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Abstract

Let $l$ be an odd prime and $\zeta_{l^{n}}$ is a primitive $l^{\mathfrak{n}}$-th root of unity. We consider
the towers of cylotomic fields $K_{l}= \bigcup_{n}\mathbb{Q}(\zeta_{l^{n}})$. We prove that, for any positive
integer $k$ , there is a prime $p>k$ such that $\mathbb{Z}/(p)$ is interpretable in $K_{l}$ . The
proof uses the method of Julia Robinson by which she proved the undecidability
of number fields.

For $K_{m}= \bigcup_{n}\mathbb{Q}(\zeta_{m^{n}})$ , where $m$ is $an$ arbitrary positive integer and $\zeta_{m^{n}}$ is
a primitive $m^{n}$-th root of unity, we prove that for any positive integer $k$ , there
is a prime $p>k$ such that some finite product of $\mathbb{Z}/(p)$ is interpretable in $K_{m}$ .

1 Introduction
In 1959 Julia Robinson [1] proved that in a given number field, $N$ is -definable in the
ring language, from which follows the undecidability of its theory. She constructed
a formula which includes $\mathbb{Z}$ but excludes non-algebraic integers, which only depends
on the ramification index of prime ideals of a number field which divides 2. Let $F$ be
a number field and $\psi(t)$ be such a formula. Then the ring of algebraic integers $O$ of
$F$ is $\emptyset$-definable in $F$ . Let $a_{1},$ $\ldots a_{s}$ be an integral basis of $D(s=[F:Q])$ , and let
$P_{i}(x)$ be the minimal polynomial of $a_{i}$ over $\mathbb{Q}$ (hence over $\mathbb{Z}$ ) for each $i$ . Then in $F$

$t\in O\Leftrightarrow\exists x_{1},$ $\ldots x_{\delta},$ $y_{1},$
$\ldots y_{s}(t=x_{1}y_{1}+\cdots+x_{s}y_{s}\wedge\bigwedge_{:}P_{i}(y_{i})=0\wedge\bigwedge_{i}\psi(x_{i}))$

holds. She then constructed a formula which defines $N$ in $O$ , which only depends on
$[F:\mathbb{Q}]$ .

J. Robinson used the Hasse-Minkowski theorem on quadratic forms. On the other
hand, using Hasse’s Norm Theorem, R. Rumely [2] proved that the theory of global
fields is undecidable. His formula is independent of global fields. Recently B. Poonen
[3] extended the results. He proved that the theory of finitely generated fields over $\mathbb{Q}$

is undecidable.
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We follow the method of J. Robinson. We will sh$ow$ that $\psi(t)$ includes $\mathbb{Z}$ and
excludes non-algebraic integers in $K_{l}= \bigcup_{n}\mathbb{Q}(\zeta_{l^{\mathfrak{n}}})$ , where $\psi(t)$ is the formula which
she used in [1]. We then will show that for any positive integer $k$ , there is a prime
$p>k$ such that $\mathbb{Z}\cup p\psi(K_{l})$ is $\emptyset$-definable, from which the interpretability of $\mathbb{Z}/(p)$ in
$K_{l}$ follows.

In section 2, we describe construction of $\psi(t)$ in [1]. In section 3, we extend the
result to $K_{l}$ , and in section 4, we prove that for any positive integer $k$ , there is a
prime $p>k$ such that $\mathbb{Z}\cup p\psi(K_{l})$ is -definable.

In section 5, we prove that for any positive integer $k$ , there is a prime $q>k$ such
that some dirct product of $\mathbb{Z}/(q)$ is interpretable in the ring of algebraic integers of
$\bigcup_{n}\mathbb{Q}(\zeta_{m^{n}})$ , where $m$ is an arbitrary positive integer and $\zeta_{m^{n}}$ is a primitive $m^{n_{-}}th$ root
of unity.

2 Construction of $\psi(t)$

Let $F$ be a number field (a finite algebraic extension of the rationals $\mathbb{Q}$ ) and let $O$

be the ring of algebraic integers of $F$ . By $\mathfrak{p}$ we denote a valuation of $F$ and by $F_{\mathfrak{p}}$

the completion of $F$ with respect to $\mathfrak{p}$ . Since non-Archemedean valuations of $F$ are
$\mathfrak{p}$-adic valuations for some prime ideal $\mathfrak{p}$ of $F$ , we use the same letter $\mathfrak{p}$ for both the
valuation and the prim ideal. Let $\mathfrak{p}$ be a prime ideal of $F$ and $a\in F$ . By $\nu_{\mathfrak{p}}(a)$ we
denote the order of $a$ at $\mathfrak{p}$ . Given $a,$ $b\in F^{*}$ , we use Hilbert symbol $(a, b)_{p}$ , which is
defined to $be+1$ if $ax^{2}+by^{2}=1$ is solvable in $F_{\mathfrak{p}}$ , otherwise defined to be-l.

The following lemma is well-known:

Lemma 1 $h\in F^{*}$ can be represented by the form $x^{2}-ay^{2}-bz^{2}iff-ab/h\not\in F_{\mathfrak{p}^{r2}}$ for
any valuation $\mathfrak{p}such$ that $(a, b)_{\mathfrak{p}}=-1$ .

This follows the property of quaternary quadratic forms and the Hasse-Minkowski
theorem on quadratic forms. See [4, p. 187] and [6, p.lll].

Using this lemma, J. Robinson proved the following:

(\dagger ) Let $m$ be a positive integer such that $\mathfrak{p}^{m}\parallel 2$ for all prime ideds $\mathfrak{p}$ . Let $\varphi(s, u,t)$

$be$

$\exists x,$ $y,$ $z(1-sut^{2m}=x^{2}-sy^{2}-uz^{2})$ .

For $t\not\in O$ , there are $a,$ $b\in D$ such that

1. $F\models\neg\varphi(a, b,t)$ ,
2. $F\models\forall c(\varphi(a, b, c)arrow\varphi(a, b, c+1))$ .
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Then we can use inductive form: Let $\psi(t)$ be

$\forall s,$ $u(\forall c(\varphi(s, u, c)arrow\varphi(s, u, c+1))arrow\varphi(s, u,t))$ ,

then the solution set of $\psi(t)$ in $F,$ $\psi(F)$ , includes $\mathbb{Z}$ but excludes non-algebraic inte-
gers, that is, $\mathbb{Z}\subseteq\psi(F)\subseteq O$ . Since $\varphi(s, u, 0)$ holds for every $s,$ $u\in F$ , the inductive
form insures that every positive integer $s$atisify $\psi$ . Since $\varphi(s, u,t)rightarrow\varphi(s, u, -t)$ , every
rational integer also satisfies $\psi$ . The above statement (\dagger ) shows that non-algebraic
integers fail to satisfy $\psi$ . Note that for $t\not\in O$ (and for $t\in D$), it is not so difficult to
find $a,$ $b\in F$ such that 1 holds, but difficult to find $a,$ $b$ such that both 1 and 2 hold.

J. Robinson proved the above statement from two lemmas. We state these two
lemmas in a little bit different forms for our sake. Before stating these lemmas, we
need some lemmas. The following two lemmas are special cases of a theorem proved
in [5, p.166].

Lemma 2 There are infinitely many prime ideals in every ideal dass.

Lemma 3 If $a\in D$ is prime to an ideal $\mathfrak{m}$, there are infinitely many prime elements
$p\in D$ such that $p\equiv a$ (mod m).

Lemma 4 Let $a\in O$ and $\nu_{\mathfrak{p}}(a)=1$ . Then there is $b\in D$ with $\mathfrak{p}\wedge b$ such that
$(a, b)_{\mathfrak{p}}=-1$ .

Proof. It is proved in [4, pp.161-165] that there is a unit in a local field $M$ such that it
is congruent to a square $(mod 40)$ but not $(mod 4\mathfrak{p})$ , where $0$ is the ring of integers
and $\mathfrak{p}$ a prime ideal of $M$ . And if $\epsilon$ is such a unit, $(a, \epsilon)_{\mathfrak{p}}=-1$ for a prime element
$a$ . Take such a unit $\epsilon\in F_{\mathfrak{p}}$ . There is a unit $\epsilon_{0}\in F$ such that $\epsilon_{0}\equiv\epsilon(mod 4\mathfrak{p})$ . $\epsilon_{0}$ is
congruent to a square $(mod 4O)$ but not $(mod 4\mathfrak{p})$ . $\square$

J. Robinson proved this lemma using Hasse’s formula evaluating the Hilbert sym-
bol.

We state two basic lemmas due to J. Robinson [1, Lemma 8,9].

Lemma 5 Given a prime ideal $\mathfrak{p}_{1}$ of $F$ and an odd prime number $l$ , there are rela-
tivdy prime elements $a$ and $b$ in $O^{*}$ such that

1. $(a)=\mathfrak{p}_{1}\cdots \mathfrak{p}_{2k}$, where $\mathfrak{p}_{1},$ $\ldots \mathfrak{p}_{2k}$ are distinct przme ideals which indude every
prime ideals which divides 2, and $\mathfrak{p}_{j}$ dose not divide $l$ for $j=2,$ $\ldots$ , $2k$ , and

2. $b$ is a totdly positive prime element such that $(a, b)_{\mathfrak{p}}=-1$ iff $\mathfrak{p}|a$ .

Proof. Let $\mathfrak{p}_{1},$ $\ldots \mathfrak{p}_{2k-1}$ be a set of disticnt prime ideals such that it includes every
prime idals dividing 2 and $\mathfrak{p}_{j}$ dose not divide $l$ for $j=2,$ $\ldots 2k-1$ . Let .A be the
ideal class which contains the product $\mathfrak{p}_{1}\cdots \mathfrak{p}_{2k-1}$ . By Lemma 2 we can choose a

95



prime ideal $\mathfrak{p}_{2k}$ in the ideal class $R^{-1}$ with $\mathfrak{p}_{2k}\neq \mathfrak{p}_{i}$ for $i=1,$ $\ldots 2k-1$ and with
P2k $\parallel(l)$ .

For $i=1,$ $\ldots 2k$ , by Lemma 4 we can choose $b_{i}\in D$ prime to $\mathfrak{p}$ so that $(a, b_{i})_{\mathfrak{p}}=$

$-1$ . Let $m$ be a positive integer such that $\mathfrak{p}^{m}f2$ for every prime ideal $\mathfrak{p}$ . Consider
the simultaneous system of congruences

$x\equiv b_{i}$ $(mod \mathfrak{p}^{2m}|)$ for $i=1,$ $\ldots 2k$ .

By the Chinese Remainder Theorem, there is a solution $c\in D$ and so is every element
which is congruent to $c(mod \mathfrak{p}_{1}^{2m}\cdots \mathfrak{p}_{2k}^{2m})$ . Since $c$ is prime to the modulus, by Lemma
3 there are infinitely many totally positive prime elements $p$ such that

$p\equiv c$ $(mod \mathfrak{p}_{1}^{2m}\cdots \mathfrak{p}_{2k}^{2m})$ .

Let $b$ be one of such elements. $b$ is coprime to $a$ .
We claim that $b_{i}/b\in F_{\mathfrak{p}_{i}}^{2}$ for each $i$ ; since $b\equiv b_{i}(mod \mathfrak{p}_{i}^{2m})$ and $b_{i}$ is prime to

$\mathfrak{p}_{i},$ $\nu_{\mathfrak{p}:}(1-b_{i}/b)>\nu_{\mathfrak{p}:}(4)$ , then applying Hensel’s lemma ([5, p.42]) with $x^{2}-b_{i}/b$

and $x=1$ , we get that $b_{i}/b\in F_{\mathfrak{p}_{1}}^{2}$ . Hence $(a, b)_{\mathfrak{p}:}=-1$ for each $i$ . On the other
hand, $(a, b)_{\mathfrak{p}}=+1$ for all Archimedean valuations $\mathfrak{p}$ since $b$ is totally positive. It
is easy to see that if $(a, b)_{\mathfrak{p}}=-1$ then $\mathfrak{p}$ is an Archimedean valuation or the prime
ideal $\mathfrak{p}$ dividing 2ab (see [4, p. 166]). Then the only other other valuation for which
$(a, b)_{\mathfrak{p}}=-1$ could hold would be $\mathfrak{p}=(b)$ ; but, by the product formula for the
Hilbert symbol ([4, p.190]), $(a, b)_{\mathfrak{p}}=-1$ for an even number of valuations.

$Therefore\square$
$(a, b)_{\mathfrak{p}}=-1$ iff $\mathfrak{p}|a$ .

Lemma 6 Let $(a)=\mathfrak{p}_{1}\cdots \mathfrak{p}_{2k}$ such that $\mathfrak{p}_{1},$

$\ldots$ , $\mathfrak{p}_{2k}$ are distinct prime ideals which
include every prime ideals which divides 2, and let $b\in O^{*}$ be copreme to $a$ such that
$(a, b)_{\mathfrak{p}}=-1$ iff $\mathfrak{p}|a$, and $m$ be a positive integer such that $\mathfrak{p}^{m}\parallel 2$ for every pnme ideal

$\mathfrak{p}$ . Then,
$1-abc^{2m}=x^{2}-ay^{2}-bz^{2}$ is solvable for $x,$ $y$ and $z$ in $F$ iff $\nu_{\mathfrak{p}:}(c)\geq 0$ for each $i$ .

Proof. Let $h=1-abc^{2m}$ . Suppose that $\nu_{\mathfrak{p}:}(c)\geq 0$ for each $i$ . Since $\nu_{\mathfrak{p}_{1}}(h)=0$

and $\nu_{\mathfrak{p}:}(-ab)=1,$ $h/(-ab)\not\in F_{\mathfrak{p}:}^{2}$ for each $i$ . By Lemma 1 and the assumption,
$h=x^{2}-ay^{2}-bz^{2}$ is solvable for $x,$ $y$ and $z$ in $F$ .

Now suppose that $\nu_{\mathfrak{p}:}(c)<0$ for some $i$ . Let $\nu_{\mathfrak{p}_{i_{0}}}(c)<0$ . We show $that-ab/h\in$
$F_{\mathfrak{p}_{1_{0}}}^{2}$ . Since $\nu_{P:_{0}}(1-(-ab/h))>\nu_{\mathfrak{p}:_{0}}(4)$ , applying again Hensel’s lemma with $x^{2}-$

$(-ab/h)$ and $x=1$ , we get that $-ab/h\in F_{\mathfrak{p}:_{0}}^{2}$ . It follows that $h=x^{2}-ay^{2}-bz^{2}is\square$

not solvable for $x,$ $y$ and $z$ in $F$ .
It is easy to derive the statement (\dagger ) from the above two lemmas, noting $\nu_{\mathfrak{p}}(c)=$

$\nu_{\mathfrak{p}}(c+1)$ for every prime ideal $\mathfrak{p}$ .
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3 $\psi(t)$ in towers of cyclotomic fields
Let $F_{n}=\mathbb{Q}(\zeta_{l^{\mathfrak{n}}})$ , where $l$ is an odd prime and $\zeta_{l^{n}}$ is a primitive $l^{n_{-}}th$ root of unity,
and let $K_{l}= \bigcup_{n}\mathbb{Q}(\zeta_{l^{n}})(F_{0}=\mathbb{Q})$ . We denote by $D_{n}$ the ring of algebraic integers in
$F_{n}$ and by $O_{K_{l}}$ the ring of algebraic integers in $K_{l}$ . Then $O_{K_{l}}=\bigcup_{n}O_{n}$ .

The following lemma is well-known and proved in [7, pp.256-258]. We denote by
$\phi$ Euler’s function.

Lemma 7 Let $M=\mathbb{Q}(\zeta_{m})$ , where $m$ is an positive integer and $\zeta_{m}$ is a primitive
m-th root of unity. Then

1. $[M:\mathbb{Q}]=\phi(m)$ ,

2. the only ramified prime ideals in $M$ are those dividing $m$ , and especially there
is only one prime $\mathfrak{p}=(1-\zeta_{l^{n}})$ of $F_{n}$ lying above $l$ , and it is totally ramified,

3. given a pnme number $p$ copreme to $m$ , we let $f$ be the least positive integer such
that $p^{f}\equiv 1(mod m)$ , and set $\phi(m)=fg$ . Then in $M,$ $(p)=\mathfrak{p}_{1}\cdots \mathfrak{p}_{g}$ , where

$\mathfrak{p}_{i}$ are primes of M. The residue degree of each $\mathfrak{p}_{i}$ in $M/\mathbb{Q}$ is equal to $f$ , and
the degree of the decomposition field $\mathfrak{p}_{i}$ in $F_{n}$ over $\mathbb{Q}$ is equal to $g$ for each $i$ .

From the above lemma we easily see that,

Lemma 8 Let $0<i<j$ and $\mathfrak{p}$ be a Prime ideal of F. Then

1. If $PA^{l}$ then in $F_{j_{f}}\mathfrak{p}=\mathfrak{P}_{1}\cdots \mathfrak{P}_{k_{f}}$ where $\mathfrak{P}_{r}$ are przmes in $F_{j}$ and $k$ divides
$[F_{j} : F_{i}]=l^{j-i}$ .

2. If $\mathfrak{p}|l$ , then in $F_{j},$ $\mathfrak{p}=\mathfrak{P}^{l^{j-:}}$ , where $\mathfrak{p}=(1-\zeta_{\iota:}),$ $\mathfrak{P}=(1-\zeta_{l^{j}})$ .
The next lemma is also proved in [7, p.272].

Lemma 9 Let $K\supset k$ be number fields and $\mathfrak{P}\supset \mathfrak{p}$ be primes of $K$ and $k$ repectively.
For $\alpha\in K_{\mathfrak{P}}^{*}$ , let $a=N_{K_{\mathfrak{P}}/k_{\mathfrak{p}}}(\alpha)$ and $b\in k_{\mathfrak{p}}$ . Then, $(\alpha, b)_{\mathfrak{P}}=(a, b)_{\mathfrak{p}}$ .

The next lemma follows from Lemma 9.

Lemma 10 Let $0<i<j,$ $\mathfrak{p}$ a prime ideal of $F_{i}$ and $\mathfrak{P}$ be a prime in $F_{j}$ lying over
$\mathfrak{p}$ . Then for $a,$ $b\in F_{i}^{*},$ $(a, b)_{\mathfrak{p}}=1$ iff $(a, b)_{\mathfrak{P}}=1$ .

Proof. Since $F_{j}/F_{:}$ is an abelian extension, the local degree at $\mathfrak{P}$ divides the degree
of $F_{j}/F_{1}$ , that is, $[(F_{j})_{\mathfrak{P}} : (F_{l})_{\mathfrak{p}}]|[F_{j} : F_{i}]$ (see [4, p.32]). Let $u$ be the local degree at
$\mathfrak{P}$ . Then $N_{K\eta/k_{\mathfrak{p}}}(a)=a^{u}$ and $(a, b)_{\mathfrak{P}}=(a^{u}, b)_{\mathfrak{p}}=(a, b)_{\mathfrak{p}}^{u}$. Since $u$ is odd, it

$follows\square$

that $(a, b)_{\mathfrak{p}}=1$ iff $(a, b)_{\mathfrak{P}}=1$ .
We now extend J. Robinson’s result [1] to $K_{l}$ . Note that in each $F_{\mathfrak{n}},$ $\mathfrak{p}^{2}\Lambda^{2}$ for

every prime ideal in $F_{n}$ .
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Theorem 11 Let $\varphi(s, u,t)$ be

$\exists x,$ $y,$ $z(1-abt^{4}=x^{2}-sy^{2}-uz^{2})$

and $\psi(t)$ be

$\forall s,$ $u(\forall c(\varphi(s, u, c)arrow\varphi(s, u, c+1))arrow\varphi(s, u, t))$ ,

then the solution set of $\psi(t)$ in $K_{l},$ $\psi(K_{l})$ , includes $\mathbb{Z}$ but excludes non-algebmic
integers, that is, $\mathbb{Z}\subseteq\psi(K_{l})\subseteq O_{k_{l}}$ .

Proof. It is clear that $\mathbb{Z}\subseteq\psi(K_{l})$ . Let $t\in K_{l}\backslash O_{K_{l}}$ . For this $t$ , we show that there
are $a,$ $b\in K_{l}$ such that

$K_{l}\models\neg\varphi(a, b, t)\wedge\forall c(\varphi(a, b, c)arrow\varphi(a, b, c+1))$ .
We fix $F_{m}$ such that $t\in F_{m}$ and $m>1$ . Then $\nu_{\mathfrak{p}_{1}}(t)<0$ for some prime Pl in $F_{m}$ .
By Lemma 5, there are relatively prime elements $a$ and $b$ in $O_{m}$ such that

1. $(a)=\mathfrak{p}_{1}\cdots \mathfrak{p}_{2k}$ , where $\mathfrak{p}_{1},$ $\ldots \mathfrak{p}_{2k}$ are distinct prime ideals in $F_{m}$ which include
every prime ideals in $F_{m}$ which divides 2, and $\mathfrak{p}_{j}$ dose not divide $l$ for $j=$
$2,$ $\ldots 2k$ , and

2. $b$ is a totally positive prime element in $F_{m}$ such that $(a, b)_{\mathfrak{p}}=-1$ iff $\mathfrak{p}|a$ .
By Lemma 6, $1-au^{4}=x^{2}-ay^{2}-bz^{2}$ is not solvable for $x,$ $y$ and $z$ in $F_{m}$ , and for
every $c\in F_{m}$ , if $F_{m}\models\varphi(a, b, c)$ then $F_{m}\models\varphi(a, b, c+1)$ .

For this $a,$ $b$ , it is enough to show that for every $s>m$ such that $s-m$ is even,
1–abt$4=x^{2}-ay^{2}-bz^{2}$ is not solvable for $x,$ $y$ and $z$ in $F_{\delta}$ , and for every $c\in F_{l}$ , if
$F_{\epsilon}\models\varphi(a, b, c)$ then $F_{l}\models\varphi(a, b,c+1)$ .

Note that $a,$ $b$ are relatively prime also in $O_{\epsilon}$ .
Case 1: $\mathfrak{p}_{1}\parallel$ .
By Lemma 8, the decomposition of the ideal $(a)$ in $F_{s}$ is given by $(a)=\mathfrak{P}_{1}\cdots \mathfrak{P}_{2r}$ ,

where $\mathfrak{P}_{1},$ $\ldots \mathfrak{P}_{2r}$ are mutually distinct prime ideals and include every prime ideals
which devides 2. By Lemma 10, $(a, b)_{\mathfrak{P}}=-1$ iff $\mathfrak{P}|a$ . We let $\mathfrak{p}_{1}\subset \mathfrak{P}_{1}$ . Since $\nu_{\mathfrak{p}_{1}}(t)<$

$0$ , we have that $\nu_{\mathfrak{P}}1(t)<0$ . By Lemma 6, we conclude that $1-abt^{4}=x^{2}-ay^{2}-bz^{2}$

is not solvable for $x,y$ and $z$ in $F_{\delta}$ , and for every $c\in F_{s}$ , if $F_{\theta}\models\varphi(a, b, c)$ then
$p_{t}\models\varphi(a, b, c+1)$ .

Case 2: $\mathfrak{p}_{1}|l$ .
By Lemma 8, the decomposition of the ideal $(a)$ in $F_{f}$ is given by

$(a)=\mathfrak{P}^{l}i^{-n}\cdots \mathfrak{P}_{2r’}$ ,
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where $\mathfrak{P}_{1},$

$\ldots$ , $\mathfrak{P}_{2r’}$ are mutually distinct prime ideals and include every prime ideals
which devides 2, and $\mathfrak{p}_{1}=(1-\zeta_{l^{m}}),$ $\mathfrak{P}_{1}=(1-\zeta_{l^{*}})$ .

Let $a’=a/(1-\zeta_{l}\cdot)^{l^{-m}-1}$ . Then $a’\in D_{\delta}$ and $(a’)=\mathfrak{P}_{1}\cdots \mathfrak{P}_{2r’}$ in $F_{s}$ .
Since $a=a’((1-\zeta_{l}\cdot)^{(l^{-m}-1)/2})^{2},$ $(a, b)_{\mathfrak{P}:}=(a’, b)_{\mathfrak{P}:}$ for each $i$ . Hence we have that
$(a’, b)_{\mathfrak{P}}=-1$ iff $\mathfrak{P}|a’$ .

Suppose that $1-abt^{4}=x^{2}-ay^{2}-bz^{2}$ were solvable for $x,$ $y$ and $z$ in $F_{s}$ . Then

$1-a^{l}b(t(1-\zeta_{l}\cdot)^{(l^{-m}-1)/4})^{4}=x^{2}-a’((1-\zeta_{l}\cdot)^{(l^{-m}-1)/2}y)^{2}-bz^{2}$

is solvable for $x,$ $y$ and $z$ in $F,$ , noting that $(l^{\epsilon-m}-1)/4$ is a positive integer since $l-m$
is even. But $\nu_{\mathfrak{P}1}(t(1-\zeta_{l}\cdot)^{(\iota\cdot-1)/4}-m)<0$ since $\mathfrak{p}_{1}=\mathfrak{P}^{l}i^{-n}$ . We have a contradiction
by Lemma 6.

Next we show that if $F_{s}\models\varphi(a, b, c)$ then $F_{s}\models\varphi(a, b, c+1)$ . Suppose that
$F_{s}\models\varphi(a, b, c)$ , that is, $1-abc^{4}=x^{2}-ay^{2}-bz^{2}$ is solvable for $x,$ $y$ and $z$ in $F_{s}$ . Then

1– $a’b(c(1-\zeta_{l})^{(l^{-n}-1)/4})^{4}=x^{2}-a’((1-\zeta_{l}\cdot)^{(t^{-n}-1)/2}y)^{2}-bz^{2}$

is solvable for $x,$ $y$ and $z$ in $F_{\epsilon}$ . By Lemma 6, $\nu_{\varphi_{i}}(c(1-\zeta_{l}\cdot)^{(l^{-n}-1)/4})\geq 0$ for each $\mathfrak{P}_{i}$ .
It follows that $\nu_{\mathfrak{P}:}((c+1)(1-\zeta_{l}\cdot)^{(l^{-m}-1)/4})\geq 0$ for each $\mathfrak{P}_{i}$ . Therefore we have that
$F_{\epsilon}\models\varphi(a, b, c+1)$ . 口

4 Interpreting finite prime fields in $K_{l}$

The next lemma follows from [7, p.145].

Lemma 12 Let $F/\mathbb{Q}$ be a finite Galois extension, and $\mathfrak{p}$ be an extension of a prime
number $p$ to F. Let $F_{Z}$ denote the decomposition field of $\mathfrak{p}$ in $F/\mathbb{Q}$ . Finally, let $F’$ be
an intermediate field of $F/\mathbb{Q}_{f}$ and let $\mathfrak{p}’$ denote the restriction of $\mathfrak{p}$ to $F’$ . Then we
have:

$F’\subseteq F_{Z}$ iff both the mmification index and the residue degree of $\mathfrak{p}’$ in $F’/\mathbb{Q}$ are
equal to 1.

Recall that when $F/\mathbb{Q}$ is abelian, all the prime ideals $\mathfrak{p}$ dividing $p$ have the same
decomposition field in $F/\mathbb{Q}$ , and we call it the decomposition field of $p$ in $F/\mathbb{Q}$ .
Furthermore, under the additional assumption that $F/\mathbb{Q}$ is unramified at $p$ (that is,
$F/\mathbb{Q}$ is unramified at every prime ideal dividing $p$), the Galois group $G(F/F_{Z})$ is
cyclic and generated by the Artin automorphism $\sigma=(p, F/\mathbb{Q})$ which is characterized
by the congruence $\sigma(a)\equiv a^{P}(mod p)$ for $a\in 0_{F}$ , where $0_{F}$ is the ring of algebraic
integers in $F$ .

Lemma 13 Let $l$ be an odd prime. Then, for any positive integer $k$ , there is a Prime
number $p>k$ such that $p$ is a primitive root modulo every power of $l$ .
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Proof. Let $r$ be a primitive root modulo $l$ . Since $r^{l-1}\equiv 1(mod l),$ $r^{l-1}=1+kl$ for
some $k$ . We may suppose that $(k, l)=1$ , that is, $k$ is coprime to $l$ : if $r^{l-1}=1+kl^{m}$

with $m>1$ , then we may take $r+l$ as a primitive root. By the Theorem of Arithmetic
Progression, the congruence class $r(mod l^{2})$ contains an infinity of primes. Let $p>k$
be a prime in that class. $p$ is coprime to $l$ , and is a primitive root modulo $l$ such that
$p^{l-1}=1+k’l$ for some $k’$ with $(k’, l)=1$ .

Let $a$ be an integer of the form $1+k’l$ for some $k’$ with $(k’, l)=1$ . By the binomial
formula, for every $h\geq 2$ , we can show that $f=l^{h-1}$ is the least positive integer such
that $a^{f}\equiv 1(mod l^{h})$ . Therefore $p$ is a primitive root modulo every power of $l$ . $\square$

Lemma 14 Let $F/\mathbb{Q}$ be a finite abelian extension, and be unramified at a prime
number $p$ . Let $F_{Z}$ be the decomposition field of $p$, and let $0,0_{Z}$ be the nng of algebraic
integers of $F,$ $F_{Z}$ respectively. Then, for $a\in 0$ ,

$a\in 0_{Z}\cup p0$ iff $a^{p}\equiv a$ $(mod p)$ .

Proof. Let $\sigma$ denote the Artin automorphism in $G(F/F_{Z})$ . Let $a\in 0$ .
If $a\in 0_{Z}$ , then $\sigma(a)=a$ and $\sigma(a)\equiv a^{p}(mod p)$ . Thus we have that $a^{p}\equiv a$

$(mod p)$ . If $a\in po$ , clearly $a^{p}\equiv a(mod p)$ holds.
Suppose that $a\not\in 0_{Z}\cup po$ . Let $0’$ denote the ring of algebraic integers in $\mathbb{Q}(a)$ .

Since $p0’$ is the intersection of prime ideals in $0’$ including $p\mathbb{Z}$ , there is an extension
$\mathfrak{p}’$ of $p\mathbb{Z}$ to $0’$ such that $a\not\in \mathfrak{p}’$ . The ramification index of $\mathfrak{p}’$ in $\mathbb{Q}(a)/\mathbb{Q}$ is equal to 1
since $\mathfrak{p}$ is unramified in $F/\mathbb{Q}$. Since $\mathbb{Q}(a)\not\subset F_{Z}$ , by Lemma 12, the residue degree of
$\mathfrak{p}’$ in $\mathbb{Q}(a)/\mathbb{Q}$ is greater than 1, that is,

$[0’/\mathfrak{p}’ : \mathbb{Z}/(p)]>1$
. Hence we have that

$a^{p}\not\equiv a\square$

$(mod p)$ .
We keep the notation of section 3.

Theorem 15 For any positive integer $k$ , there is a prime $p>k$ such that $Z\cup pD_{K_{l}}$

is $\emptyset$-definable in $D_{K_{l}}$ , hence $\mathbb{Z}/(p)$ is interpretable in $D_{K_{l}}$ .

Proof. Take a prime number $p>k$ as in Lemma 13. Then, by Lemma 7, the decom-
position field of $p$ in $F_{n}/\mathbb{Q}$ is $\mathbb{Q}$ for every $n$ , and $p$ is unramified in every extension
$inO_{K_{l}}F_{n}/\mathbb{Q}..Let$

$\theta(t)$ be the formula $\exists w(t^{p}-t=pw)$ . By Lemma 14, $\theta(t)$ defines
$\mathbb{Z}\cup pD_{K_{l},\square }$

Theorem 16 $\mathbb{Z}\cup p\psi(K_{l})$ is $\emptyset$-definable in $K_{l}$ , hence $\mathbb{Z}/(p)$ is intempretable in $K_{l}$ .

Prvof. Consider the formula

$\psi(t)\wedge\exists w(\psi(w)\wedge t^{p}-t=pw)$ .

It is evident that this formula defines $\mathbb{Z}\cup p\psi(K_{t})$ in $K_{t}$ . 口
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5 Interpreting direct products of finite fields in
$O_{K_{m}}$

Let $m$ be a positive integer, and let $K_{m},$ $O_{K_{m}},$ $F_{n}$ and $D_{n}$ be as before. Our methods
do not suffice to treat $K_{2}$ , since Lemma 10 fails. They also do not suffice to treat $K_{m}$

with $m$ odd; Lemma 10 holds but the proof of Theorem 11 fails. In this section we
will prove that for a given poistive integer $k$ , there is a prime $q>k$ such that certain
direct products of $\mathbb{Z}/(q)$ is interpretable in $O_{K_{m}}$ with $m$ arbitrary.

Lemma 17 Let $m$ be a positive integer with the prime factorization
2妬 $p_{1}^{h_{1}}p_{2}^{h_{2}}\cdots p_{k}^{h_{k}}$ .

Then for a given positive integer $k$ , there is a prime number $q>k$ coPrime to $m$ such
that

1.
$p_{1}^{rh_{1}-\iota_{p_{2}^{r\hslash_{2}-1}p_{k}^{rh_{k}-1}foreveryr\geq 1}}ifh_{0}--0,then.theorderofqin(\mathbb{Z}/m^{r}\mathbb{Z})^{*}$

is equal to

2.
$2^{rh_{0}-2}p_{1}^{rh_{1}-1}p_{2}^{rh_{2}-1}\cdot p_{k}^{rh_{k}-1}foreveryifh_{0}>0,thenthentheorderofqin(\mathbb{Z}/m^{r}\mathbb{Z})^{*}r\geq 2$.

is equal to

Proof. For each odd prime $p_{i}$ , we know that there is an integer $u_{i}$ such that $u_{i}^{p:-1}$ is
of the form $1+k’p_{i}$ for some $k’$ which is coprime to $p_{i}$ , and every integer of that form
is of order $p$; in $(\mathbb{Z}/p_{i}^{r}\mathbb{Z})^{*}$ for every $r\geq 1$ . Let $s_{i}=u_{i}^{p:-1}$ . On the other hand, we
see that by the binomial formula, the order of 5 in $(\mathbb{Z}/2^{r}\mathbb{Z})^{*}$ is equal to $2^{r-2}$ for every
$r\geq 2$ , and

$(\mathbb{Z}/2^{r}\mathbb{Z})^{*}\cong\langle-1\rangle\cross\langle 5\rangle$ .

Furthermore, also by the binomial formula, we see that every integer of the form
$1+2^{2}k’$ with $k’$ odd is also of order $2^{r-2}$ in $(\mathbb{Z}/2^{r}\mathbb{Z})^{*}$ for $r\geq 2$ . By the Chinese
Remainder Theorem and the Theorem of Arithmetic Progression, there is a prime
number $q$ such that

$q\equiv 5$ $(mod 2^{3}),q\equiv s_{i}$ $(mod p_{i}^{2})$ for $i=1,$ $\cdots k$ .
$q$ is coprime to $m$ and is of the form $1+k’p$: for some $k’$ coprime to $p_{i}$ for each $i$ , and
is of the form $1+2^{2}k’$ with $k’$ odd. $\square$

Lemma 18 Let $L/\mathbb{Q}$ be a finite Galois extension, and let $M$ be an interrnediate field
of $L/\mathbb{Q}$ such that $M/\mathbb{Q}$ is a Galois extension. Let $\mathfrak{p}\supset \mathfrak{p}’\supset p$ be primes of $L,$ $M$ and

$\mathbb{Q}$ respectively and let $L_{Z},$ $M_{Z’}$ be the decomposition field of $\mathfrak{p}$ in $L/\mathbb{Q}$ and $\mathfrak{p}’$ in $M/\mathbb{Q}$

respectively. Then $M_{Z’}\subseteq L_{Z}$ .
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Proof. Let $Z,$ $Z’$ be the decomposition groups of $\mathfrak{p}$ in $L/\mathbb{Q}$ and $\mathfrak{p}’$ in $M/\mathbb{Q}$ respectively.
Let $a\in M_{Z’}$ . We must show that for $\sigma\in Z,$ $\sigma(a)=a$ holds. Since $M/\mathbb{Q}$ is a Galois
extension,

$(\mathfrak{p}’)^{\sigma}=(\mathfrak{p}\cap M)^{\sigma}=\mathfrak{p}^{\sigma}\cap M=\mathfrak{p}\cap M=\mathfrak{p}’$ .
This shows that the restriction of $\sigma$ to $M,$ $\sigma r_{M}$ , is in $Z’$ . Then $\sigma(a)=\sigma r_{M}(a)=a$ .

口

Lemma 19 Let $M_{0}=\mathbb{Q}(\zeta_{m_{O}})_{f}$ where $m_{0}=p_{1}p_{2}\cdots p_{k}$ , and let $M_{1}=\mathbb{Q}(\zeta_{m_{1}})$ , where
$m_{1}=4p_{1}p_{2}\cdots p_{k}$ . Furthermore, for $i=1,2$ let $0_{i}$ be the ring of dgebraic integers in
$M_{i}$ respectively.

Then, for any positive integer $k$ , there is a prime $p>k$ such that $0_{0}\cup pD_{K_{m}}$ is
$\emptyset$ -definable in $D_{K_{m}}$ with $m$ odd. Similarly, for any positive integer $k$ , there is a prime
$p>k$ such that $0_{1}\cup pO_{K_{m}}$ is $\emptyset$-definable in $O_{K_{m}}$ with $m$ even.

Proof. Take a prime number $q$ as in Lemma 17.
Let $m$ be odd. Then, by Lemma 7, $q$ is unramified in $F_{n}/\mathbb{Q}$ and the decomposition

field of $q$ in $F_{n}/\mathbb{Q}$ is of degree $(p_{1}-1)\cdots(p_{k}-1)$ over $\mathbb{Q}$ for every $n>0$ . By
Lemma 18, we see that those docomposition fields coincide. Let $L$ be the common
decomposition field. Also by Lemma 18, for each $i,$ $L$ includes the decomposition
field of $q$ in $\mathbb{Q}(\zeta_{p_{i}^{h_{1}}})/\mathbb{Q}$ , which is of degree $p_{i}-1$ over $\mathbb{Q}$ . Sinoe $\mathbb{Q}(\zeta_{p^{h_{1}}}.)/\mathbb{Q}$ is a
cyclic extension, $\mathbb{Q}(\zeta_{p:})$ is the only intermediate field with degree $p_{i}-1$ . Hence $L$

includes $\mathbb{Q}(\zeta_{P1})\cdots \mathbb{Q}(\zeta_{p_{k}})$ , which is of degree $(p_{1}-1)\cdots(p_{k}-1)$ . Therefore $L=$
$\mathbb{Q}(\zeta_{P1})\cdots \mathbb{Q}(\zeta_{Pk})=M_{0}$ . (See [5, p.74]. ) Let $\theta(t)$ be as before. By Lemma 14, $\theta(t)$

defines $0_{0}\cup qO_{K_{m}}$ in $D_{K_{m}}$ .
Let $m$ be even. We note that $\langle q\rangle$ is the only subgroup of order $2^{r-2}$ in $(\mathbb{Z}/2^{r}\mathbb{Z})^{n}$

with $r>2$ . Then similarly, $q$ is unramffied in every extension $F_{n}/\mathbb{Q}$ and the decom-
position field of $p$ in $F_{n}/\mathbb{Q}$ with $n>2$ is $M_{1}$ . Hence $\theta(t)$ also defines $0_{1}\cup qD_{K_{n}}$ in
$O_{K_{m}}$ . $\square$

Theorem 20 Let $m$ be as before. Then, for a given positive integer $k$ , there is a
prime $q>k$ such that

if $m$ is odd,

$\sim \mathbb{Z}/(q)\cross\cross \mathbb{Z}/(q)(p_{1}-1).\cdot\cdot.\cdot(.p_{k}-1)$

is interpretable in $O_{K_{m}}$ , and
if $m$ is even,

$\frac{2(p_{1}-1)\cdot.\cdot\cdot.(p_{k}-1)}{\mathbb{Z}/(q)\cross\cdot x\mathbb{Z}/(q)}$

is interpretable in $O_{K_{m}}$ .
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Proof. Let $n_{0}=[M_{0} : \mathbb{Q}]=(p_{1}-1)(p_{2}-1)\cdots(p_{k}-1)$ , and let $n_{1}=[M_{1} : \mathbb{Q}]=$

$2(p_{1}-1)(p_{2}-1)$ . . $(p_{k}-1)$ . Clealy $0_{0}/qo_{0}$ is interpretable in $O_{K_{m}}$ with $m$ odd. Since
the decomposition of $q\mathbb{Z}$ in $0_{0}$ is $\mathfrak{p}_{1}\cdots \mathfrak{p}_{n_{0}}$ and $0_{0}/\mathfrak{p}_{i}\cong \mathbb{Z}/(q)$ for each $i$ , we have

$0_{0}/q0_{0}\cong 0_{0}/(\mathfrak{p}_{1}n\cdots\cap \mathfrak{p}_{n0})\cong\frac{(p_{1}-1).\cdot.\cdot(.p_{k}-1)}{\mathbb{Z}/(q)\cross\cross \mathbb{Z}/(q)}$

.

Similarly for $m$ even. $\square$
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