math.*, Vol.28(2004), No.2, pp.291-301.
- [4] Hiroshi Tanaka, Hirokazu Yokoyama, Quantifier elimination of the products of ordered ablian groups, *Tsukuba J. Math.*, Vol.30(2006) No.2, pp.433-438.