Interpreting finite fields in towers of cyclotomic fields

鹿児島国際大学国際文化学部 福崎賢治 (Kenji Fukuzaki) Faculty of Intercultural Studies, The international University of Kagoshima

Abstract

Let l be an odd prime and ζ_{l^n} is a primitive l^n -th root of unity. We consider the towers of cylotomic fields $K_l = \bigcup_n \mathbb{Q}(\zeta_{l^n})$. We prove that, for any positive integer k, there is a prime p > k such that $\mathbb{Z}/(p)$ is interpretable in K_l . The proof uses the method of Julia Robinson by which she proved the undecidability of number fields.

For $K_m = \bigcup_n \mathbb{Q}(\zeta_{m^n})$, where *m* is an arbitrary positive integer and ζ_{m^n} is a primitive m^n -th root of unity, we prove that for any positive integer *k*, there is a prime p > k such that some finite product of $\mathbb{Z}/(p)$ is interpretable in K_m .

1 Introduction

In 1959 Julia Robinson [1] proved that in a given number field, N is \emptyset -definable in the ring language, from which follows the undecidability of its theory. She constructed a formula which includes \mathbb{Z} but excludes non-algebraic integers, which only depends on the ramification index of prime ideals of a number field which divides 2. Let F be a number field and $\psi(t)$ be such a formula. Then the ring of algebraic integers \mathfrak{O} of F is \emptyset -definable in F. Let a_1, \ldots, a_s be an integral basis of \mathfrak{O} ($s = [F : \mathbb{Q}]$), and let $P_i(x)$ be the minimal polynomial of a_i over \mathbb{Q} (hence over \mathbb{Z}) for each i. Then in F

$$t \in \mathfrak{O} \iff \exists x_1, \ldots, x_s, y_1, \ldots, y_s (t = x_1 y_1 + \cdots + x_s y_s \land \bigwedge_i P_i(y_i) = 0 \land \bigwedge_i \psi(x_i))$$

holds. She then constructed a formula which defines \mathbb{N} in \mathfrak{O} , which only depends on $[F:\mathbb{Q}]$.

J. Robinson used the Hasse-Minkowski theorem on quadratic forms. On the other hand, using Hasse's Norm Theorem, R. Rumely [2] proved that the theory of global fields is undecidable. His formula is independent of global fields. Recently B. Poonen [3] extended the results. He proved that the theory of finitely generated fields over \mathbb{Q} is undecidable.

We follow the method of J. Robinson. We will show that $\psi(t)$ includes \mathbb{Z} and excludes non-algebraic integers in $K_l = \bigcup_n \mathbb{Q}(\zeta_{l^n})$, where $\psi(t)$ is the formula which she used in [1]. We then will show that for any positive integer k, there is a prime p > k such that $\mathbb{Z} \cup p\psi(K_l)$ is \emptyset -definable, from which the interpretability of $\mathbb{Z}/(p)$ in K_l follows.

In section 2, we describe construction of $\psi(t)$ in [1]. In section 3, we extend the result to K_l , and in section 4, we prove that for any positive integer k, there is a prime p > k such that $\mathbb{Z} \cup p\psi(K_l)$ is \emptyset -definable.

In section 5, we prove that for any positive integer k, there is a prime q > k such that some dirct product of $\mathbb{Z}/(q)$ is interpretable in the ring of algebraic integers of $\bigcup_n \mathbb{Q}(\zeta_{m^n})$, where m is an arbitrary positive integer and ζ_{m^n} is a primitive m^n -th root of unity.

2 Construction of $\psi(t)$

Let F be a number field (a finite algebraic extension of the rationals \mathbb{Q}) and let \mathfrak{O} be the ring of algebraic integers of F. By \mathfrak{p} we denote a valuation of F and by $F_{\mathfrak{p}}$ the completion of F with respect to \mathfrak{p} . Since non-Archemedean valuations of F are \mathfrak{p} -adic valuations for some prime ideal \mathfrak{p} of F, we use the same letter \mathfrak{p} for both the valuation and the prim ideal. Let \mathfrak{p} be a prime ideal of F and $a \in F$. By $\nu_{\mathfrak{p}}(a)$ we denote the order of a at \mathfrak{p} . Given $a, b \in F^*$, we use Hilbert symbol $(a, b)_{\mathfrak{p}}$, which is defined to be +1 if $ax^2 + by^2 = 1$ is solvable in $F_{\mathfrak{p}}$, otherwise defined to be -1.

The following lemma is well-known:

Lemma 1 $h \in F^*$ can be represented by the form $x^2 - ay^2 - bz^2$ iff $-ab/h \notin F_{\mathfrak{p}}^{*2}$ for any valuation \mathfrak{p} such that $(a, b)_{\mathfrak{p}} = -1$.

This follows the property of quaternary quadratic forms and the Hasse-Minkowski theorem on quadratic forms. See [4, p. 187] and [6, p.111].

Using this lemma, J. Robinson proved the following:

(†) Let m be a positive integer such that $\mathfrak{p}^m \not| 2$ for all prime ideals \mathfrak{p} . Let $\varphi(s, u, t)$ be

$$\exists x, y, z(1 - sut^{2m} = x^2 - sy^2 - uz^2).$$

For $t \notin \mathfrak{O}$, there are $a, b \in \mathfrak{O}$ such that

- 1. $F \models \neg \varphi(a, b, t)$,
- 2. $F \models \forall c(\varphi(a, b, c) \rightarrow \varphi(a, b, c+1)).$

Then we can use inductive form: Let $\psi(t)$ be

$$\forall s, u(\forall c(\varphi(s, u, c) \rightarrow \varphi(s, u, c+1)) \rightarrow \varphi(s, u, t)),$$

then the solution set of $\psi(t)$ in F, $\psi(F)$, includes Z but excludes non-algebraic integers, that is, $\mathbb{Z} \subseteq \psi(F) \subseteq \mathfrak{O}$. Since $\varphi(s, u, 0)$ holds for every $s, u \in F$, the inductive form insures that every positive integer satisify ψ . Since $\varphi(s, u, t) \leftrightarrow \varphi(s, u, -t)$, every rational integer also satisfies ψ . The above statement (†) shows that non-algebraic integers fail to satisfy ψ . Note that for $t \notin \mathfrak{O}$ (and for $t \in \mathfrak{O}$), it is not so difficult to find $a, b \in F$ such that 1 holds, but difficult to find a, b such that both 1 and 2 hold.

J. Robinson proved the above statement from two lemmas. We state these two lemmas in a little bit different forms for our sake. Before stating these lemmas, we need some lemmas. The following two lemmas are special cases of a theorem proved in [5, p.166].

Lemma 2 There are infinitely many prime ideals in every ideal class.

Lemma 3 If $a \in \mathcal{O}$ is prime to an ideal \mathfrak{m} , there are infinitely many prime elements $p \in \mathcal{O}$ such that $p \equiv a \pmod{\mathfrak{m}}$.

Lemma 4 Let $a \in \mathfrak{O}$ and $\nu_{\mathfrak{p}}(a) = 1$. Then there is $b \in \mathfrak{O}$ with \mathfrak{p} / b such that $(a, b)_{\mathfrak{p}} = -1$.

Proof. It is proved in [4, pp.161-165] that there is a unit in a local field M such that it is congruent to a square (mod 40) but not (mod 4p), where \mathbf{o} is the ring of integers and \mathbf{p} a prime ideal of M. And if ϵ is such a unit, $(a, \epsilon)_{\mathbf{p}} = -1$ for a prime element a. Take such a unit $\epsilon \in F_{\mathbf{p}}$. There is a unit $\epsilon_0 \in F$ such that $\epsilon_0 \equiv \epsilon \pmod{4p}$. ϵ_0 is congruent to a square (mod $4\mathfrak{O}$) but not (mod $4\mathbf{p}$).

J. Robinson proved this lemma using Hasse's formula evaluating the Hilbert symbol.

We state two basic lemmas due to J. Robinson [1, Lemma 8,9].

Lemma 5 Given a prime ideal \mathfrak{p}_1 of F and an odd prime number l, there are relatively prime elements a and b in \mathfrak{O}^* such that

- 1. (a) = $\mathfrak{p}_1 \cdots \mathfrak{p}_{2k}$, where $\mathfrak{p}_1, \ldots, \mathfrak{p}_{2k}$ are distinct prime ideals which include every prime ideals which divides 2, and \mathfrak{p}_j dose not divide l for $j = 2, \ldots, 2k$, and
- 2. b is a totally positive prime element such that $(a, b)_{\mathfrak{p}} = -1$ iff $\mathfrak{p}|a$.

Proof. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_{2k-1}$ be a set of disticnt prime ideals such that it includes every prime idals dividing 2 and \mathfrak{p}_j dose not divide l for $j = 2, \ldots, 2k - 1$. Let \mathfrak{K} be the ideal class which contains the product $\mathfrak{p}_1 \cdots \mathfrak{p}_{2k-1}$. By Lemma 2 we can choose a

prime ideal \mathfrak{p}_{2k} in the ideal class \mathfrak{K}^{-1} with $\mathfrak{p}_{2k} \neq \mathfrak{p}_i$ for $i = 1, \ldots, 2k - 1$ and with $\mathfrak{p}_{2k} \not| (l)$.

For i = 1, ..., 2k, by Lemma 4 we can choose $b_i \in \mathcal{D}$ prime to \mathfrak{p} so that $(a, b_i)_{\mathfrak{p}} = -1$. Let *m* be a positive integer such that $\mathfrak{p}^m / 2$ for every prime ideal \mathfrak{p} . Consider the simultaneous system of congruences

$$x \equiv b_i \pmod{\mathfrak{p}_i^{2m}}$$
 for $i = 1, \ldots, 2k$.

By the Chinese Remainder Theorem, there is a solution $c \in \mathfrak{O}$ and so is every element which is congruent to $c \pmod{\mathfrak{p}_1^{2m} \cdots \mathfrak{p}_{2k}^{2m}}$. Since c is prime to the modulus, by Lemma 3 there are infinitely many totally positive prime elements p such that

$$p \equiv c \pmod{\mathfrak{p}_1^{2m} \cdots \mathfrak{p}_{2k}^{2m}}.$$

Let b be one of such elements. b is coprime to a.

We claim that $b_i/b \in F_{\mathfrak{p}_i}^2$ for each i; since $b \equiv b_i \pmod{\mathfrak{p}_i^{2m}}$ and b_i is prime to $\mathfrak{p}_i, \nu_{\mathfrak{p}_i}(1-b_i/b) > \nu_{\mathfrak{p}_i}(4)$, then applying Hensel's lemma ([5, p.42]) with $x^2 - b_i/b$ and x = 1, we get that $b_i/b \in F_{\mathfrak{p}_i}^2$. Hence $(a, b)_{\mathfrak{p}_i} = -1$ for each i. On the other hand, $(a, b)_{\mathfrak{p}} = +1$ for all Archimedean valuations \mathfrak{p} since b is totally positive. It is easy to see that if $(a, b)_{\mathfrak{p}} = -1$ then \mathfrak{p} is an Archimedean valuation or the prime ideal \mathfrak{p} dividing 2ab (see [4, p. 166]). Then the only other other valuation for which $(a, b)_{\mathfrak{p}} = -1$ could hold would be $\mathfrak{p} = (b)$; but, by the product formula for the Hilbert symbol ([4, p.190]), $(a, b)_{\mathfrak{p}} = -1$ for an even number of valuations. Therefore $(a, b)_{\mathfrak{p}} = -1$ iff $\mathfrak{p}|a$.

Lemma 6 Let $(a) = \mathfrak{p}_1 \cdots \mathfrak{p}_{2k}$ such that $\mathfrak{p}_1, \ldots, \mathfrak{p}_{2k}$ are distinct prime ideals which include every prime ideals which divides 2, and let $b \in \mathfrak{O}^*$ be coprime to a such that $(a,b)_{\mathfrak{p}} = -1$ iff $\mathfrak{p}|a$, and m be a positive integer such that $\mathfrak{p}^m \not/2$ for every prime ideal \mathfrak{p} . Then,

 $1-abc^{2m}=x^2-ay^2-bz^2$ is solvable for x, y and z in F iff $\nu_{\mathfrak{p}_i}(c) \geq 0$ for each i.

Proof. Let $h = 1 - abc^{2m}$. Suppose that $\nu_{\mathfrak{p}_i}(c) \ge 0$ for each *i*. Since $\nu_{\mathfrak{p}_i}(h) = 0$ and $\nu_{\mathfrak{p}_i}(-ab) = 1$, $h/(-ab) \notin F_{\mathfrak{p}_i}^2$ for each *i*. By Lemma 1 and the assumption, $h = x^2 - ay^2 - bz^2$ is solvable for x, y and z in F.

Now suppose that $\nu_{\mathfrak{p}_i}(c) < 0$ for some *i*. Let $\nu_{\mathfrak{p}_{i_0}}(c) < 0$. We show that $-ab/h \in F_{\mathfrak{p}_{i_0}}^2$. Since $\nu_{\mathfrak{p}_{i_0}}(1 - (-ab/h)) > \nu_{\mathfrak{p}_{i_0}}(4)$, applying again Hensel's lemma with $x^2 - (-ab/h)$ and x = 1, we get that $-ab/h \in F_{\mathfrak{p}_{i_0}}^2$. It follows that $h = x^2 - ay^2 - bz^2$ is not solvable for x, y and z in F.

It is easy to derive the statement (†) from the above two lemmas, noting $\nu_{\mathfrak{p}}(c) = \nu_{\mathfrak{p}}(c+1)$ for every prime ideal \mathfrak{p} .

3 $\psi(t)$ in towers of cyclotomic fields

Let $F_n = \mathbb{Q}(\zeta_{l^n})$, where *l* is an odd prime and ζ_{l^n} is a primitive l^n -th root of unity, and let $K_l = \bigcup_n \mathbb{Q}(\zeta_{l^n})$ ($F_0 = \mathbb{Q}$). We denote by \mathfrak{O}_n the ring of algebraic integers in F_n and by \mathfrak{O}_{K_l} the ring of algebraic integers in K_l . Then $\mathfrak{O}_{K_l} = \bigcup_n \mathfrak{O}_n$.

The following lemma is well-known and proved in [7, pp.256-258]. We denote by ϕ Euler's function.

Lemma 7 Let $M = \mathbb{Q}(\zeta_m)$, where m is an positive integer and ζ_m is a primitive m-th root of unity. Then

- 1. $[M:\mathbb{Q}] = \phi(m),$
- 2. the only ramified prime ideals in M are those dividing m, and especially there is only one prime $\mathfrak{p} = (1 \zeta_{l^n})$ of F_n lying above l, and it is totally ramified,
- 3. given a prime number p coprime to m, we let f be the least positive integer such that $p^f \equiv 1 \pmod{m}$, and set $\phi(m) = fg$. Then in M, $(p) = \mathfrak{p}_1 \cdots \mathfrak{p}_g$, where \mathfrak{p}_i are primes of M. The residue degree of each \mathfrak{p}_i in M/\mathbb{Q} is equal to f, and the degree of the decomposition field \mathfrak{p}_i in F_n over \mathbb{Q} is equal to g for each i.

From the above lemma we easily see that,

Lemma 8 Let 0 < i < j and p be a prime ideal of F_i . Then

- 1. If \mathfrak{p} / l , then in F_j , $\mathfrak{p} = \mathfrak{P}_1 \cdots \mathfrak{P}_k$, where \mathfrak{P}_r are primes in F_j and k divides $[F_j: F_i] = l^{j-i}$.
- 2. If $\mathfrak{p}|l$, then in F_j , $\mathfrak{p} = \mathfrak{P}^{l^{j-i}}$, where $\mathfrak{p} = (1 \zeta_{l^i}), \mathfrak{P} = (1 \zeta_{l^j})$.

The next lemma is also proved in [7, p.272].

Lemma 9 Let $K \supset k$ be number fields and $\mathfrak{P} \supset \mathfrak{p}$ be primes of K and k repectively. For $\alpha \in K^*_{\mathfrak{P}}$, let $a = N_{K_{\mathfrak{P}}/k_{\mathfrak{p}}}(\alpha)$ and $b \in k_{\mathfrak{p}}$. Then, $(\alpha, b)_{\mathfrak{P}} = (a, b)_{\mathfrak{p}}$.

The next lemma follows from Lemma 9.

Lemma 10 Let 0 < i < j, \mathfrak{p} a prime ideal of F_i and \mathfrak{P} be a prime in F_j lying over \mathfrak{p} . Then for $a, b \in F_i^*$, $(a, b)_{\mathfrak{p}} = 1$ iff $(a, b)_{\mathfrak{P}} = 1$.

Proof. Since F_j/F_i is an abelian extension, the local degree at \mathfrak{P} divides the degree of F_j/F_i , that is, $[(F_j)_{\mathfrak{P}} : (F_i)_{\mathfrak{p}}]|[F_j : F_i]$ (see [4, p.32]). Let u be the local degree at \mathfrak{P} . Then $N_{K_{\mathfrak{P}}/k_{\mathfrak{p}}}(a) = a^u$ and $(a, b)_{\mathfrak{P}} = (a^u, b)_{\mathfrak{p}} = (a, b)_{\mathfrak{p}}^u$. Since u is odd, it follows that $(a, b)_{\mathfrak{p}} = 1$ iff $(a, b)_{\mathfrak{P}} = 1$.

We now extend J. Robinson's result [1] to K_l . Note that in each F_n , $\mathfrak{p}^2/2$ for every prime ideal in F_n .

Theorem 11 Let $\varphi(s, u, t)$ be

$$\exists x, y, z(1 - abt^4 = x^2 - sy^2 - uz^2)$$

and $\psi(t)$ be

$$\forall s, u(\forall c(\varphi(s, u, c) \rightarrow \varphi(s, u, c+1)) \rightarrow \varphi(s, u, t)),$$

then the solution set of $\psi(t)$ in K_l , $\psi(K_l)$, includes \mathbb{Z} but excludes non-algebraic integers, that is, $\mathbb{Z} \subseteq \psi(K_l) \subseteq \mathfrak{O}_{k_l}$.

Proof. It is clear that $\mathbb{Z} \subseteq \psi(K_l)$. Let $t \in K_l \setminus \mathcal{O}_{K_l}$. For this t, we show that there are $a, b \in K_l$ such that

$$K_l \models \neg \varphi(a, b, t) \land \forall c(\varphi(a, b, c) \rightarrow \varphi(a, b, c+1)).$$

We fix F_m such that $t \in F_m$ and m > 1. Then $\nu_{\mathfrak{p}_1}(t) < 0$ for some prime \mathfrak{p}_1 in F_m . By Lemma 5, there are relatively prime elements a and b in \mathfrak{O}_m such that

- 1. $(a) = \mathfrak{p}_1 \cdots \mathfrak{p}_{2k}$, where $\mathfrak{p}_1, \ldots, \mathfrak{p}_{2k}$ are distinct prime ideals in F_m which include every prime ideals in F_m which divides 2, and \mathfrak{p}_j dose not divide l for $j = 2, \ldots, 2k$, and
- 2. b is a totally positive prime element in F_m such that $(a, b)_p = -1$ iff p|a.

By Lemma 6, $1 - abt^4 = x^2 - ay^2 - bz^2$ is not solvable for x, y and z in F_m , and for every $c \in F_m$, if $F_m \models \varphi(a, b, c)$ then $F_m \models \varphi(a, b, c+1)$.

For this a, b, it is enough to show that for every s > m such that s - m is even, $1 - abt^4 = x^2 - ay^2 - bz^2$ is not solvable for x, y and z in F_s , and for every $c \in F_s$, if $F_s \models \varphi(a, b, c)$ then $F_s \models \varphi(a, b, c + 1)$.

Note that a, b are relatively prime also in \mathfrak{O}_s .

<u>Case 1</u>: $\mathfrak{p}_1 \not l$.

By Lemma 8, the decomposition of the ideal (a) in F_s is given by $(a) = \mathfrak{P}_1 \cdots \mathfrak{P}_{2r}$, where $\mathfrak{P}_1, \ldots, \mathfrak{P}_{2r}$ are mutually distinct prime ideals and include every prime ideals which devides 2. By Lemma 10, $(a, b)_{\mathfrak{P}} = -1$ iff $\mathfrak{P}|a$. We let $\mathfrak{p}_1 \subset \mathfrak{P}_1$. Since $\nu_{\mathfrak{p}_1}(t) < 0$, we have that $\nu_{\mathfrak{P}_1}(t) < 0$. By Lemma 6, we conclude that $1 - abt^4 = x^2 - ay^2 - bz^2$ is not solvable for x, y and z in F_s , and for every $c \in F_s$, if $F_s \models \varphi(a, b, c)$ then $F_s \models \varphi(a, b, c+1)$.

<u>Case 2</u>: $\mathfrak{p}_1|l$.

By Lemma 8, the decomposition of the ideal (a) in F_s is given by

$$(a)=\mathfrak{P}_1^{l^{s-m}}\cdots\mathfrak{P}_{2r'},$$

where $\mathfrak{P}_1, \ldots, \mathfrak{P}_{2r'}$ are mutually distinct prime ideals and include every prime ideals which devides 2, and $\mathfrak{p}_1 = (1 - \zeta_{l^m}), \mathfrak{P}_1 = (1 - \zeta_{l^s}).$

Let $a' = a/(1-\zeta_{l^s})^{l^{s-m}-1}$. Then $a' \in \mathfrak{O}_s$ and $(a') = \mathfrak{P}_1 \cdots \mathfrak{P}_{2r'}$ in F_s . Since $a = a'((1-\zeta_{l^s})^{(l^{s-m}-1)/2})^2$, $(a,b)_{\mathfrak{P}_i} = (a',b)_{\mathfrak{P}_i}$ for each *i*. Hence we have that $(a',b)_{\mathfrak{P}} = -1$ iff $\mathfrak{P}|a'$.

Suppose that $1 - abt^4 = x^2 - ay^2 - bz^2$ were solvable for x, y and z in F_s . Then

$$1 - a'b(t(1-\zeta_{l^*})^{(l^*-m-1)/4})^4 = x^2 - a'((1-\zeta_{l^*})^{(l^*-m-1)/2}y)^2 - bz^2$$

is solvable for x, y and z in F_s , noting that $(l^{s-m}-1)/4$ is a positive integer since l-m is even. But $\nu_{\mathfrak{P}_1}(t(1-\zeta_{l^s})^{(l^{s-m}-1)/4}) < 0$ since $\mathfrak{p}_1 = \mathfrak{P}_1^{l^{s-m}}$. We have a contradiction by Lemma 6.

Next we show that if $F_s \models \varphi(a, b, c)$ then $F_s \models \varphi(a, b, c + 1)$. Suppose that $F_s \models \varphi(a, b, c)$, that is, $1 - abc^4 = x^2 - ay^2 - bz^2$ is solvable for x, y and z in F_s . Then

$$1 - a'b(c(1-\zeta_{l^*})^{(l^{*-n}-1)/4})^4 = x^2 - a'((1-\zeta_{l^*})^{(l^{*-n}-1)/2}y)^2 - bz^2$$

is solvable for x, y and z in F_s . By Lemma 6, $\nu_{\mathfrak{P}_i}(c(1-\zeta_{l^s})^{(l^{s-m}-1)/4}) \ge 0$ for each \mathfrak{P}_i . It follows that $\nu_{\mathfrak{P}_i}((c+1)(1-\zeta_{l^s})^{(l^{s-m}-1)/4}) \ge 0$ for each \mathfrak{P}_i . Therefore we have that $F_s \models \varphi(a, b, c+1)$.

4 Interpreting finite prime fields in K_l

The next lemma follows from [7, p.145].

Lemma 12 Let F/\mathbb{Q} be a finite Galois extension, and \mathfrak{p} be an extension of a prime number p to F. Let F_Z denote the decomposition field of \mathfrak{p} in F/\mathbb{Q} . Finally, let F' be an intermediate field of F/\mathbb{Q} , and let \mathfrak{p}' denote the restriction of \mathfrak{p} to F'. Then we have:

 $F' \subseteq F_Z$ iff both the ramification index and the residue degree of \mathfrak{p}' in F'/\mathbb{Q} are equal to 1.

Recall that when F/\mathbb{Q} is abelian, all the prime ideals \mathfrak{p} dividing p have the same decomposition field in F/\mathbb{Q} , and we call it the decomposition field of p in F/\mathbb{Q} . Furthermore, under the additional assumption that F/\mathbb{Q} is unramified at p (that is, F/\mathbb{Q} is unramified at every prime ideal dividing p), the Galois group $G(F/F_Z)$ is cyclic and generated by the Artin automorphism $\sigma = (p, F/\mathbb{Q})$ which is characterized by the congruence $\sigma(a) \equiv a^p \pmod{p}$ for $a \in \mathfrak{o}_F$, where \mathfrak{o}_F is the ring of algebraic integers in F.

Lemma 13 Let l be an odd prime. Then, for any positive integer k, there is a prime number p > k such that p is a primitive root modulo every power of l.

Proof. Let r be a primitive root modulo l. Since $r^{l-1} \equiv 1 \pmod{l}$, $r^{l-1} = 1 + kl$ for some k. We may suppose that (k, l) = 1, that is, k is coprime to l: if $r^{l-1} = 1 + kl^m$ with m > 1, then we may take r+l as a primitive root. By the Theorem of Arithmetic Progression, the congruence class $r \pmod{l^2}$ contains an infinity of primes. Let p > k be a prime in that class. p is coprime to l, and is a primitive root modulo l such that $p^{l-1} = 1 + k'l$ for some k' with (k', l) = 1.

Let a be an integer of the form 1 + k'l for some k' with (k', l) = 1. By the binomial formula, for every $h \ge 2$, we can show that $f = l^{h-1}$ is the least positive integer such that $a^f \equiv 1 \pmod{l^h}$. Therefore p is a primitive root modulo every power of l. \Box

Lemma 14 Let F/\mathbb{Q} be a finite abelian extension, and be unramified at a prime number p. Let F_Z be the decomposition field of p, and let $\mathfrak{o}, \mathfrak{o}_Z$ be the ring of algebraic integers of F, F_Z respectively. Then, for $a \in \mathfrak{o}$,

$$a \in \mathfrak{o}_Z \cup p\mathfrak{o} \quad iff \quad a^p \equiv a \pmod{p}.$$

Proof. Let σ denote the Artin automorphism in $G(F/F_Z)$. Let $a \in \mathfrak{o}$.

If $a \in \mathfrak{o}_Z$, then $\sigma(a) \equiv a$ and $\sigma(a) \equiv a^p \pmod{p}$. Thus we have that $a^p \equiv a \pmod{p}$. If $a \in p\mathfrak{o}$, clearly $a^p \equiv a \pmod{p}$ holds.

Suppose that $a \notin o_Z \cup po$. Let o' denote the ring of algebraic integers in $\mathbb{Q}(a)$. Since po' is the intersection of prime ideals in o' including $p\mathbb{Z}$, there is an extension \mathfrak{p}' of $p\mathbb{Z}$ to o' such that $a \notin \mathfrak{p}'$. The ramification index of \mathfrak{p}' in $\mathbb{Q}(a)/\mathbb{Q}$ is equal to 1 since \mathfrak{p} is unramified in F/\mathbb{Q} . Since $\mathbb{Q}(a) \not\subseteq F_Z$, by Lemma 12, the residue degree of \mathfrak{p}' in $\mathbb{Q}(a)/\mathbb{Q}$ is greater than 1, that is, $[o'/\mathfrak{p}' : \mathbb{Z}/(p)] > 1$. Hence we have that $a^p \not\equiv a \pmod{p}$.

We keep the notation of section 3.

Theorem 15 For any positive integer k, there is a prime p > k such that $\mathbb{Z} \cup p\mathcal{O}_{K_l}$ is \emptyset -definable in \mathcal{O}_{K_l} , hence $\mathbb{Z}/(p)$ is interpretable in \mathcal{O}_{K_l} .

Proof. Take a prime number p > k as in Lemma 13. Then, by Lemma 7, the decomposition field of p in F_n/\mathbb{Q} is \mathbb{Q} for every n, and p is unramified in every extension F_n/\mathbb{Q} . Let $\theta(t)$ be the formula $\exists w(t^p - t = pw)$. By Lemma 14, $\theta(t)$ defines $\mathbb{Z} \cup p\mathfrak{O}_{K_l}$ in \mathfrak{O}_{K_l} .

Theorem 16 $\mathbb{Z} \cup p\psi(K_l)$ is \emptyset -definable in K_l , hence $\mathbb{Z}/(p)$ is interpretable in K_l .

Proof. Consider the formula

$$\psi(t) \wedge \exists w(\psi(w) \wedge t^p - t = pw).$$

It is evident that this formula defines $\mathbb{Z} \cup p\psi(K_l)$ in K_l .

5 Interpreting direct products of finite fields in \mathfrak{O}_{K_m}

Let *m* be a positive integer, and let K_m , \mathcal{O}_{K_m} , F_n and \mathcal{O}_n be as before. Our methods do not suffice to treat K_2 , since Lemma 10 fails. They also do not suffice to treat K_m with *m* odd; Lemma 10 holds but the proof of Theorem 11 fails. In this section we will prove that for a given poistive integer *k*, there is a prime q > k such that certain direct products of $\mathbb{Z}/(q)$ is interpretable in \mathcal{O}_{K_m} with *m* arbitrary.

Lemma 17 Let m be a positive integer with the prime factorization

$$2^{h_0} p_1^{h_1} p_2^{h_2} \cdots p_k^{h_k}$$

Then for a given positive integer k, there is a prime number q > k coprime to m such that

- 1. if $h_0 = 0$, then the order of q in $(\mathbb{Z}/m^r\mathbb{Z})^*$ is equal to $p_1^{rh_1-1}p_2^{rh_2-1}\cdots p_k^{rh_k-1}$ for every $r \ge 1$,
- 2. if $h_0 > 0$, then then the order of q in $(\mathbb{Z}/m^r\mathbb{Z})^*$ is equal to $2^{rh_0-2}p_1^{rh_1-1}p_2^{rh_2-1}\cdots p_k^{rh_k-1}$ for every $r \geq 2$.

Proof. For each odd prime p_i , we know that there is an integer u_i such that $u_i^{p_i-1}$ is of the form $1 + k'p_i$ for some k' which is coprime to p_i , and every integer of that form is of order p_i^{r-1} in $(\mathbb{Z}/p_i^r\mathbb{Z})^*$ for every $r \geq 1$. Let $s_i = u_i^{p_i-1}$. On the other hand, we see that by the binomial formula, the order of 5 in $(\mathbb{Z}/2^r\mathbb{Z})^*$ is equal to 2^{r-2} for every $r \geq 2$, and

$$(\mathbb{Z}/2^{\mathsf{r}}\mathbb{Z})^* \cong \langle -1 \rangle \times \langle 5 \rangle.$$

Furthermore, also by the binomial formula, we see that every integer of the form $1 + 2^2k'$ with k' odd is also of order 2^{r-2} in $(\mathbb{Z}/2^r\mathbb{Z})^*$ for $r \geq 2$. By the Chinese Remainder Theorem and the Theorem of Arithmetic Progression, there is a prime number q such that

$$q \equiv 5 \pmod{2^3}, q \equiv s_i \pmod{p_i^2}$$
 for $i = 1, \dots, k$.

q is coprime to m and is of the form $1 + k'p_i$ for some k' coprime to p_i for each i, and is of the form $1 + 2^2k'$ with k' odd.

Lemma 18 Let L/\mathbb{Q} be a finite Galois extension, and let M be an intermediate field of L/\mathbb{Q} such that M/\mathbb{Q} is a Galois extension. Let $\mathfrak{p} \supset \mathfrak{p}' \supset p$ be primes of L, M and \mathbb{Q} respectively and let $L_Z, M_{Z'}$ be the decomposition field of \mathfrak{p} in L/\mathbb{Q} and \mathfrak{p}' in M/\mathbb{Q} respectively. Then $M_{Z'} \subseteq L_Z$. Proof. Let Z, Z' be the decomposition groups of \mathfrak{p} in L/\mathbb{Q} and \mathfrak{p}' in M/\mathbb{Q} respectively. Let $a \in M_{Z'}$. We must show that for $\sigma \in Z$, $\sigma(a) = a$ holds. Since M/\mathbb{Q} is a Galois extension,

$$(\mathfrak{p}')^{\sigma} = (\mathfrak{p} \cap M)^{\sigma} = \mathfrak{p}^{\sigma} \cap M = \mathfrak{p} \cap M = \mathfrak{p}'.$$

This shows that the restriction of σ to M, $\sigma \upharpoonright_M$, is in Z'. Then $\sigma(a) = \sigma \upharpoonright_M (a) = a$.

Lemma 19 Let $M_0 = \mathbb{Q}(\zeta_{m_0})$, where $m_0 = p_1 p_2 \cdots p_k$, and let $M_1 = \mathbb{Q}(\zeta_{m_1})$, where $m_1 = 4p_1 p_2 \cdots p_k$. Furthermore, for i = 1, 2 let o_i be the ring of algebraic integers in M_i respectively.

Then, for any positive integer k, there is a prime p > k such that $o_0 \cup p \mathfrak{O}_{K_m}$ is \emptyset -definable in \mathfrak{O}_{K_m} with m odd. Similarly, for any positive integer k, there is a prime p > k such that $o_1 \cup p \mathfrak{O}_{K_m}$ is \emptyset -definable in \mathfrak{O}_{K_m} with m even.

Proof. Take a prime number q as in Lemma 17.

Let *m* be odd. Then, by Lemma 7, *q* is unramified in F_n/\mathbb{Q} and the decomposition field of *q* in F_n/\mathbb{Q} is of degree $(p_1 - 1) \cdots (p_k - 1)$ over \mathbb{Q} for every n > 0. By Lemma 18, we see that those docomposition fields coincide. Let *L* be the common decomposition field. Also by Lemma 18, for each *i*, *L* includes the decomposition field of *q* in $\mathbb{Q}(\zeta_{p_i^{h_1}})/\mathbb{Q}$, which is of degree $p_i - 1$ over \mathbb{Q} . Since $\mathbb{Q}(\zeta_{p_i^{h_1}})/\mathbb{Q}$ is a cyclic extension, $\mathbb{Q}(\zeta_{p_i})$ is the only intermediate field with degree $p_i - 1$. Hence *L* includes $\mathbb{Q}(\zeta_{p_1}) \cdots \mathbb{Q}(\zeta_{p_k})$, which is of degree $(p_1 - 1) \cdots (p_k - 1)$. Therefore $L = \mathbb{Q}(\zeta_{p_1}) \cdots \mathbb{Q}(\zeta_{p_k}) = M_0$. (See [5, p.74].) Let $\theta(t)$ be as before. By Lemma 14, $\theta(t)$ defines $o_0 \cup q \mathcal{O}_{K_m}$ in \mathcal{O}_{K_m} .

Let *m* be even. We note that $\langle q \rangle$ is the only subgroup of order 2^{r-2} in $(\mathbb{Z}/2^r\mathbb{Z})^*$ with r > 2. Then similarly, *q* is unramified in every extension F_n/\mathbb{Q} and the decomposition field of *p* in F_n/\mathbb{Q} with n > 2 is M_1 . Hence $\theta(t)$ also defines $\mathfrak{o}_1 \cup q\mathfrak{O}_{K_m}$ in \mathfrak{O}_{K_m} .

Theorem 20 Let m be as before. Then, for a given positive integer k, there is a prime q > k such that

if m is odd,

$$\underbrace{\mathbb{Z}/(q)\times\cdots\times\mathbb{Z}/(q)}^{(p_1-1)\cdots(p_k-1)}$$

is interpretable in \mathcal{O}_{K_m} , and

if m is even,

$$\underbrace{\mathbb{Z}/(q)\times\cdots\times\mathbb{Z}/(q)}^{2(p_1-1)\cdots(p_k-1)}$$

is interpretable in \mathfrak{O}_{K_m} .

Proof. Let $n_0 = [M_0 : \mathbb{Q}] = (p_1 - 1)(p_2 - 1)\cdots(p_k - 1)$, and let $n_1 = [M_1 : \mathbb{Q}] = 2(p_1 - 1)(p_2 - 1)\cdots(p_k - 1)$. Clealy $\mathfrak{o}_0/q\mathfrak{o}_0$ is interpretable in \mathfrak{O}_{K_m} with m odd. Since the decomposition of $q\mathbb{Z}$ in \mathfrak{o}_0 is $\mathfrak{p}_1 \cdots \mathfrak{p}_{n_0}$ and $\mathfrak{o}_0/\mathfrak{p}_i \cong \mathbb{Z}/(q)$ for each i, we have

$$\mathfrak{o}_0/q\mathfrak{o}_0\cong\mathfrak{o}_0/(\mathfrak{p}_1\cap\cdots\cap\mathfrak{p}_{n_0})\cong\widetilde{\mathbb{Z}/(q)\times\cdots\times\mathbb{Z}/(q)}$$

Similarly for m even.

References

- [1] Robinson, J., The undecidability of algebraic rings and fields, Proc. Amer. Math. Soc., 10 (1959), 950-957.
- [2] Rumely, R.S., Undecidability and definability for the theory of global fields, Trans. Amer. Math. Soc. 262 (1980), no. 1, 195-217.
- [3] Poonen, B., Uniform first-order definitions in finitely generated fields, December 2005. Preprint.
- [4] O'Meara, O.T., Introduction to Quadratic Forms, Springer-Verlag, Berlin Heidelberg New York, 1973.
- [5] Lang, S., Algebraic Number Theory, 2nd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 1994.
- [6] Swinnerton-Dyer. H.P.F., A Brief Guide to Algebraic Number Theory, London MathematicalSociety Student Texts 50, Cambridge University Press, 2001.
- [7] Iyanaga, S.(Editor), *The Theory of Numbers*, North-Holland Publishing Company, 1975.

FACULTY OF INTERCULTURAL STUDIES THE INTERNATIONAL UNIVERSITY OF KAGOSHIMA KAGOSHIMA 891-0191 JAPAN *E-mail*: fukuzaki@int.iuk.ac.jp