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1 Introduction
In nature, there are many various and complex interactions between creatures

on several steps of trophic level. Many studies related with such a population in-
teraction have done and shown coexistence and various dynamics of populations.
As one of the related studies, continuous time models for food chain, exploitative
competition, apparent competition and intraguild predation have been researched
extensively in literature (e.g.[l], [3] and so on). As an example of the interaction
which is not described above, we find out that an omnivorous cricket eats vegetables
as well as the carcass of some small animals. Usually, no all of predators eat a whole
prey and thus some parts of the carcass of the prey remain. Then the remains of
carcass can be foods for the other animals.

For convenience, henceforth the omnivorous prey will be called the existent prey
and the small animal, the invader prey. Then, the following system gives the simplest
model which is concerned with the effect of the remains of carcass in two-prey, one
predator mode1([2]).

$\frac{d}{dt}h_{1}=\epsilon_{1}(1-\frac{h_{1}}{k_{1}})h_{1}-a_{1}h_{1}p+\tau_{1}h_{2}ph_{1}$

$\frac{d}{dt}h_{2}=\epsilon_{2}(1-\frac{h_{2}}{k_{2}})h_{2}-a_{2}h_{2}p$ (1)

$\frac{d}{dt}p=-\delta p+b_{1}h_{1}p+b_{2}h_{2}p$

where $h_{1},$ $h_{2}$ and $p$ denote the densities of the existent prey, the invader prey and
the predator respectively. In the model (1) the amount of the remains of carcass is
simply proportional to the rate that the predator meet the invader prey. To intend
the effect of the carcass, we suppose that the existent prey and the invader prey do
not have inter-specific competition and the other direct interactions.

Now, in this paper we consider a diffusion model which is concerned with the
negative effect by intra-specific competition of existent preys and obstruction of
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invader preys. The functional response of the remains of carcass with negative
effect is given as the following:

$\Psi(h_{1}, h_{2},p)=\frac{\tau_{1}h_{2}p}{\tau_{2}h_{1}+\tau_{3}h_{2}+1}$.

In this paper, we notice the case that $\tau_{1},$ $\tau_{2}$ and $\tau_{3}$ are sufficiently large. By sim-
plifying the functional response $\Psi(h_{1}, h_{2},p)$ mathematically with $\tau_{1}/\tau_{3}=\mu_{1}$ and
$\tau_{2}/\tau_{3}=\mu_{2}$ as $\tau_{3}arrow\infty$ , we obtain the following model:

$\frac{\partial}{\partial t}h_{1}=d_{1}\frac{\partial^{2}}{\partial x^{2}}h_{1}+\epsilon_{1}(1-\frac{h_{1}}{k_{1}})h_{1}-a_{1}h_{1}p+\frac{\mu_{1}h_{2}p}{\mu_{2}h_{1}+h_{2}}h_{1}$

$\frac{\partial}{\partial t}h_{2}=d_{2}\frac{\partial^{2}}{\partial x^{2}}h_{2}+\epsilon_{2}(1-\frac{h_{2}}{k_{2}})h_{2}-a_{2}h_{2}p$ (2)

$\frac{\partial}{\partial t}p=d_{3}\frac{\partial^{2}}{\partial x^{2}}p-\delta p+b_{1}h_{1}p+b_{2}h_{2}p$.

Then we have the following nondimensionlized system without loss of generality.

$\frac{\partial}{\partial t}h_{1}=d_{1}\frac{\partial^{2}}{\partial x^{2}}h_{1}+(1-h_{1})h_{1}-\alpha_{1}h_{1}p+\frac{\omega h_{2}p}{kh_{1}+h_{2}}h_{1}$

$\frac{\partial}{\partial t}h_{2}=d_{2}\frac{\partial^{2}}{\partial x^{2}}h_{2}+\epsilon(1-h_{2})h_{2}-\alpha_{2}h_{2}p$ (3)

$\frac{\partial}{\partial t}p=d_{3}\frac{\partial^{2}}{\partial x^{2}}p-\gamma p+\beta_{1}h_{1}p+\beta_{2}h_{2}p$ .

where

$\alpha_{i}=\frac{a_{1}}{\epsilon_{1}}$ , $\omega=\frac{\mu_{1}}{\epsilon_{1}}$ , $k=\mu_{2^{\frac{k_{1}}{k_{2}’}}}$ $\epsilon=\frac{\epsilon_{2}}{\epsilon_{1}}$ , $\gamma=\frac{\delta}{\epsilon_{1}}$ and $\beta_{i}=\frac{b_{1}k_{1}}{\epsilon_{1}}$ . (4)

We suppose that the environment is uniform, and the existent prey and the $pred*$

tor have already attained the coexistence state in the space uniformly when some
propagules of the invader prey (say $n_{0}$ individuals) invade in the origin at $t=0$ .
This gives the initial condition as the following:

$y_{1}(x, 0)= \frac{\gamma}{\beta_{1}}$ , $y_{2}(x, 0)=n_{0}\hat{\delta}(x)$ , $p(x, 0)= \frac{1}{\alpha_{1}}(1-\frac{\gamma}{\beta_{1}})$ (5)

where $\hat{\delta}(x)$ is delta function.
In this paper, we show that there exist a traveling wave by numerical simulation

and propose the speed of it by mathematical analysis including numerical simula-
tions. We obtain the speed condition which depends only on the diffusion coefficient
of the invader. We also find out a chaotic phenomenon.

2 Numerical simulation results
In the system (3), we have a stationary solution

$E^{0}=( \overline{h}_{1}(x), 0,\overline{p}(x))=(\frac{\gamma}{\beta_{1}},0,$ $\frac{1}{\alpha_{1}}(1-\frac{\gamma}{\beta_{1}}))$
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if $\beta_{1}>\gamma 1s$ satisfied. Furthermore, the statIonary solution $E^{0}$ becomes unstable
when

$\epsilon-\frac{\alpha_{2}}{\alpha_{1}}(1-\frac{\gamma}{\beta_{1}})>0$ .

We also have the following result([2]).

Proposition 1 There exists a positive stationary solution $E^{*}=(h_{1}^{*}(x), h_{2}^{*}(x),p^{*}(x))$

uniquely if the following conditions are satisfied:

$\epsilon-\frac{\alpha_{2}}{\alpha_{1}}(1-\frac{\gamma}{\beta_{1}})>0$ , $1+ \frac{\epsilon}{\alpha_{2}}(\omega-\alpha_{1})(1-\frac{\gamma}{\beta_{2}})>0$ . (6)

Now we carry out numerical simulations with parameter values satisfying the
conditions (6). Then we find out a traveling wave with $d_{1}=d_{2}=d_{3}=1$ and $\epsilon=1$ ,
which connects $E^{0}$ and $E^{*}$ at $xarrow\infty$ and $xarrow-\infty$ respectively (Fig.1). When we
take $\epsilon=3$ , we see chaotic dynamics for some fixed $x(Fig.2)$ .

Figure 1: Traveling wave with $\epsilon=1$ Figure 2: Chaos with $\epsilon=3$ for time

We have $c\mathfrak{N}ried$ out these simulations with all the same diffusion values, but
we show that the traveling wave speed depends on only $d_{2}$ through mathematical
approach and numerical simulation in the following section.

3 Speed of traveling wave
Rom the numerical simulation results we have found a traveling wave solution which
connects the stationary solution $E^{0}=(\overline{h}_{1}(x), 0,\overline{p}(x))$ and $E^{*}=(h_{1}^{*}(x), h_{2}^{*}(x),p^{*}(x))$ .
Now we propose the speed of traveling wave only depends on diffusion coefficient $d_{2}$

of the invader prey.
We seek traveling wave solutions of system(3) in the form

$U(z)=(h_{1}(x, t),$ $h_{2}(x, t),p(x, t))=(U_{1}(z), U_{2}(z),$ $U_{3}(z))$ (7)

where $z=x-ct$ and $c>0$ . Then these solutions should satisfy

$U(-\infty)=(h_{1}^{*}, h_{2}^{*},p^{*})$ and $U(\infty)=(\overline{h}_{1},0,\overline{p})$ . (8)
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With setting $V_{1}(z)=U_{1}’(z),$ $V_{2}(z)=U_{2}’(z)$ and $V_{3}(z)=U_{3}’(z)$ , substituting (7) into
system (2) gives the following dynamical system:

$U_{1}’=V_{1}$

$U_{2}’=V_{2}$

$U_{3}’=V_{3}$

$V_{1}’=- \frac{1}{d_{1}}\{cV_{1}+(1-U_{1})U_{1}-\alpha_{1}U_{1}U_{3}+\frac{\omega U_{2}U_{3}}{kU_{1}+U_{2}}U_{1}\}$ (9)

$V_{2}’=- \frac{1}{d_{2}}\{cV_{2}+\epsilon(1-U_{2})U_{2}-\alpha_{2}U_{2}U_{3}\}$

$V_{3}’=- \frac{1}{d_{3}}\{cV_{3}-\gamma U_{3}+\beta_{1}U_{1}U_{3}+oeU_{2}U_{3}\}$.

Thus from the conditions (8), we also have the following conditions:

$\xi^{*}=(U_{1}(-\infty), U_{2}(-\infty),$ $U_{3}(-\infty),$ $V_{1}(-\infty),$ $V_{2}(-\infty),$ $V_{3}(-\infty))$

$=(h_{1}^{*}, h_{\dot{2}},p^{l}, 0,0,0)$ ,
$\overline{\xi}=(U_{1}(\infty), U_{2}(\infty),$ $U_{3}(\infty),$ $V_{1}(\infty),$ $V_{2}(\infty),$ $V_{3}(\infty))$

$=(\overline{h}_{1},0,\overline{p},0,0,0)$ .

We can check easily that $\xi^{*}=(h_{1}^{*}, h_{2}^{*},p^{*},0,0,0)$ and $\overline{\xi}=(\overline{h}_{1},0,\overline{p}, 0,0,0)$ are equilib-
ria of the dynamical system (9).

Now, we find the solution of the dynamical system (9) which connects the two
equilibrium points $\xi^{*}$ and $\overline{\xi}$ and also satisfies $U_{1}(z)>0,$ $U_{2}(z)>0$ and $U_{3}(z)>0$ .
We notice the positiveness of the solution $U_{2}$ because $U_{2}(z)arrow 0$ as $zarrow\infty$ . That
is, if the solution $U_{2}$ oscillates, it must have negative values around origin. Then $U_{2}$

cannot lead to traveling wave solution since the traveling wave should be a positive
solution of the system (3). To show that $U_{2}(z)$ does not oscillate around the origin,
we inv\’etigate the behaviors of $U_{2}$ around the origin by linearization of the system(9)
about $\overline{\xi}$.

Let $J(\overline{\xi})$ denote Jacobian matrix of the dynamical system(9) at $\overline{\xi}$. Then the
eigenvalues $\lambda$ of Jacobian $J(\overline{\xi})$ are given by the solutions of the following eigenvalue
equation:

$\det|\lambda I-J(\overline{\xi})|=\{\lambda^{2}+\frac{c}{d_{2}}\lambda+\frac{1}{d_{2}}(\epsilon-\alpha_{2}\overline{p})\}$

$\{\lambda^{4}+c(\frac{d_{1}+d_{3}}{d_{1}d_{3}})\lambda^{3}+(\frac{c^{2}}{d_{1}d_{3}}-\frac{\overline{h}_{1}}{d_{1}})\lambda^{2}-\frac{c\overline{h}_{1}}{d_{1}d_{3}}+\alpha_{1}\beta_{1}\frac{\overline{h}_{1}\overline{p}}{d_{1}d_{3}}\}=0$ .

where $I$ is the identity matrix. Set the first term and the second term of the
eigenvalue eqation as $\phi_{1}(\lambda)$ and $\phi_{2}(\lambda)$ respectively:

$\phi_{1}(\lambda)=\lambda^{2}+\frac{c}{d_{2}}\lambda+\frac{1}{d_{2}}(\epsilon-\alpha_{2}\overline{p})$

$\phi_{2}(\lambda)=\lambda^{4}+c(\frac{d_{1}+d_{3}}{d_{1}d_{3}})\lambda^{S}+(\frac{c^{2}}{d_{1}d_{3}}-\frac{\overline{h}_{1}}{d_{1}})\lambda^{2}-\frac{c\overline{h}_{1}}{d_{1}d_{3}}+\alpha_{1}\beta_{1^{\frac{\overline{h}_{1}\overline{p}}{d_{1}d_{3}}}}$
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Then for the eigenvalue $\lambda$ satisfying $\phi_{1}(\lambda)=0$ or $\phi_{2}(\lambda)=0$ , we can obtain the
eigenvector $X$ from the following equation:

$(\lambda I-J(\overline{\xi}))X=0$ , (10)

where $X^{t}=(U_{1}, U_{2}, U_{3}, V_{1}, V_{2}, V_{3})$ .
We first consider the eigenvalues included in $\{\lambda : \phi_{1}(\lambda)\neq 0, \phi_{2}(\lambda)=0\}$ . Then

from the equation (10) we obtain the following system about $U_{2}$ and $V_{2}$ :

$\{\begin{array}{l}\frac{\epsilon-\alpha_{2}\overline{p}}{d_{2}}U_{2}+(\lambda+\frac{c}{d_{2}})V_{2}=0\lambda U_{2}-V_{2}=0\end{array}$

Solving the system give the following equation:

$\{\lambda^{2}+\frac{c}{d_{2}}\lambda+\frac{1}{d_{2}}(\epsilon-\alpha_{2}\overline{p})\}U_{2}=0$,

and thus we have
$U_{2}=0$ ,

since $\phi_{1}(\lambda)\neq 0$ . Therefore, we conclude that $U_{2}$ does not oscillate around the origin
in the case of $\lambda\in\{\lambda:\phi_{1}(\lambda)\neq 0, \phi_{2}(\lambda)=0\}$ .

Now we consider the remained case of the eigenvalues in $\{\lambda : \phi_{1}(\lambda)=0\}$ . Then
similarly from eigenvector equation (10) we have

$\{\begin{array}{l}-\lambda(\lambda+\frac{c}{d_{2}}U_{2})+(\lambda+\frac{c}{d_{2}})V_{2}=0\lambda U_{2}-V_{2}=0\end{array}$

Solving the system gives
$\lambda U_{2}=V_{2}$ ,

and thus we obtain $U_{2}(z)$ ffom $V_{2}=U_{2}’$ :

$U_{2}(z)=e^{\lambda z}\zeta$ ,

where $\zeta$ is a constant. If $\lambda$ is not real number but complex number, $U_{2}$ must be
oscillate around the origin. It cannot lead to traveling wave solution. Hence,

$\emptyset i(\lambda)=\lambda^{2}+\frac{c}{d_{2}}\lambda+\frac{1}{d_{2}}(\epsilon-\alpha_{2}\overline{p})=0$

should have only real solutions. For the existence of only real solutions, the following
inequality is obtained:

$( \frac{c}{d_{2}})^{2}-4\frac{\epsilon-\alpha_{2}\overline{p}}{d_{2}}\geq 0$.

At last we lead the condition that the speed of the traveling wave should satisfy:

$c\geq 2\sqrt{d_{2}(\epsilon-\alpha_{2}\overline{p})}$ , (11)
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Figure 3: Slopes of linae give the travel-
ing wave speed with $d_{2}=0.5(red)$ and $d_{2}=$

$2(blue)$ . In the case of $d_{2}=0.5$ we have the
speed $c=1$ .

where $\overline{p}=\frac{1}{\alpha_{1}}(1_{\dot{\beta}_{1}}-l)$ . Note that we obtain this condition for arbitrary $d_{1},$ $d_{2},$ $d_{3}$ .
It is well-known conjecture that the real traveling wave speed correspond to

the minimun speed of (11). That is, the traveling wave speed $c$ will be equal to
2 $\sqrt{d_{2}(\epsilon-\alpha_{2}\overline{p})}$ . In fact, we examine the speed by using numerical simulations and
check the speed of traveling wave which is equal to 2 $\sqrt{d_{2}(\epsilon-\alpha_{2}\overline{p})}$ . For instance,
we carry out numerical simulations with $d_{2}=0.5$ and $d_{2}=2(Fig.3)$ and the other
parameter values as the following:

$\epsilon=1$ $\alpha_{1}=\alpha_{2}=2$ , $\beta_{1}=2$ , $\gamma=1$ .

Figure3 show that the speed in the case of $d_{2}=0.5$(red line), $c=\Delta x/\Delta t\approx 1$ , and
the speed in the case of $d_{2}=2$ (blue dots) is twice of the case $d_{2}=0.5$ .

Therefore, we have the traveling wave solution which moves with the speed de
pending on the diffusion coefficient $d_{2}$ of invader prey but not $d_{1}$ and $d_{3}$ . As one of
numerical simulation results, Figure 4 show that the speed $c$ is proportional to $\sqrt{2}$

but constant to $d_{3}$ .

Figure 4: Dependence of diffusion coefficients $d_{2}$ and $d_{3}$

136



4 Conclusions
In this paper, we have shown that three species are able to coexist and diffuse
with constant speed. Moreover, the diffusion speed depends only on the diffusion
coefficient of the invader prey. The invasion of the invader prey lead the predator’s
population to increase. Furthermore, the remains of carcass of the invader prey also
change the existent prey’s population. We can suppose that the effect of the invader
prey’s population is very large at the head of traveling wave. Moreover, we have
seen chaos in the diffusion model (3). The diffusion effect may give more complex
fluctuation of populations.

Until now, many prey-predator population models have been studied but usually,
they have not considerd the existence of carcass. However, it is very important that
the remains of carcass of some species effects the population of outsider preys as
well as themselves. In this paper, we have only considered the one predator case but
we should consider the case of more than one predator for the remains of carcass.
Moreover, we should also study about the effect of remains of carcass with different
functional responses.
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