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Interpreting finite fields in towers of cyclotomic fields
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Abstract

Let [ be an odd prime and (;» is a primitive [®-th root of unity. We consider
the towers of cylotomic fields K; = | J, Q({i»). We prove that, for any positive
integer k, there is a prime p > k such that Z/(p) is interpretable in K;. The
proof uses the method of Julia Robinson by which she proved the undecidability
of number fields.

For Ky, = |J, Q(¢mn), where m is an arbitrary positive integer and (mn is
a primitive m"™-th root of unity, we prove that for any positive integer k, there
is a prime p > k such that some finite product of Z/(p) is interpretable in Ky,.

-1 Introduction

In 1959 Julia Robinson [1] proved that in a given number field, N is §-definable in the
ring language, from which follows the undecidability of its theory. She constructed
a formula which includes Z but excludes non-algebraic integers, which only depends
on the ramification index of prime ideals of a number field which divides 2. Let F’ be
a number field and 1(¢) be such a formula. Then the ring of algebraic integers O of
F is (-definable in F. Let a,... ,a, be an integral basis of O (s = [F : Q]) , and let
P;(z) be the minimal polynomial of a; over Q (hence over Z) for each i. Then in F

teD > 3m,... , T Y1, Ut =T+ + Ty A\ Pilws) = 0A A 9(22))

holds. She then constructed a formula which defines N in ©, which only depends on
F: Q).

J. Robinson used the Hasse-Minkowski theorem on quadratic forms. On the other
hand, using Hasse’s Norm Theorem, R. Rumely [2] proved that the theory of global
fields is undecidable. His formula is independent of global fields. Recently B. Poonen
[3] extended the results. He proved that the theory of finitely generated fields over Q
is undecidable.
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We follow the method of J. Robinson. We will show that 1(¢) includes Z and
excludes non-algebraic integers in K; = {J,, Q({i») , where () is the formula which
she used in {1]. We then will show that for any positive integer k, there is a prime
p > k such that Z U py(K;) is 0-definable, from which the interpretability of Z/(p) in
K; follows.

In section 2, we describe construction of ¥(¢) in [1]. In section 3, we extend the
result to Kj, and in section 4, we prove that for any positive integer k, there is a
prime p > k such that Z U py(K;) is §-definable.

In section 5, we prove that for any positive integer k, there is a prime g > k such
that some dirct product of Z/(q) is interpretable in the ring of algebraic integers of

U, Q(¢mn), where m is an arbitrary positive integer and (.~ is a primitive m"-th root
of unity.

2 Construction of y(t)

Let F be a number field (a finite algebraic extension of the rationals Q ) and let O
be the ring of algebraic integers of F. By p we denote a valuation of F and by F,
the completion of F' with respect to p. Since non-Archemedean valuations of F are
p-adic valuations for some prime ideal p of F', we use the same letter p for both the
valuation and the prim ideal. Let p be a prime ideal of F and a € F. By v,(a) we
denote the order of a at p. Given a,b € F*, we use Hilbert symbol (a,b),, which is
defined to be +1 if az® + by? = 1 is solvable in F,, otherwise defined to be —1.
The following lemma is well-known:

Lemma 1 h € F* can be represented by the form z? — ay - bz2 iff —ab/h & F"2 for
any valuation p such that (a,b), = —1.

This follows the property of quaternary quadratic forms and the Hasse-Minkowski
theorem on quadratic forms. See [4, p. 187] and [6, p.111].
Using this lemma, J. Robinson proved the following:

(t) Let m be a positive integer such that p™ }2 for all prime ideals p. Let o(s,u,t)
be

3z, y, 2(1 — sut®™ = g?

— sy —uz?).
Fort & O, there are a,b € O such that

1. F E-p(a,b,t),

2. F = Ve(p(a,b,c) = p(a,b,c+1)).
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Then we can use inductive form: Let 1(t) be
Vs, u(Ve(p(s, u, ) = @(s,u, ¢+ 1)) = ¢(s,4, 1)),

then the solution set of ¥(t) in F, ¥(F), includes Z but excludes non-algebraic inte-
gers, that is, Z C ¢(F) C ©. Since ¢(s,u,0) holds for every s,u € F, the inductive
form insures that every positive integer satisify ¥. Since (s, u,t) <> ¢(s,u, —t), every
rational integer also satisfies ¢. The above statement (1) shows that non-algebraic
integers fail to satisfy ¢. Note that for t ¢ O (and for ¢t € O), it is not so difficult to
find a,b € F such that 1 holds, but difficult to find a, b such that both 1 and 2 hold.

J. Robinson proved the above statement from two lemmas. We state these two
lemmas in a little bit different forms for our sake. Before stating these lemmas, we
need some lemmas. The following two lemmas are special cases of a theorem proved
in [5, p.166).

Lemma 2 There are infinitely many prime ideals in every ideal class.

Lemma 3 Ifa € O is prime to an ideal m, there are infinitely many prime elements
p €O such that p=a (mod m).

Lemma 4 Let a € O and vy(a) = 1. Then there is b € O with p Ab such that
(a, b)P = —1.

Proof. 1t is proved in [4, pp.161-165] that there is a unit in a local field M such that it
is congruent to a square (mod 40) but not (mod 4p), where o is the ring of integers

and p a prime ideal of M. And if € is such a unit, (a,€), = —1 for a prime element
a. Take such a unit € € F;. There is a unit €y € F such that ¢; = € (mod 4p). ¢ is
congruent to a square (mod 49) but not (mod 4p). o

J. Robinson proved this lemma using Hasse’s formula evaluating the Hilbert sym-
bol.

We state two basic lemmas due to J. Robinson [1, Lemma 8,9].

Lemma 5 Given a prime ideal p; of F and an odd prime number l, there are rela-
tively prime elements a and b in O* such that

1. (@) = p1 - pak, where Py, ... ,Ppox are distinct prime ideals which include every -
prime ideals which divides 2, and p; dose not divide | for j =2,... ,2k, and

2. b is a totally positive prime element such that (a,b), = —1 iff pla.

Proof. Let p;,... ,par—1 be a set of disticnt prime ideals such that it includes every
prime idals dividing 2 and p; dose not divide { for j = 2,... ,2k — 1. Let K be the
ideal class which contains the product p;---pox—;. By Lemma 2 we can choose a
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prime ideal py; in the ideal class &1 with por # p; for ¢ = 1,...,2k — 1 and with
pzi A(D)-

Fori=1,...,2k, by Lemma 4 we can choose b; € © prime to p so that (a, b;), =
—1. Let m be a positive integer such that p™ 42 for every prime ideal p. Consider
the simultaneous system of congruences

z=b (modp?™) fori=1,...,2k.

By the Chinese Remainder Theorem, there is a solution ¢ € O and so is every element
which is congruent to ¢ (mod p?™ - - p2™). Since c is prime to the modulus, by Lemma
3 there are infinitely many totally positive prime elements p such that

p=c (mod pi™...p2m).

Let b be one of such elements. b is coprime to a.

We claim that b;/b € F2 for each i ; since b = b; (mod p?™) and b; is prime to
Pi, Vp,(1 — b;/b) > vy, (4), then applying Hensel’s lemma ([5, p.42]) with z% — b;/b
and z = 1, we get that b;/b € F2. Hence (a,b),, = —1 for each i. On the other
hand, (a,b), = +1 for all Archimedean valuations p since b is totally positive. It
is easy to see that if (a,b); = —1 then p is an Archimedean valuation or the prime
ideal p dividing 2ab (see [4, p. 166]). Then the only other other valuation for which
(a,b)p = —1 could hold would be p = (b) ; but, by the product formula for the
Hilbert symbol ([4, p.190)), (a,b), = —1 for an even number of valuations. Therefore
(a,b)p = —1iff pla. , o

Lemma 6 Let (a) = p; - - pax such that py,...,pox are distinct prime ideals which
include every prime ideals which divides 2, and let b € O* be coprime to a such that
(a,b)p = —1 iff pla, and m be a positive integer such that p™ [2 for every prime ideal
p. Then,

1— abc®™ = z? — ay® — b2? is solvable for z,y and z in F iff v,,(c) > O for each i.

Proof. Let h = 1 — abc®™. Suppose that v,(c) > 0 for each i. Since v, (h) = 0
and v, (—ab) = 1, h/(—ab) ¢ F? for each i. By Lemma 1 and the assumption,
h = 2% — ay?® — b2? is solvable for z,y and z in F.

Now suppose that v, (c) < 0 for some i. Let vy, (c) < 0. We show that —ab/h €
Fg‘,o. Since v, (1 — (—ab/h)) > vy, (4), applying again Hensel’s lemma with 1% —
(—ab/h) and z = 1, we get that —ab/h € F}; . It follows that h = 2% — ay? — b2? is
not solvable for z,y and z in F. o

It is easy to derive the statement (1) from the above two lemmas, noting v,(c) =
vp(c + 1) for every prime ideal p.
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3 ¢(t) in towers of cyclotomic fields

Let F,, = Q({;»), where ! is an odd prime and (;» is a primitive ["-th root of unity,
and let K; = |J, Q(¢n) (Fo = Q). We denote by O, the ring of algebraic integers in
F,, and by Ok, the ring of algebraic integers in K;. Then Ok, = |, On.

The following lemma is well-known and proved in [7, pp.256-258]. We denote by
¢ Euler’s function.

Lemma 7 Let M = Q((n), where m is an positive integer and Cn, i3 a primitive
m-th root of unity. Then

1. [M : Q] = ¢(m),
2. the only ramified prime ideals in M are those dividing m, and especially there

is only one prime p = (1 — (=) of F,, lying above l, and it is totally ramified,

3. given a prime number p coprime to m, we let f be the least positive integer such
that p/ = 1 (mod m), and set ¢(m) = fg. Then in M, (p) = p1---Pp,, where
p; are primes of M. The residue degree of each p; in M/Q is equal to f, and
the degree of the decomposition field p; in F,, over Q is equal to g for each i.

From the above lemma we easily see that,
Lemma 8 Let 0 < i < j and p be a prime ideal of F;. Then
1. If p Al, then in Fj;, p = Py --- Pk, where P, are primes in F; and k divides
[F;: F}=1-"
2. Ifp|l, then in Fj, p = P°~, wherep = (1 — ), B = (1 — ).
The next lemma is also proved in {7, p.272].

Lemma 9 Let K D k be number fields and B O p be primes of K and k repectively.
For a € Kg, let a = Nkg k(@) and b € ky,. Then, (a,b)p = (a,b),.

The next lemma follows from Lemma 9.

Lemma 10 Let 0 < i < j, p a prime ideal of F; and B be a prime in F; lying over
p. Then for a,b € F}, (a,b)y, =1 iff (a,b)p = 1.

Proof. Since F}/F; is an abelian extension, the local degree at 8 divides the degree
of F;/F;, that is, [(Fj)g : (F)p]|[Fj : Fi] (see [4, p.32]). Let u be the local degree at
B. Then Nk /x,(a) = a* and (a,b)p = (a*,b), = (a,b);. Since u is odd, it follows
that (a,b), = 1iff (a,b)p = 1. o

We now extend J. Robinson’s result [1] to K;. Note that in each F,, p? 42 for
every prime ideal in F,,.



98

Theorem 11 Let ¢(s,u,t) be
3z,y, 2(1 — abt! = 1% — sy® — u2?)
and ¥(t) be
Vs, u(Ve(p(s, u,c) = o(8,u,c+ 1)) = (s, u,t)),

then the solution set of ¥(t) in K, ¥(K)), includes Z but excludes non-algebraic
integers, that 13, Z C ¢(K)) C Ok,.

Proof. 1t is clear that Z C ¥(K]). Let t € K; \ Ok,. For this ¢, we show that there
are a,b € K, such that

K; E —p(a,b,t) AVe(p(a,b,c) = ¢(a,b,c+1)).

We fix F),, such that ¢t € F,, and m > 1. Then y, (t) < 0 for some prime p; in F,.
By Lemma 5, there are relatively prime elements a and b in O,, such that

1. (@) = py---pok, where pq, ..., pox are distinct prime ideals in F,, which include
every prime ideals in F,, which divides 2, and p; dose not divide { for j =
2,...,2k, and

2. bis a totally positive prime element in F,,, such that (a,b), = —1 iff p|a.

By Lemma 6, 1 — abt* = 22 — ay? — bz? is not solvable for z,y and 2 in F,,, and for
every ¢ € Fp, if F, |= ¢(a,b,c) then F,, = p(a,b,c+1).

For this a, b, it is enough to show that for every s > m such that s — m is even,
1 — abt* = 2% — ay® — b2? is not solvable for z,y and z in F,, and for every c € F,, if
F, = ¢(a,b,c) then F, = p(a,b,c+ 1).

Note that a, b are relatively prime also in 9,.

Case 1: p; .
By Lemma 8, the decomposition of the ideal (a) in Fj is given by (a) = B - - - Bay,
where P, ... , P2, are mutually distinct prime ideals and include every prime ideals

which devides 2. By Lemma 10, (a,b)p = —1 iff Bla. We let p; C P;. Since vy, (t) <
0, we have that vy, (t) < 0. By Lemma 6, we conclude that 1 — abt* = z2 — ay? — b2?
is not solvable for z,y and z in F,, and for every c € Fy, if F, = ¢(a,b,c) then
F, &= ¢(a,b,c+1).

Case 2: py|l.

By Lemma 8, the decomposition of the ideal (a) in F, is given by

(a') = ‘pll.—m e %21":
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where 34, ... , P2~ are mutually distinct prime ideals and include every prime ideals
which devides 2, and p; = (1 — (=), ‘,Bl (1—Gs)-

Let ' =a/(1 - ()" "~ Thenda' € O, and (a’) = Py - - - Por in F.
Since a = a’((1 — §:) " "V/2)2 (a,b)p, = (@', b)q, for each i. Hence we have that
(', b)g = —1 iff P|d.

Suppose that 1 — abt* = z? — ay? — bz? were solvable for z,y and z in F,. Then

1 - ab(t(L = )T IAY = 0 - (1 - )OI — a2

is solvable for z,y and z in F,, noting that (l‘"'" —1)/4 is a positive integer since [ —m
is even. But vy, (£(1 — ()77 ~1/4) < 0 since p; = P4 ". We have a contradiction
by Lemma 6.

Next we show that if F; = ¢(a,b,c) then F, = ¢(a,b,c + 1). Suppose that
F; = ¢(a,b,c), that is, 1 — abc* = 22 — ay? — bz? is solvable for z,y and z in F,. Then

1= a'b(e(l ~ )" = 22 — a'((1 - )TV 2)? - b2?

is solvable for z,y and z in F,. By Lemma 6, vg, (c(1 — ()™ ~1/4) > 0 for each ;.
It follows that v, ((c+ 1)(1 — )@~ ™=1/4) > 0 for each P;. Therefore we have that
F, &= p(a,b,c+1). a

4 Interpreting finite prime fields in K;
The next lemma follows from [7, p.145].

Lemma 12 Let F/Q be a finite Galois extension, and p be an extension of a prime
number p to F. Let F; denote the decomposition field of p in F/Q. Finally, let F' be
an intermediate field of F/Q, and let p' denote the restriction of p to F'. Then we
have:

F' C Fz iff both the ramification indezx and the residue degree of p' in F'/Q are
equal to 1.

Recall that when F/Q is abelian, all the prime ideals p dividing p have the same
decomposition field in F/Q, and we call it the decomposition field of p in F/Q.
Furthermore, under the additional assumption that F/Q is unramified at p (that is,
F/Q is unramified at every prime ideal dividing p), the Galois group G(F/F3) is
cyclic and generated by the Artin automorphism o = (p, F/Q) which is characterized

by the congruence o(a) = a? (mod p) for a € or, where o is the ring of algebraic
integers in F'.

Lemma 13 Let! be an odd prime. Then, for any positive integer k, there is a prime
number p > k such that p is a primitive root modulo every power of l.
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Proof. Let r be a primitive root modulo I. Since r'~! =1 (mod I), r'~! =1 + ki for
some k. We may suppose that (k,l) = 1, that is, k is coprime to I: if 7'~! = 1 + kI™
with m > 1, then we may take r+( as a primitive root. By the Theorem of Arithmetic
Progression, the congruence class 7 (mod {?) contains an infinity of primes. Let p > k
be a prime in that class. p is coprime to [, and is a primitive root modulo [ such that
p~! = 1+ k'l for some k' with (k',]) = 1.

Let a be an integer of the form 1+ k'l for some k' with (k¥/,!) = 1. By the binomial
formula, for every h > 2, we can show that f = [*~! is the least positive integer such
that a/ =1 (mod I#). Therefore p is a primitive root modulo every power of . O

Lemma 14 Let F/Q be a finite abelian extension, and be unramified at a prime
number p. Let Fz be the decomposition field of p, and let 0,07 be the ring of algebraic
integers of F, Fz respectively. Then, for a € o,

a€ozUpo iff a®=a (mod p).

Proof. Let o denote the Artin automorphism in G(F/Fz). Let a € o.

If a € 0z, then o(a) = a and o(a) = a? (mod p). Thus we have that a®? = a
(mod p). If a € po, clearly a? = a (mod p) holds.

Suppose that a € 0z U po. Let o’ denote the ring of algebraic integers in Q(a).
Since po’ is the intersection of prime ideals in o’ including pZ, there is an extension
p’ of pZ to o' such that a & p’. The ramification index of p’ in Q(a)/Q is equal to 1
since p is unramified in F/Q. Since Q(a) € Fz, by Lemma 12, the residue degree of
p’ in Q(a)/Q is greater than 1, that is, [o'/p’ : Z/(p)] > 1. Hence we have that a®? # a
(mod p). m]

We keep the notation of section 3.

Theorem 15 For any positive integer k, there is a prime p > k such that Z U pOk,
is O-definable in Ok,, hence Z/(p) is interpretable in O, .

Proof. Take a prime number p > k as in Lemma 13. Then, by Lemma 7, the decom-
position field of p in F,,/Q is Q for every n, and p is unramified in every extension
F,,/Q. Let 6(t) be the formula Jw(t? —t = pw). By Lemma 14, 6(t) defines ZU pOyk,
in O K;- ) O

Theorem 16 Z U py(K;) is B-definable in K;, hence Z/(p) is interpretable in K;.
Proof. Consider the formula

$(t) A Fw(Pp(w) AP — t = pw).

It is evident that this formula defines Z U py(Kj) in K. 0O
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5 Interpreting direct products of finite fields in
Ok

m

Let m be a positive integer, and let K,,, Ok, F,, and O, be as before. Our methods
do not suffice to treat K, since Lemma 10 fails. They also do not suffice to treat K,
with m odd; Lemma 10 holds but the proof of Theorem 11 fails. In this section we
will prove that for a given poistive integer k, there is a prime ¢ > k such that certain
direct products of Z/(g) is interpretable in Ok, with m arbitrary.

Lemma 17 Let m be a positive integer with the prz’me factorization

Then for a given positive integer k, there is a prime number q > k coprime to m such
that

1. if hg = 0, then the order of q in (Z/m"Z)* is equal to

piM- lpgh’ Lo ot for every r > 1,

2. if ho > 0, then then the order of q in (Z/m"Z)* is equal to

orho—2 ’hl“lp;""‘ Lo for every v > 2.

Proof. For each odd prime p;, we know that there is an integer u; such that u?~! is

of the form 1 + k'p; for some k' which is coprime to p;, and every integer of that form
is of order p{~! in (Z/pIZ)* for every r > 1. Let s; = u®~". On the other hand, we
see that by the binomial formula, the order of 5 in (Z/ 2’Z) is equal to 272 for every
r > 2, and

(Z/2°Z)* = (~1) x (5).

Furthermore, also by the binomial formula, we see that every integer of the form
1 + 22k' with k' odd is also of order 2"~2 in (Z/2'Z)* for r > 2. By the Chinese
Remainder Theorem and the Theorem of Arithmetic Progression, there is a prime
number ¢ such that

g=5 (mod23),g=s; (modp?) for i=1,---,k.

q is coprime to m and is of the form 1 + k'p; for some k' coprime to p; for each 4, and
is of the form 1 + 22k’ with k' odd. o

Lemma 18 Let L/Q be a finite Galois extension, and let M be an intermediate field
of L/Q such that M/Q is a Galois extension. Let p O p' O p be primes of L, M and
Q respectively and let Lz, Mz be the decomposition field of p in L/Q and p' in M/Q
respectively. Then Mz C L.
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Proof. Let Z, Z' be the decomposition groups of p in L/Q and p’ in M/Q respectively.
Let a € Mz. We must show that for o € Z, o(a) = a holds. Since M/Q is a Galois
extension,

P =@nMP=pP"NnM=pNM=y

This shows that the restriction of o to M, o[ , isin Z'. Then o(a) = oy (a) = a.
: O

Lemma 19 Let My = Q((m,), where mg = p1pg - - - pi, and let My = Q((m,), where
my = 4p\p2 - - - px. Furthermore, for i = 1,2 let o; be the ring of algebraic integers in
M; respectively.

Then, for any positive integer k, there is a prime p > k such that 0o U pOk,, is
0-definable in Ok, with m odd. Similarly, for any positive integer k, there is a prime
p > k such that 0, UpOk,, is B-definable in O with m even.

Proof. Take a prime number ¢ as in Lemma 17.

Let m be odd. Then, by Lemma 7, g is unramified in F,,/Q and the decomposition
field of ¢ in F,,/Q is of degree (py — 1)---(pr — 1) over Q for every n > 0. By
Lemma 18, we see that those docomposition fields coincide. Let L be the common
decomposition field. Also by Lemma 18, for each ¢, L includes the decomposition
field of ¢ in Q((p;,l)/Q, which is of degree p; — 1 over Q. Since Q(Cp{.l)/Q is a
cyclic extension, @(Cpi) is the only intermediate field with degree p; — 1. Hence L
includes Q({p,) - - - Q(¢p,), which is of degree (p; — 1)--(pr — 1). Therefore L =
Q) -+~ Q(Gph) = My. (See [5, p.74]. ) Let 6(t) be as before. By Lemma 14, 6(t)
defines 0y U ¢Ok,, in Ok, .

Let m be even. We note that (g) is the only subgroup of order 2"~2 in (Z/27Z)*
with 7 > 2. Then similarly, ¢ is unramified in every extension F,,/Q and the decom-
position field of p in F,,/Q with n > 2 is M;. Hence 6(t) also defines 0, U ¢k, in
Ok,.. m]

Theorem 20 Let m be as before. Then, for a given positive integer k, there is a
prime q > k such that
if m is odd,
(p1-1)(pa—1)

Z/(q) x --- x Z/(q)

1s interpretable in Ok, , and
if m is even,

2(?1—'1);;(?;5—1)

Z/(q) x -+~ x Z/(g)

18 interpretable in Ok .
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Proof. Let ng = [My : Q] = (p1 — 1)(p2—1)---(px — 1), and let n; = [M; : Q] =
2(p1—1)(p2—1)--- (pr—1). Clealy 0/qoy is interpretable in Ok, with m odd. Since
the decomposition of qZ in og is p; + -+ pn, and 0o/p; = Z/(q) for each i, we have

(p1—1)-+(pa—1)

00/q00 = 00/(P1 N -+ + N Pny) X Z/(q) x -~ x Z/(q).

Similarly for m even. , a
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