# Interpreting finite fields in towers of cyclotomic fields 

鹿児島国際大学国際文化学部 福崎䝳治（Kenji Fukuzaki）<br>Faculty of Intercultural Studies， The international University of Kagoshima


#### Abstract

Let $l$ be an odd prime and $\zeta_{l^{n}}$ is a primitive $l^{n}$－th root of unity．We consider the towers of cylotomic fields $K_{l}=\bigcup_{n} \mathbb{Q}\left(\zeta_{l^{n}}\right)$ ．We prove that，for any positive integer $k$ ，there is a prime $p>k$ such that $\mathbb{Z} /(p)$ is interpretable in $K_{l}$ ．The proof uses the method of Julia Robinson by which she proved the undecidability of number fields．

For $K_{m}=\bigcup_{n} \mathbb{Q}\left(\zeta_{m^{n}}\right)$ ，where $m$ is an arbitrary positive integer and $\zeta_{m^{n}}$ is a primitive $m^{n}$－th root of unity，we prove that for any positive integer $k$ ，there is a prime $p>k$ such that some finite product of $\mathbb{Z} /(p)$ is interpretable in $K_{m}$ ．


## 1 Introduction

In 1959 Julia Robinson［1］proved that in a given number field， $\mathbb{N}$ is $\emptyset$－definable in the ring language，from which follows the undecidability of its theory．She constructed a formula which includes $\mathbb{Z}$ but excludes non－algebraic integers，which only depends on the ramification index of prime ideals of a number field which divides 2 ．Let $F$ be a number field and $\psi(t)$ be such a formula．Then the ring of algebraic integers $\mathfrak{D}$ of $F$ is $\emptyset$－definable in $F$ ．Let $a_{1}, \ldots, a_{s}$ be an integral basis of $\mathfrak{O}(s=[F: \mathbb{Q}])$ ，and let $P_{i}(x)$ be the minimal polynomial of $a_{i}$ over $\mathbb{Q}$（hence over $\mathbb{Z}$ ）for each $i$ ．Then in $F$

$$
t \in \mathfrak{O} \Longleftrightarrow \exists x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{s}\left(t=x_{1} y_{1}+\cdots+x_{s} y_{s} \wedge \bigwedge_{i} P_{i}\left(y_{i}\right)=0 \wedge \bigwedge_{i} \psi\left(x_{i}\right)\right)
$$

holds．She then constructed a formula which defines $\mathbb{N}$ in $\mathfrak{O}$ ，which only depends on $[F: \mathbb{Q}]$ ．

J．Robinson used the Hasse－Minkowski theorem on quadratic forms．On the other hand，using Hasse＇s Norm Theorem，R．Rumely［2］proved that the theory of global fields is undecidable．His formula is independent of global fields．Recently B．Poonen ［3］extended the results．He proved that the theory of finitely generated fields over $\mathbb{Q}$ is undecidable．

We follow the method of J. Robinson. We will show that $\psi(t)$ includes $\mathbb{Z}$ and excludes non-algebraic integers in $K_{l}=\bigcup_{n} \mathbb{Q}\left(\zeta_{l^{n}}\right)$, where $\psi(t)$ is the formula which she used in [1]. We then will show that for any positive integer $k$, there is a prime $p>k$ such that $\mathbb{Z} \cup p \psi\left(K_{l}\right)$ is $\emptyset$-definable, from which the interpretability of $\mathbb{Z} /(p)$ in $K_{l}$ follows.

In section 2, we describe construction of $\psi(t)$ in [1]. In section 3, we extend the result to $K_{l}$, and in section 4 , we prove that for any positive integer $k$, there is a prime $p>k$ such that $\mathbb{Z} \cup p \psi\left(K_{l}\right)$ is $\emptyset$-definable.

In section 5 , we prove that for any positive integer $k$, there is a prime $q>k$ such that some dirct product of $\mathbb{Z} /(q)$ is interpretable in the ring of algebraic integers of $\bigcup_{n} \mathbb{Q}\left(\zeta_{m^{n}}\right)$, where $m$ is an arbitrary positive integer and $\zeta_{m^{n}}$ is a primitive $m^{n}$-th root of unity.

## 2 Construction of $\psi(t)$

Let $F$ be a number field (a finite algebraic extension of the rationals $\mathbb{Q}$ ) and let $\mathfrak{D}$ be the ring of algebraic integers of $F$. By $\mathfrak{p}$ we denote a valuation of $F$ and by $F_{\mathfrak{p}}$ the completion of $F$ with respect to $\mathfrak{p}$. Since non-Archemedean valuations of $F$ are $\mathfrak{p}$-adic valuations for some prime ideal $\mathfrak{p}$ of $F$, we use the same letter $\mathfrak{p}$ for both the valuation and the prim ideal. Let $\mathfrak{p}$ be a prime ideal of $F$ and $a \in F$. By $\nu_{\mathrm{p}}(a)$ we denote the order of $a$ at $\mathfrak{p}$. Given $a, b \in F^{*}$, we use Hilbert symbol $(a, b)_{\mathfrak{p}}$, which is defined to be +1 if $a x^{2}+b y^{2}=1$ is solvable in $F_{\mathfrak{p}}$, otherwise defined to be -1 .

The following lemma is well-known:
Lemma $1 h \in F^{*}$ can be represented by the form $x^{2}-a y^{2}-b z^{2}$ iff $-a b / h \notin F_{\mathfrak{p}}^{* 2}$ for any valuation $\mathfrak{p}$ such that $(a, b)_{\mathfrak{p}}=-1$.

This follows the property of quaternary quadratic forms and the Hasse-Minkowski theorem on quadratic forms. See [4, p. 187] and [6, p.111].

Using this lemma, J. Robinson proved the following:
( $\dagger$ ) Let $m$ be a positive integer such that $\mathfrak{p}^{m} \nmid 2$ for all prime ideals $\mathfrak{p}$. Let $\varphi(s, u, t)$ be

$$
\exists x, y, z\left(1-s u t^{2 m}=x^{2}-s y^{2}-u z^{2}\right)
$$

For $t \notin \mathfrak{O}$, there are $a, b \in \mathfrak{O}$ such that

1. $F \vDash \neg \varphi(a, b, t)$,
2. $F \vDash \forall c(\varphi(a, b, c) \rightarrow \varphi(a, b, c+1))$.

Then we can use inductive form: Let $\psi(t)$ be

$$
\forall s, u(\forall c(\varphi(s, u, c) \rightarrow \varphi(s, u, c+1)) \rightarrow \varphi(s, u, t)),
$$

then the solution set of $\psi(t)$ in $F, \psi(F)$, includes $\mathbb{Z}$ but excludes non-algebraic integers, that is, $\mathbb{Z} \subseteq \psi(F) \subseteq \mathfrak{D}$. Since $\varphi(s, u, 0)$ holds for every $s, u \in F$, the inductive form insures that every positive integer satisify $\psi$. Since $\varphi(s, u, t) \leftrightarrow \varphi(s, u,-t)$, every rational integer also satisfies $\psi$. The above statement ( $\dagger$ ) shows that non-algebraic integers fail to satisfy $\psi$. Note that for $t \notin \mathfrak{O}$ (and for $t \in \mathfrak{O}$ ), it is not so difficult to find $a, b \in F$ such that 1 holds, but difficult to find $a, b$ such that both 1 and 2 hold.
J. Robinson proved the above statement from two lemmas. We state these two lemmas in a little bit different forms for our sake. Before stating these lemmas, we need some lemmas. The following two lemmas are special cases of a theorem proved in [5, p.166].

Lemma 2 There are infinitely many prime ideals in every ideal class.
Lemma 3 If $a \in \mathfrak{D}$ is prime to an ideal $\mathfrak{m}$, there are infinitely many prime elements $p \in \mathfrak{D}$ such that $p \equiv a(\bmod \mathfrak{m})$.

Lemma 4 Let $a \in \mathfrak{D}$ and $\nu_{\mathfrak{p}}(a)=1$. Then there is $b \in \mathfrak{D}$ with $\mathfrak{p} \wedge b$ such that $(a, b)_{\mathfrak{p}}=-1$.

Proof. It is proved in [4, pp.161-165] that there is a unit in a local field $M$ such that it is congruent to a square $(\bmod 4 \mathfrak{o})$ but not $(\bmod 4 \mathfrak{p})$, where $\mathfrak{o}$ is the ring of integers and $\mathfrak{p}$ a prime ideal of $M$. And if $\epsilon$ is such a unit, $(a, \epsilon)_{\mathfrak{p}}=-1$ for a prime element $a$. Take such a unit $\epsilon \in F_{\mathfrak{p}}$. There is a unit $\epsilon_{0} \in F$ such that $\epsilon_{0} \equiv \epsilon(\bmod 4 \mathfrak{p}) . \epsilon_{0}$ is congruent to a square $(\bmod 4 \mathfrak{D})$ but not $(\bmod 4 \mathfrak{p})$.
J. Robinson proved this lemma using Hasse's formula evaluating the Hilbert symbol.

We state two basic lemmas due to J. Robinson [1, Lemma 8,9].
Lemma 5 Given a prime ideal $\mathfrak{p}_{1}$ of $F$ and an odd prime number $l$, there are relatively prime elements $a$ and $b$ in $\mathfrak{O}^{*}$ such that

1. $(a)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{2 k}$, where $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{2 k}$ are distinct prime ideals which include every prime ideals which divides 2 , and $\mathfrak{p}_{j}$ dose not divide $l$ for $j=2, \ldots, 2 k$, and
2. $b$ is a totally positive prime element such that $(a, b)_{\mathfrak{p}}=-1$ iff $\mathfrak{p} \mid a$.

Proof. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{2 k-1}$ be a set of disticnt prime ideals such that it includes every prime idals dividing 2 and $\mathfrak{p}_{j}$ dose not divide $l$ for $j=2, \ldots, 2 k-1$. Let $\mathfrak{K}$ be the ideal class which contains the product $\mathfrak{p}_{1} \cdots \mathfrak{p}_{2 k-1}$. By Lemma 2 we can choose a
prime ideal $\mathfrak{p}_{2 k}$ in the ideal class $\mathfrak{K}^{-1}$ with $\mathfrak{p}_{2 k} \neq \mathfrak{p}_{i}$ for $i=1, \ldots, 2 k-1$ and with $\mathfrak{p}_{2 k} \nmid(l)$.

For $i=1, \ldots, 2 k$, by Lemma 4 we can choose $b_{i} \in \mathfrak{D}$ prime to $\mathfrak{p}$ so that $\left(a, b_{i}\right)_{\mathfrak{p}}=$ -1 . Let $m$ be a positive integer such that $\mathfrak{p}^{m} \nmid 2$ for every prime ideal $\mathfrak{p}$. Consider the simultaneous system of congruences

$$
x \equiv b_{i} \quad\left(\bmod \mathfrak{p}_{i}^{2 m}\right) \quad \text { for } i=1, \ldots, 2 k
$$

By the Chinese Remainder Theorem, there is a solution $c \in \mathcal{D}$ and so is every element which is congruent to $c\left(\bmod \mathfrak{p}_{1}^{2 m} \cdots \mathfrak{p}_{2 k}^{2 m}\right)$. Since $c$ is prime to the modulus, by Lemma 3 there are infinitely many totally positive prime elements $p$ such that

$$
p \equiv c \quad\left(\bmod \mathfrak{p}_{1}^{2 m} \cdots \mathfrak{p}_{2 k}^{2 m}\right)
$$

Let $b$ be one of such elements. $b$ is coprime to $a$.
We claim that $b_{i} / b \in F_{p_{i}}^{2}$ for each $i ;$ since $b \equiv b_{i}\left(\bmod \mathfrak{p}_{i}^{2 m}\right)$ and $b_{i}$ is prime to $\mathfrak{p}_{i}, \nu_{\mathfrak{p}_{i}}\left(1-b_{i} / b\right)>\nu_{\mathfrak{p}_{i}}(4)$, then applying Hensel's lemma ([5, p.42]) with $x^{2}-b_{i} / b$ and $x=1$, we get that $b_{i} / b \in F_{\mathfrak{p}_{i}}^{2}$. Hence $(a, b)_{\mathfrak{p}_{\boldsymbol{i}}}=-1$ for each $i$. On the other hand, $(a, b)_{\mathfrak{p}}=+1$ for all Archimedean valuations $\mathfrak{p}$ since $b$ is totally positive. It is easy to see that if $(a, b)_{\mathfrak{p}}=-1$ then $\mathfrak{p}$ is an Archimedean valuation or the prime ideal $\mathfrak{p}$ dividing $2 a b$ (see [4, p. 166]). Then the only other other valuation for which $(a, b)_{\mathfrak{p}}=-1$ could hold would be $\mathfrak{p}=(b)$; but, by the product formula for the Hilbert symbol ([4, p.190]), $(a, b)_{\mathfrak{p}}=-1$ for an even number of valuations. Therefore $(a, b)_{\mathfrak{p}}=-1$ iff $\mathfrak{p} \mid a$.

Lemma 6 Let $(a)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{2 k}$ such that $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{2 k}$ are distinct prime ideals which include every prime ideals which divides 2 , and let $b \in \mathfrak{D}^{*}$ be coprime to a such that $(a, b)_{\mathfrak{p}}=-1$ iff $\mathfrak{p} \mid a$, and $m$ be a positive integer such that $\mathfrak{p}^{m} \nmid 2$ for every prime ideal p. Then,

$$
1-a b c^{2 m}=x^{2}-a y^{2}-b z^{2} \text { is solvable for } x, y \text { and } z \text { in } F \text { iff } \nu_{p_{\mathfrak{i}}}(c) \geq 0 \text { for each } i .
$$

Proof. Let $h=1-a b c^{2 m}$. Suppose that $\nu_{p_{i}}(c) \geq 0$ for each $i$. Since $\nu_{p_{i}}(h)=0$ and $\nu_{p_{i}}(-a b)=1, h /(-a b) \notin F_{p_{i}}^{2}$ for each $i$. By Lemma 1 and the assumption, $h=x^{2}-a y^{2}-b z^{2}$ is solvable for $x, y$ and $z$ in $F$.

Now suppose that $\nu_{\boldsymbol{p}_{i}}(c)<0$ for some $i$. Let $\nu_{\boldsymbol{p}_{i_{0}}}(c)<0$. We show that $-a b / h \in$ $F_{\mathfrak{p}_{i_{0}}}^{2}$. Since $\nu_{p_{i_{0}}}(1-(-a b / h))>\nu_{p_{i_{0}}}(4)$, applying again Hensel's lemma with $x^{2}-$ $(-a b / h)$ and $x=1$, we get that $-a b / h \in F_{\mathfrak{p}_{i_{0}}}^{2}$. It follows that $h=x^{2}-a y^{2}-b z^{2}$ is not solvable for $x, y$ and $z$ in $F$.

It is easy to derive the statement $(\dagger)$ from the above two lemmas, noting $\nu_{p}(c)=$ $\nu_{\mathfrak{p}}(c+1)$ for every prime ideal $\mathfrak{p}$.

## $3 \quad \psi(t)$ in towers of cyclotomic fields

Let $F_{n}=\mathbb{Q}\left(\zeta_{l^{n}}\right)$, where $l$ is an odd prime and $\zeta_{l^{n}}$ is a primitive $l^{n}$-th root of unity, and let $K_{l}=\bigcup_{n} \mathbb{Q}\left(\zeta_{l^{n}}\right)\left(F_{0}=\mathbb{Q}\right)$. We denote by $\mathfrak{O}_{n}$ the ring of algebraic integers in $F_{n}$ and by $\mathfrak{D}_{K_{l}}$ the ring of algebraic integers in $K_{l}$. Then $\mathfrak{O}_{K_{l}}=\bigcup_{n} \mathfrak{D}_{n}$.

The following lemma is well-known and proved in [7, pp.256-258]. We denote by $\phi$ Euler's function.

Lemma 7 Let $M=\mathbb{Q}\left(\zeta_{m}\right)$, where $m$ is an positive integer and $\zeta_{m}$ is a primitive $m$-th root of unity. Then

1. $[M: \mathbb{Q}]=\phi(m)$,
2. the only ramified prime ideals in $M$ are those dividing $m$, and especially there is only one prime $\mathfrak{p}=\left(1-\zeta_{l^{n}}\right)$ of $F_{n}$ lying above $l$, and it is totally ramified,
3. given a prime number $p$ coprime to $m$, we let $f$ be the least positive integer such that $p^{f} \equiv 1(\bmod m)$, and set $\phi(m)=f g$. Then in $M,(p)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{g}$, where $\mathfrak{p}_{i}$ are primes of $M$. The residue degree of each $\mathfrak{p}_{i}$ in $M / \mathbb{Q}$ is equal to $f$, and the degree of the decomposition field $\mathfrak{p}_{i}$ in $F_{n}$ over $\mathbb{Q}$ is equal to $g$ for each $i$.

From the above lemma we easily see that,
Lemma 8 Let $0<i<j$ and $\mathfrak{p}$ be a prime ideal of $F_{i}$. Then

1. If $\mathfrak{p} \wedge l$, then in $F_{j}, \mathfrak{p}=\mathfrak{P}_{1} \cdots \mathfrak{P}_{k}$, where $\mathfrak{P}_{r}$ are primes in $F_{j}$ and $k$ divides $\left[F_{j}: F_{i}\right]=l^{j-i}$.
2. If $\mathfrak{p} \mid l$, then in $F_{j}, \mathfrak{p}=\mathfrak{P}^{(j-\mathfrak{i}}$, where $\mathfrak{p}=\left(1-\zeta_{l i}\right), \mathfrak{P}=\left(1-\zeta_{l j}\right)$.

The next lemma is also proved in [7, p.272].
Lemma 9 Let $K \supset k$ be number fields and $\mathfrak{P} \supset \mathfrak{p}$ be primes of $K$ and $k$ repectively. For $\alpha \in K_{\mathfrak{P}}^{*}$, let $a=N_{K_{\mathfrak{P}} / k_{\mathfrak{p}}}(\alpha)$ and $b \in k_{\mathfrak{p}}$. Then, $(\alpha, b)_{\mathfrak{P}}=(a, b)_{\mathfrak{p}}$.

The next lemma follows from Lemma 9.
Lemma 10 Let $0<i<j, \mathfrak{p}$ a prime ideal of $F_{i}$ and $\mathfrak{P}$ be a prime in $F_{j}$ lying over $\mathfrak{p}$. Then for $a, b \in F_{i}^{*},(a, b)_{\mathfrak{p}}=1$ iff $(a, b)_{\mathfrak{P}}=1$.
Proof. Since $F_{j} / F_{i}$ is an abelian extension, the local degree at $\mathfrak{P}$ divides the degree of $F_{j} / F_{i}$, that is, $\left[\left(F_{j}\right)_{\mathfrak{P}}:\left(F_{i}\right)_{\mathfrak{p}}\right]\left[F_{j}: F_{i}\right]$ (see [4, p.32]). Let $u$ be the local degree at $\mathfrak{P}$. Then $N_{K_{\mathfrak{P}} / k_{\mathfrak{p}}}(a)=a^{u}$ and $(a, b)_{\mathfrak{P}}=\left(a^{u}, b\right)_{\mathfrak{p}}=(a, b)_{\mathfrak{p}}^{u}$. Since $u$ is odd, it follows that $(a, b)_{\mathfrak{p}}=1$ iff $(a, b)_{\mathfrak{P}}=1$.

We now extend J. Robinson's result [1] to $K_{l}$. Note that in each $F_{n}, \mathfrak{p}^{\mathbf{2}} 12$ for every prime ideal in $F_{n}$.

Theorem 11 Let $\varphi(s, u, t)$ be

$$
\exists x, y, z\left(1-a b t^{4}=x^{2}-s y^{2}-u z^{2}\right)
$$

and $\psi(t)$ be

$$
\forall s, u(\forall c(\varphi(s, u, c) \rightarrow \varphi(s, u, c+1)) \rightarrow \varphi(s, u, t))
$$

then the solution set of $\psi(t)$ in $K_{l}, \psi\left(K_{l}\right)$, includes $\mathbb{Z}$ but excludes non-algebraic integers, that is, $\mathbb{Z} \subseteq \psi\left(K_{l}\right) \subseteq \mathfrak{D}_{\boldsymbol{k}_{l}}$.

Proof. It is clear that $\mathbb{Z} \subseteq \psi\left(K_{l}\right)$. Let $t \in K_{l} \backslash \mathfrak{D}_{K_{l}}$. For this $t$, we show that there are $a, b \in K_{l}$ such that

$$
K_{l} \models \neg \varphi(a, b, t) \wedge \forall c(\varphi(a, b, c) \rightarrow \varphi(a, b, c+1)) .
$$

We fix $F_{m}$ such that $t \in F_{m}$ and $m>1$. Then $\nu_{\mathfrak{p}_{1}}(t)<0$ for some prime $\mathfrak{p}_{1}$ in $F_{m}$. By Lemma 5, there are relatively prime elements $a$ and $b$ in $\mathfrak{O}_{m}$ such that

1. $(a)=\mathfrak{p}_{1} \cdots \mathfrak{p}_{2 k}$, where $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{2 k}$ are distinct prime ideals in $F_{m}$ which include every prime ideals in $F_{m}$ which divides 2 , and $\mathfrak{p}_{j}$ dose not divide $l$ for $j=$ $2, \ldots, 2 k$, and
2. $b$ is a totally positive prime element in $F_{m}$ such that $(a, b)_{\mathfrak{p}}=-1$ iff $\mathfrak{p} \mid a$.

By Lemma 6, $1-a b t^{4}=x^{2}-a y^{2}-b z^{2}$ is not solvable for $x, y$ and $z$ in $F_{m}$, and for every $c \in F_{m}$, if $F_{m} \vDash \varphi(a, b, c)$ then $F_{m} \vDash \varphi(a, b, c+1)$.

For this $a, b$, it is enough to show that for every $s>m$ such that $s-m$ is even, $1-a b t^{4}=x^{2}-a y^{2}-b z^{2}$ is not solvable for $x, y$ and $z$ in $F_{s}$, and for every $c \in F_{s}$, if $F_{s} \models \varphi(a, b, c)$ then $F_{s}=\varphi(a, b, c+1)$.

Note that $a, b$ are relatively prime also in $\mathfrak{O}_{s}$.
Case 1: $\mathfrak{p}_{1} 1 l$.
By Lemma 8, the decomposition of the ideal $(a)$ in $F_{s}$ is given by $(a)=\mathfrak{P}_{1} \cdots \mathfrak{P}_{2 r}$, where $\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{2 r}$ are mutually distinct prime ideals and include every prime ideals which devides 2. By Lemma $10,(a, b)_{\mathfrak{P}}=-1$ iff $\mathfrak{P} \mid a$. We let $\mathfrak{p}_{1} \subset \mathfrak{P}_{1}$. Since $\nu_{\mathfrak{p}_{1}}(t)<$ 0 , we have that $\nu_{\mathfrak{P}_{1}}(t)<0$. By Lemma 6, we conclude that $1-a b t^{4}=x^{2}-a y^{2}-b z^{2}$ is not solvable for $x, y$ and $z$ in $F_{s}$, and for every $c \in F_{s}$, if $F_{s} \vDash \varphi(a, b, c)$ then $F_{s} \vDash \varphi(a, b, c+1)$.

Case 2: $\mathfrak{p}_{1} \mid l$.
By Lemma 8, the decomposition of the ideal (a) in $F_{s}$ is given by

$$
(a)=\mathfrak{P}_{1}^{l^{a-m}} \cdots \mathfrak{P}_{2 r^{\prime}}
$$

where $\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{2 r^{\prime}}$ are mutually distinct prime ideals and include every prime ideals which devides 2 , and $\mathfrak{p}_{1}=\left(1-\zeta_{l m}\right), \mathfrak{P}_{1}=\left(1-\zeta_{l s}\right)$.

Let $a^{\prime}=a /\left(1-\zeta_{l \bullet}\right)^{l^{s-m}-1}$. Then $a^{\prime} \in \mathfrak{O}_{s}$ and $\left(a^{\prime}\right)=\mathfrak{P}_{1} \cdots \mathfrak{P}_{2 r^{\prime}}$ in $F_{s}$.
Since $a=a^{\prime}\left(\left(1-\zeta_{l o}\right)^{\left(l^{s-m}-1\right) / 2}\right)^{2},(a, b)_{\mathfrak{P}_{i}}=\left(a^{\prime}, b\right)_{\mathfrak{P}_{i}}$ for each $i$. Hence we have that $\left(a^{\prime}, b\right)_{\mathfrak{P}}=-1$ iff $\mathfrak{P} \mid a^{\prime}$.

Suppose that $1-a b t^{4}=x^{2}-a y^{2}-b z^{2}$ were solvable for $x, y$ and $z$ in $F_{s}$. Then

$$
\left.1-a^{\prime} b\left(t\left(1-\zeta_{l 0}\right)^{\left(l^{s-m}-1\right) / 4}\right)^{4}=x^{2}-a^{\prime}\left(\left(1-\zeta_{l 0}\right)^{\left(l^{l}-m\right.}-1\right) / 2 y\right)^{2}-b z^{2}
$$

is solvable for $x, y$ and $z$ in $F_{s}$, noting that $\left(l^{s-m}-1\right) / 4$ is a positive integer since $l-m$ is even. But $\nu_{\mathfrak{P}_{1}}\left(t\left(1-\zeta_{l^{s}}\right)^{\left(l^{-m}-1\right) / 4}\right)<0$ since $\mathfrak{p}_{1}=\mathfrak{P}_{1}^{l^{s-m}}$. We have a contradiction by Lemma 6.

Next we show that if $F_{s} \models \varphi(a, b, c)$ then $F_{s} \models \varphi(a, b, c+1)$. Suppose that $F_{s} \models \varphi(a, b, c)$, that is, $1-a b c^{4}=x^{2}-a y^{2}-b z^{2}$ is solvable for $x, y$ and $z$ in $F_{s}$. Then

$$
1-a^{\prime} b\left(c\left(1-\zeta_{l a}\right)^{\left(l^{\circ-n}-1\right) / 4}\right)^{4}=x^{2}-a^{\prime}\left(\left(1-\zeta_{l o}\right)^{\left(l^{\circ-n}-1\right) / 2} y\right)^{2}-b z^{2}
$$

is solvable for $x, y$ and $z$ in $F_{s}$. By Lemma 6, $\nu_{\mathfrak{P}_{i}}\left(c\left(1-\zeta_{l \boldsymbol{l}}\right)^{\left(b^{0-m}-1\right) / 4}\right) \geq 0$ for each $\mathfrak{P}_{i}$. It follows that $\nu_{\mathfrak{P}_{i}}\left((c+1)\left(1-\zeta_{l l^{\prime}}\right)^{\left(l^{-m}-1\right) / 4}\right) \geq 0$ for each $\mathfrak{P}_{i}$. Therefore we have that $F_{s} \models \varphi(a, b, c+1)$.

## 4 Interpreting finite prime fields in $K_{l}$

The next lemma follows from [7, p.145].
Lemma 12 Let $F / \mathbb{Q}$ be a finite Galois extension, and $\mathfrak{p}$ be an extension of a prime number $p$ to $F$. Let $F_{Z}$ denote the decomposition field of $\mathfrak{p}$ in $F / \mathbb{Q}$. Finally, let $F^{\prime}$ be an intermediate field of $F / \mathbb{Q}$, and let $\mathfrak{p}^{\prime}$ denote the restriction of $\mathfrak{p}$ to $F^{\prime}$. Then we have:
$F^{\prime} \subseteq F_{Z}$ iff both the ramification index and the residue degree of $\mathfrak{p}^{\prime}$ in $F^{\prime} / \mathbb{Q}$ are equal to 1 .

Recall that when $F / \mathbb{Q}$ is abelian, all the prime ideals $\mathfrak{p}$ dividing $p$ have the same decomposition field in $F / \mathbb{Q}$, and we call it the decomposition field of $p$ in $F / \mathbb{Q}$. Furthermore, under the additional assumption that $F / \mathbb{Q}$ is unramified at $p$ (that is, $F / \mathbb{Q}$ is unramified at every prime ideal dividing $p$ ), the Galois group $G\left(F / F_{Z}\right)$ is cyclic and generated by the Artin automorphism $\sigma=(p, F / \mathbb{Q})$ which is characterized by the congruence $\sigma(a) \equiv a^{p}(\bmod p)$ for $a \in \mathfrak{o}_{F}$, where $\mathfrak{o}_{F}$ is the ring of algebraic integers in $F$.

Lemma 13 Let $l$ be an odd prime. Then, for any positive integer $k$, there is a prime number $p>k$ such that $p$ is a primitive root modulo every power of $l$.

Proof. Let $r$ be a primitive root modulo $l$. Since $r^{l-1} \equiv 1(\bmod l), r^{l-1}=1+k l$ for some $k$. We may suppose that $(k, l)=1$, that is, $k$ is coprime to $l$ : if $r^{l-1}=1+k l^{m}$ with $m>1$, then we may take $r+l$ as a primitive root. By the Theorem of Arithmetic Progression, the congruence class $r\left(\bmod l^{2}\right)$ contains an infinity of primes. Let $p>k$ be a prime in that class. $p$ is coprime to $l$, and is a primitive root modulo $l$ such that $p^{l-1}=1+k^{\prime} l$ for some $k^{\prime}$ with $\left(k^{\prime}, l\right)=1$.

Let $a$ be an integer of the form $1+k^{\prime} l$ for some $k^{\prime}$ with $\left(k^{\prime}, l\right)=1$. By the binomial formula, for every $h \geq 2$, we can show that $f=l^{h-1}$ is the least positive integer such that $a^{f} \equiv 1\left(\bmod l^{h}\right)$. Therefore $p$ is a primitive root modulo every power of $l$.

Lemma 14 Let $F / \mathbb{Q}$ be a finite abelian extension, and be unramified at a prime number $p$. Let $F_{Z}$ be the decomposition field of $p$, and let $\mathfrak{o}, \mathfrak{o}_{Z}$ be the ring of algebraic integers of $F, F_{Z}$ respectively. Then, for $a \in \mathfrak{o}$,

$$
a \in \mathfrak{o}_{Z} \cup p \mathfrak{o} \quad \text { iff } a^{p} \equiv a \quad(\bmod p)
$$

Proof. Let $\sigma$ denote the Artin automorphism in $G\left(F / F_{Z}\right)$. Let $a \in \mathbb{0}$.
If $a \in \mathfrak{o}_{Z}$, then $\sigma(a)=a$ and $\sigma(a) \equiv a^{p}(\bmod p)$. Thus we have that $a^{p} \equiv a$ $(\bmod p)$. If $a \in p o$, clearly $a^{p} \equiv a(\bmod p)$ holds.

Suppose that $a \notin \mathbf{o}_{Z} \cup p \mathbf{0}$. Let $\boldsymbol{o}^{\prime}$ denote the ring of algebraic integers in $\mathbb{Q}(a)$. Since $p 0^{\prime}$ is the intersection of prime ideals in $\boldsymbol{o}^{\prime}$ including $p \mathbb{Z}$, there is an extension $\mathfrak{p}^{\prime}$ of $p \mathbb{Z}$ to $\mathfrak{o}^{\prime}$ such that $a \notin \mathfrak{p}^{\prime}$. The ramification index of $\mathfrak{p}^{\prime}$ in $\mathbb{Q}(a) / \mathbb{Q}$ is equal to 1 since $\mathfrak{p}$ is unramified in $F / \mathbb{Q}$. Since $\mathbb{Q}(a) \notin F_{Z}$, by Lemma 12 , the residue degree of $\mathfrak{p}^{\prime}$ in $\mathbb{Q}(a) / \mathbb{Q}$ is greater than 1 , that is, $\left[\mathfrak{o}^{\prime} / \mathfrak{p}^{\prime}: \mathbb{Z} /(p)\right]>1$. Hence we have that $a^{p} \neq a$ $(\bmod p)$.

We keep the notation of section 3.
Theorem 15 For any positive integer $k$, there is a prime $p>k$ such that $\mathbb{Z} \cup p \mathfrak{D}_{K_{l}}$ is $\emptyset$-definable in $\mathfrak{D}_{K_{l}}$, hence $\mathbb{Z} /(p)$ is interpretable in $\mathfrak{D}_{K_{l}}$.

Proof. Take a prime number $p>k$ as in Lemma 13. Then, by Lemma 7, the decomposition field of $p$ in $F_{n} / \mathbb{Q}$ is $\mathbb{Q}$ for every $n$, and $p$ is unramified in every extension $F_{n} / \mathbb{Q}$. Let $\theta(t)$ be the formula $\exists w\left(t^{p}-t=p w\right)$. By Lemma $14, \theta(t)$ defines $\mathbb{Z} \cup p \mathfrak{O}_{K_{l}}$ in $\mathfrak{O}_{K_{l}}$.

Theorem $16 \mathbb{Z} \cup p \psi\left(K_{l}\right)$ is $\emptyset$-definable in $K_{l}$, hence $\mathbb{Z} /(p)$ is interpretable in $K_{l}$.
Proof. Consider the formula

$$
\psi(t) \wedge \exists w\left(\psi(w) \wedge t^{p}-t=p w\right)
$$

It is evident that this formula defines $\mathbb{Z} \cup p \psi\left(K_{l}\right)$ in $K_{l}$.

## 5 Interpreting direct products of finite fields in $\mathfrak{O}_{K_{m}}$

Let $m$ be a positive integer, and let $K_{m}, \mathfrak{O}_{K_{m}}, F_{n}$ and $\mathfrak{O}_{n}$ be as before. Our methods do not suffice to treat $K_{2}$, since Lemma 10 fails. They also do not suffice to treat $K_{m}$ with $m$ odd; Lemma 10 holds but the proof of Theorem 11 fails. In this section we will prove that for a given poistive integer $k$, there is a prime $q>k$ such that certain direct products of $\mathbb{Z} /(q)$ is interpretable in $\mathfrak{D}_{K_{m}}$ with $m$ arbitrary.

Lemma 17 Let $m$ be a positive integer with the prime factorization

$$
2^{h_{0}} p_{1}^{h_{1}} p_{2}^{h_{2}} \cdots p_{k}^{h_{k}}
$$

Then for a given positive integer $k$, there is a prime number $q>k$ coprime to $m$ such that

1. if $h_{0}=0$, then the order of $q$ in $\left(\mathbb{Z} / m^{r} \mathbb{Z}\right)^{*}$ is equal to
$p_{1}^{r h_{1}-1} p_{2}^{r h_{2}-1} \cdots p_{k}^{r h_{k}-1}$ for every $r \geq 1$,
2. if $h_{0}>0$, then then the order of $q$ in $\left(\mathbb{Z} / m^{r} \mathbb{Z}\right)^{*}$ is equal to
$2^{r h_{0}-2} p_{1}^{r h_{1}-1} p_{2}^{\tau h_{2}-1} \cdots p_{k}^{\tau h_{k}-1}$ for every $r \geq 2$.
Proof. For each odd prime $p_{i}$, we know that there is an integer $u_{i}$ such that $u_{i}^{p_{i}-1}$ is of the form $1+k^{\prime} p_{i}$ for some $k^{\prime}$ which is coprime to $p_{i}$, and every integer of that form is of order $p_{i}^{r-1}$ in $\left(\mathbb{Z} / p_{i}^{r} \mathbb{Z}\right)^{*}$ for every $r \geq 1$. Let $s_{i}=u_{i}^{p_{i}-1}$. On the other hand, we see that by the binomial formula, the order of 5 in $\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{*}$ is equal to $2^{r-2}$ for every $r \geq 2$, and

$$
\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{*} \cong\langle-1\rangle \times\langle 5\rangle
$$

Furthermore, also by the binomial formula, we see that every integer of the form $1+2^{2} k^{\prime}$ with $k^{\prime}$ odd is also of order $2^{r-2}$ in $\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{*}$ for $r \geq 2$. By the Chinese Remainder Theorem and the Theorem of Arithmetic Progression, there is a prime number $q$ such that

$$
q \equiv 5 \quad\left(\bmod 2^{3}\right), q \equiv s_{i} \quad\left(\bmod p_{i}^{2}\right) \text { for } i=1, \cdots, k
$$

$q$ is coprime to $m$ and is of the form $1+k^{\prime} p_{i}$ for some $k^{\prime}$ coprime to $p_{i}$ for each $i$, and is of the form $1+2^{2} k^{\prime}$ with $k^{\prime}$ odd.

Lemma 18 Let $L / \mathbb{Q}$ be a finite Galois extension, and let $M$ be an intermediate field of $L / \mathbb{Q}$ such that $M / \mathbb{Q}$ is a Galois extension. Let $\mathfrak{p} \supset \mathfrak{p}^{\prime} \supset p$ be primes of $L, M$ and $\mathbb{Q}$ respectively and let $L_{Z}, M_{Z^{\prime}}$ be the decomposition field of $\mathfrak{p}$ in $L / \mathbb{Q}$ and $\mathfrak{p}^{\prime}$ in $M / \mathbb{Q}$ respectively. Then $M_{Z^{\prime}} \subseteq L_{Z}$.

Proof. Let $Z, Z^{\prime}$ be the decomposition groups of $\mathfrak{p}$ in $L / \mathbb{Q}$ and $\mathfrak{p}^{\prime}$ in $M / \mathbb{Q}$ respectively. Let $a \in M_{Z^{\prime}}$. We must show that for $\sigma \in Z, \sigma(a)=a$ holds. Since $M / \mathbb{Q}$ is a Galois extension,

$$
\left(\mathfrak{p}^{\prime}\right)^{\sigma}=(\mathfrak{p} \cap M)^{\sigma}=\mathfrak{p}^{\sigma} \cap M=\mathfrak{p} \cap M=\mathfrak{p}^{\prime} .
$$

This shows that the restriction of $\sigma$ to $M, \sigma \upharpoonright_{M}$, is in $Z^{\prime}$. Then $\sigma(a)=\sigma \upharpoonright_{M}(a)=a$.

Lemma 19 Let $M_{0}=\mathbb{Q}\left(\zeta_{m_{0}}\right)$, where $m_{0}=p_{1} p_{2} \cdots p_{k}$, and let $M_{1}=\mathbb{Q}\left(\zeta_{m_{1}}\right)$, where $m_{1}=4 p_{1} p_{2} \cdots p_{k}$. Furthermore, for $i=1,2$ let $\boldsymbol{o}_{i}$ be the ring of algebraic integers in $M_{i}$ respectively.

Then, for any positive integer $k$, there is a prime $p>k$ such that $\mathfrak{o}_{0} \cup p \mathfrak{D}_{K_{m}}$ is $\emptyset$-definable in $\mathfrak{O}_{K_{m}}$ with $m$ odd. Similarly, for any positive integer $k$, there is a prime $p>k$ such that $0_{1} \cup p \mathfrak{O}_{K_{m}}$ is $\emptyset$-definable in $\mathfrak{D}_{K_{m}}$ with $m$ even.
Proof. Take a prime number $q$ as in Lemma 17.
Let $m$ be odd. Then, by Lemma $7, q$ is unramified in $F_{n} / \mathbb{Q}$ and the decomposition field of $q$ in $F_{n} / \mathbb{Q}$ is of degree $\left(p_{1}-1\right) \cdots\left(p_{k}-1\right)$ over $\mathbb{Q}$ for every $n>0$. By Lemma 18, we see that those docomposition fields coincide. Let $L$ be the common decomposition field. Also by Lemma 18 , for each $i, L$ includes the decomposition field of $q$ in $\mathbb{Q}\left(\zeta_{p_{i}^{n_{1}}}\right) / \mathbb{Q}$, which is of degree $p_{i}-1$ over $\mathbb{Q}$. Since $\mathbb{Q}\left(\zeta_{p_{i}^{h_{1}}}\right) / \mathbb{Q}$ is a cyclic extension, $\mathbb{Q}\left(\zeta_{p_{i}}\right)$ is the only intermediate field with degree $p_{i}-1$. Hence $L$ includes $\mathbb{Q}\left(\zeta_{p_{1}}\right) \cdots \mathbb{Q}\left(\zeta_{p_{k}}\right)$, which is of degree $\left(p_{1}-1\right) \cdots\left(p_{k}-1\right)$. Therefore $L=$ $\mathbb{Q}\left(\zeta_{p_{1}}\right) \cdots \mathbb{Q}\left(\zeta_{p_{k}}\right)=M_{0}$. (See [5, p.74]. ) Let $\theta(t)$ be as before. By Lemma $14, \theta(t)$ defines $\mathfrak{o}_{0} \cup q \mathfrak{O}_{K_{m}}$ in $\mathfrak{V}_{K_{m}}$.

Let $m$ be even. We note that $\langle q\rangle$ is the only subgroup of order $2^{r-2}$ in $\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{*}$ with $r>2$. Then similarly, $q$ is unramified in every extension $F_{n} / \mathbb{Q}$ and the decomposition field of $p$ in $F_{n} / \mathbb{Q}$ with $n>2$ is $M_{1}$. Hence $\theta(t)$ also defines $\mathfrak{o}_{1} \cup q \mathfrak{O}_{K_{m}}$ in $\mathfrak{D}_{K_{m}}$.

Theorem 20 Let $m$ be as before. Then, for a given positive integer $k$, there is a prime $q>k$ such that if $m$ is odd,

$$
\overbrace{\mathbb{Z} /(q) \times \cdots \times \mathbb{Z} /(q)}^{\left(p_{1}-1\right) \cdots\left(p_{k}-1\right)}
$$

is interpretable in $\mathfrak{O}_{K_{m}}$, and if $m$ is even,

$$
\overbrace{\mathbb{Z} /(q) \times \cdots \times \mathbb{Z} /(q)}^{2\left(p_{1}-1\right) \cdots\left(p_{k}-1\right)}
$$

is interpretable in $\mathfrak{D}_{K_{m}}$.

Proof. Let $n_{0}=\left[M_{0}: \mathbb{Q}\right]=\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)$, and let $n_{1}=\left[M_{1}: \mathbb{Q}\right]=$ $2\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)$. Clealy $\mathfrak{o}_{0} / q \mathfrak{o}_{0}$ is interpretable in $\mathfrak{O}_{K_{m}}$ with $m$ odd. Since the decomposition of $q \mathbb{Z}$ in $\mathfrak{o}_{0}$ is $\mathfrak{p}_{1} \cdots \mathfrak{p}_{n_{0}}$ and $\mathfrak{o}_{0} / \mathfrak{p}_{i} \cong \mathbb{Z} /(q)$ for each $i$, we have

$$
\mathfrak{o}_{0} / q \mathfrak{o}_{0} \cong \mathfrak{o}_{0} /\left(\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{n_{0}}\right) \cong \overbrace{\mathbb{Z} /(q) \times \cdots \times \mathbb{Z} /(q)}^{\left(p_{1}-1\right) \cdots\left(p_{k}-1\right)} .
$$

Similarly for $m$ even.

## References

[1] Robinson, J., The undecidability of algebraic rings and fields, Proc. Amer. Math. Soc., 10 (1959), 950-957.
[2] Rumely, R.S., Undecidability and definability for the theory of global fields, Trans. Amer. Math. Soc. 262 (1980), no. 1, 195-217.
[3] Poonen, B., Uniform first-order definitions in finitely generated fields, December 2005. Preprint.
[4] O'Meara, O.T., Introduction to Quadratic Forms, Springer-Verlag, Berlin Heidelberg New York, 1973.
[5] Lang, S., Algebraic Number Theory, 2nd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 1994.
[6] Swinnerton-Dyer. H.P.F., A Brief Guide to Algebraic Number Theory, London MathematicalSociety Student Texts 50, Cambridge University Press, 2001.
[7] Iyanaga, S.(Editor), The Theory of Numbers, North-Holland Publishing Company, 1975.

FACULTY OF INTERCULTURAL STUDIES
THE INTERNATIONAL UNIVERSITY OF KAGOSHIMA
KAGOSHIMA 891-0191
JAPAN
E-mail: fukuzaki@int.iuk.ac.jp

