The L^{p} boundedness of wave operators for Schrödinger operators

Kenji Yajima
Department of Mathematics，Gakushuin University
1－5－1 Mejiro，Toshima－ku，Tokyo 171－8588，Japan

1 Introduction

Let $H=-\Delta+V$ be the Schrödinger operator on $\mathbf{R}^{m}, m \geq 1$ ，with real valued potential $V(x)$ such that $|V(x)| \leq C\langle x\rangle^{-\delta}$ for some $\delta>2$ ，where $\langle x\rangle=\left(1+x^{2}\right)^{1 / 2}$ ．Then，it is well known that
（1）H is selfadjoint in the Hilbert space $\mathcal{H}=L^{2}\left(\mathbf{R}^{m}\right)$ with domain $D(H)=$ $H^{2}\left(\mathbf{R}^{m}\right)$ and $C_{0}^{\infty}\left(\mathbf{R}^{m}\right)$ is a core；
（2）the spectrum $\sigma(H)$ of H consists of an absolutely continuous part $[0, \infty)$ ，and at most a finite number of non－positive eigenvalues $\left\{\lambda_{j}\right\}$ of finite multiplicities；
（3）the singular continuous spectrum and positive eigenvalues are absent from $\sigma(H)$ ．
We denote the point and the absolutely continuous spectral subspaces of \mathcal{H} for H by \mathcal{H}_{p} and $\mathcal{H}_{\mathrm{ac}}$ respectively，and the orthogonal projections in \mathcal{H} onto the respective subspaces by P_{p} and P_{ac} ．We write $H_{0}=-\Delta$ for the free Schrödinger operator．
（4）The wave operators $W_{ \pm}$defined by the following limits in \mathcal{H} ：

$$
W_{ \pm}=\operatorname{s-lim}_{t \rightarrow \pm \infty} e^{i t H} e^{-i t H_{0}}
$$

exist and are complete in the sense that Image $W_{ \pm}=\mathcal{H}_{\mathrm{ac}}$ ．
（5）$W_{ \pm}$satisfy the so called intertwining property and the absolutely con－ tinuous part of H is unitarily equivalent to H_{0} via $W_{ \pm}$：For Borel functions f on \mathbf{R} ，we have

$$
\begin{equation*}
f(H) P_{\mathrm{ac}}(H)=W_{ \pm} f\left(H_{0}\right) W_{ \pm}^{*} . \tag{1.1}
\end{equation*}
$$

It follows from the intertwining property (1.1) that, if X and Y are Banch spaces such that $L^{2}\left(\mathbf{R}^{m}\right) \cap X$ and $L^{2}\left(\mathbf{R}^{m}\right) \cap Y$ are dense in X and Y respectively, then,

$$
\begin{align*}
& \left\|f(H) P_{\mathrm{ac}}(H)\right\|_{\mathbf{B}(X, Y)} \tag{1.2}\\
& \quad \leq\left\|W_{ \pm}\right\|_{\mathbf{B}(Y)}\left\|f\left(H_{0}\right)\right\|_{\mathbf{B}(X, Y)}\left\|W_{ \pm}^{*}\right\|_{\mathbf{B}(X)}=C\left\|f\left(H_{0}\right)\right\|_{\mathbf{B}(X, Y)} .
\end{align*}
$$

Here it is important that the constant $C=\left\|W_{ \pm}\right\|_{\mathbf{B}(Y)}\left\|W_{ \pm}^{*}\right\|_{\mathbf{B}(X)}$ is independent of the function f. Thus, the mapping property of $f(H) P_{\mathrm{ac}}(H)$ from X to Y may be deduced from that of $f\left(H_{0}\right)$, once we know that $W_{ \pm}$are bounded in X and in Y. Note that the solutions $u(t)$ of the Cauchy problem for the Schrödinger equation

$$
i \partial_{t} u=(-\Delta+V) u, \quad u(0)=\varphi
$$

and $v(t)$ of the wave equation

$$
\partial_{t}^{2} v=(\Delta-V) v, \quad v(0)=\varphi, \quad \partial_{t} v(0)=\psi
$$

are given in terms of the functions of H, respectively by

$$
u(t)=e^{-i t H} \varphi, \text { and } v(t)=\cos (t \sqrt{H}) \varphi+\frac{\sin (t \sqrt{H})}{\sqrt{H}} \psi
$$

It folllows that, if $W_{ \pm}$are bounded in Lebegue spaces $L^{p}\left(\mathbf{R}^{m}\right)$ for $1 \leq p \leq \infty$ and if the initial states φ and ψ belong to the continuos spectral subspace $\mathcal{H}_{c}(H)$, then the $L^{p}-L^{q}$ estimates for the propagators of the respective equations may be deduced from the well known $L^{p}-L^{q}$ estimates for the free propagators $e^{-i t H_{0}}$ or $\cos \left(t \sqrt{H_{0}}\right)$ and $\sin \left(t \sqrt{H_{0}}\right) / \sqrt{H_{0}}$ (if φ and ψ are eigenfunctions of H, the behavior of $u(t)$ and $v(t)$ are trivial). In particular, we have the so called dispersive estimates for the Schrödinger equation

$$
\left\|e^{-i t H} P_{c}(H) \varphi\right\|_{\infty} \leq C|t|^{-\frac{m}{2}}\|\varphi\|_{1} .
$$

In this lecture we would like to briefly survery the current status of the study of the mapping property of $W_{ \pm}$in Lebesgue spaces $L^{p}\left(\mathbf{R}^{m}\right)$. We say that 0 is a resonance of H, if there is a solution φ of $(-\Delta+V(x)) \varphi(x)=0$ such that $|\varphi(x)| \leq C\langle x\rangle^{2-m}$ but $\varphi \notin \mathcal{H}$ and call such a solution $\varphi(x)$ a resonance function of $H ; H$ is of generic type, if 0 is neither an eigenvalue nor a resonance of H, otherwise of exceptional type. Note that there is no zero resonance if $m \geq 5$. We shall see that the mapping property of $W_{ \pm}$in $L^{p}\left(\mathbf{R}^{m}\right)$ spaces is fairely well understood when H is of generic type although the conditions on potentials for the L^{p}-boundedness of $W_{ \pm}$are far
from optimal and the end point problem, viz. the problem for the case $p=1$ and $p=\infty$ is not settled completely in the cases $m=1$ and $m=2$. On the other hand, if H is of exceptional type, the situation is much less satisfactory: We have essentially no results when $m=2$ and only a partial result for $m=4$; when dimensions $m=3$ or $m \geq 5$, we know that $W_{ \pm}$are bounded in $L^{p}\left(\mathbf{R}^{m}\right)$ for p between $m / m-2$ and $m / 2$, however, we have only partial answers for what happens for p outside this interval. We should also emphasize that these results are obtained only for operators $-\Delta+V(x)$ and, the problem is completely open when magnetic fields are present or when the metric of the space is not flat.

The general reference are as follows: For one dimension $m=1$ see [3]; [17] and [8] for $m=2,[16]$ and [9] for $m=4,[15]$ and [19] for odd $m \geq 3$, and [16] and [5] for even $m \geq 6$.

2 One dimensional case

In one dimension we have the fairly satisfactory result. The following result is due to D'Ancona and Fanelli ([3], see [14, 1] for eariler results).

Theorem 2.1. (1) Suppose $\langle x\rangle^{2} V(x) \in L^{1}\left(\mathbf{R}^{1}\right)$. Then, $W_{ \pm}$are bounded in L^{p} for all $1<p<\infty$.
(2) Suppose $\langle x\rangle V(x) \in L^{1}\left(\mathbf{R}^{1}\right)$ and H is of generic type, then $W_{ \pm}$are bounded in L^{p} for all $1<p<\infty$.

Remark 2.2. We believe that $W_{ \pm}$are not bounded in L^{1} nor in L^{∞} and that $W_{ \pm}$are bounded from Hardy space H^{1} into L^{1} and L^{∞} into BMO. However, we do not know the definite answer yet.

The proof of Theorem 2.1 employs the expression of $W_{ \pm}$in terms of the scattering eigenfunctions $\varphi_{ \pm}(x, \xi)$ of H :

$$
W_{ \pm} u(x)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbf{R}} \varphi_{ \pm}(x, \xi) \hat{u}(\xi) d \xi
$$

as in earlier works $[14,1]$) and uses some detailed properties of $\varphi_{ \pm}(x, \xi)$. The functions $\varphi_{ \pm}(x, \xi)$ are obtained by solving the Lippmann-Schwinger equation

$$
\varphi_{ \pm}(x, \xi)=e^{i x \xi}+\frac{1}{2 i \xi} \int_{-\infty}^{\infty} e^{ \pm i \xi|x-y|} V(y) \varphi_{ \pm}(y, \xi) d y
$$

and it can be expressed in terms of Jost functions. We refer [3] for the details.

3 Higher dimensional case $m \geq 2$

In higher dimensions $m \geq 2$, the stituation is not as satisfactory as in the one dimensional case: We believe that the conditions on the potentials in the following theorems are far from optimal.

When $m \geq 2$, the probem has been studied by using the stationary representation formula of wave operators which expresses $W_{ \pm}$in terms of the boundary values of the resolvent. We write

$$
G(\lambda)=\left(H-\lambda^{2}\right)^{-1}, \quad G_{0}(\lambda)=\left(H_{0}-\lambda^{2}\right)^{-1} . \quad \lambda \in \mathbf{C}^{+}
$$

where $\mathbf{C}^{+}=\{z \in \mathbf{C}: \Im z>0\}$ is the upper half plane. We write

$$
\mathcal{H}_{s}=L_{s}^{2}\left(\mathbf{R}^{m}\right)=L^{2}\left(\mathbf{R}^{m},\langle x\rangle^{2 s} d x\right)
$$

for the weighted L^{2} spaces. We recall the well known limiting absorption principle (LAP) for $G_{0}(\lambda)$ and $G(\lambda)$ due to Agmon and Kuroda (see [11]). For Banach spaces $X, Y, \mathbf{B}_{\infty}(X, Y)$ is the space of compact operators from X to $Y ; a_{-}$for $a \in \mathbf{R}$ stands for an arbitrary number smaller than a.
Lemma 3.1. (1) Let $1 / 2<\sigma$. Then, $G_{0}(\lambda)$ is a $\mathbf{B}_{\infty}\left(\mathcal{H}_{\sigma}, \mathcal{H}_{-\sigma}\right)$ valued function of $\lambda \in \overline{\mathbf{C}}^{+} \backslash\{0\}$ of class $C^{\left(\sigma-\frac{1}{2}\right)-}$. For non-negative integers $j<\sigma-\frac{1}{2}$,

$$
\begin{equation*}
\left\|G_{0}^{(j)}(\lambda)\right\|_{\mathbf{B}\left(\mathcal{H}_{\sigma}, \mathcal{H}_{-\sigma}\right)} \leq C_{j \sigma}|\lambda|^{-1}, \quad|\lambda| \geq 1 \tag{3.1}
\end{equation*}
$$

(2) Let $\frac{1}{2}<\sigma, \tau<m-\frac{3}{2}$ satisfy $\sigma+\tau>2$. Then, $G_{0}(\lambda)$ is a $\mathbf{B}_{\infty}\left(\mathcal{H}_{\sigma}, \mathcal{H}_{-\tau}\right)$ valued function of $\lambda \in \overline{\mathbf{C}}^{+}$of class $C^{\rho_{*-}}, \rho_{*}=\min (\tau+\sigma-2, \tau-1 / 2, \sigma-$ $1 / 2$).
Lemma 3.2. (1) Assume $|V(x)| \leq C\langle x\rangle^{-\delta}$ for some $\delta>1$. Let $\frac{1}{2}<\gamma<$ $\delta-\frac{1}{2}$. Then, $G(\lambda)$ is a $\mathbf{B}_{\infty}\left(\mathcal{H}_{\gamma}, \mathcal{H}_{-\gamma}\right)$ valued function of $\lambda \in \overline{\mathbf{C}}^{+} \backslash\{0\}$ of class $C^{\left(\gamma-\frac{1}{2}\right)-}$. For $0 \leq j<\gamma-\frac{1}{2}$,

$$
\begin{equation*}
\left\|G^{(j)}(\lambda)\right\|_{\mathbf{B}\left(\mathcal{H}_{\gamma}, \mathcal{H}_{-\gamma}\right)} \leq C_{j \gamma}|\lambda|^{-1}, \quad|\lambda| \geq 1 . \tag{3.2}
\end{equation*}
$$

(2) Assume $|V(x)| \leq C\langle x\rangle^{-\delta}$ for some $\delta>2$ and that H is of generic type. Let $1<\gamma<\delta-1$. Then $G(\lambda)$ is a $\mathbf{B}_{\infty}\left(\mathcal{H}_{\gamma}, \mathcal{H}_{-\gamma}\right)$ valued function of $\lambda \in \overline{\mathbf{C}}^{+}$of class $C^{(\gamma-1)-}$.
Using the boundary values of the resolvents on the real line, wave operators may be written in the following form (see [10]):

$$
\begin{equation*}
W_{ \pm} u=u-\frac{1}{\pi i} \int_{0}^{\infty} G(\mp \lambda) V\left(G_{0}(\lambda)-G_{0}(-\lambda)\right) \lambda u d \lambda \tag{3.3}
\end{equation*}
$$

In what follows, we shall deal with W_{-}only and we denote it by W for brevity.

3.1 Born terms

If we formally expand the second resolvent equation into the series

$$
G(\lambda) V=\left(1+G_{0}(\lambda) V\right)^{-1} G_{0}(\lambda) V=\sum_{n=1}^{\infty}(-1)^{n-1}\left(G_{0}(\lambda) V\right)^{n}
$$

and substitute the right side for $G(\lambda) V$ in the stationary formula (3.3), then we have the formal expansion of W :

$$
\begin{equation*}
W=1-\Omega_{1}+\Omega_{2}-\cdots \tag{3.4}
\end{equation*}
$$

where for $n=1,2, \ldots$,

$$
\Omega_{n} u=\frac{1}{\pi i} \int_{0}^{\infty}\left(G_{0}(\lambda) V\right)^{n}\left(G_{0}(\lambda)-G_{0}(-\lambda)\right) u \lambda d \lambda .
$$

This is called the Born expansion of the wave operator, the sum

$$
I-\Omega_{1}+\cdots+(-1)^{n} \Omega_{n}
$$

the n-th Born approximation of W_{-}and the individual Ω_{n} the n-th Born term. The Born terms Ω_{n} may be computed more or less explicitly and they can be expressed as superpositions of one dimensional convolution operators: We write Σ for the $m-1$ dimensional unit sphere. Define the funtion $K_{n}\left(t, \ldots, t_{n}, \omega, \ldots, \omega_{n}\right)$ of $t_{1}, \ldots, t_{n} \in \mathbf{R}$ and $\omega_{1}, \ldots, \omega_{n} \in \Sigma$ by

$$
\begin{align*}
& K_{n}\left(t, \ldots, t_{n}, \omega_{,} \ldots, \omega_{n}\right) \\
& =C^{n} \int_{\mathbf{R}_{+}^{n}} e^{i\left(t_{1} s_{1}+\cdots+t_{n} s_{n}\right) / 2}\left(s_{1} \ldots s_{n}\right)^{m-2} \prod_{j=1}^{n} \hat{V}\left(s_{j} \omega_{j}-s_{j-1} \omega_{j-1}\right) d s_{1} \ldots d s_{n} \tag{3.5}
\end{align*}
$$

where $s_{0}=0, \mathbf{R}_{+}=(0, \infty)$ and C is an absolute constant. Then $\Omega_{n} u(x)$ may be written in the form

$$
\begin{equation*}
\int_{\mathbf{R}_{+}^{n-1} \times I}\left(\int_{\Sigma^{n}} K_{n}\left(t, \ldots, t_{n}, \omega, \ldots, \omega_{n}\right) f(\bar{x}+\rho) d \omega_{1} \ldots \omega_{n}\right) d t_{1} \cdots d t_{n} \tag{3.6}
\end{equation*}
$$

where $I=\left(2 x \cdot \omega_{n}, \infty\right)$ is the range of integration with respect to $t_{n}, \bar{x}=$ $x-2\left(\omega_{n}, x\right) \omega_{n}$ is the reflection of x along the ω_{n} axis and $\rho=t_{1} \omega_{1}+\cdots+t_{n} \omega_{n}$.

We define $m_{*}=(m-1) /(m-2)$ for $m \geq 3$. If $m \geq 3$, we have with $\sigma>1 / m_{*}$ that

$$
\begin{gather*}
\left\|K_{1}\right\|_{L^{1}(\mathbf{R} \times \Sigma)} \leq C\left\|\mathcal{F}\left(\langle x\rangle^{\sigma} V\right)\right\|_{L^{m *}\left(\mathbf{R}^{m}\right)}^{n} \tag{3.7}\\
\left\|K_{n}\right\|_{L^{1}\left(\mathbf{R}^{n} \times \Sigma^{n}\right)} \leq C^{n}\left\|\mathcal{F}\left(\langle x\rangle^{2 \sigma} V\right)\right\|_{L^{m *}\left(\mathbf{R}^{m}\right)}^{n}, \quad n \geq 2, \tag{3.8}
\end{gather*}
$$

(see [15], page 569) and we obtain the following lemma.

Lemma 3.3. Let $m \geq 3$ and $\sigma>1 / m_{*}$. Then, there exists a constant $C>0$ such that for any $1 \leq p \leq \infty$

$$
\begin{gather*}
\left\|\Omega_{1} u\right\|_{p} \leq C\left\|\mathcal{F}\left(\langle x\rangle^{\sigma} V\right)\right\|_{L^{m_{*}\left(\mathbf{R}^{m}\right)}}\|u\|_{p}, \tag{3.9}\\
\left\|\Omega_{n} u\right\|_{p} \leq C^{n}\left\|\mathcal{F}\left(\langle x\rangle^{2 \sigma} V\right)\right\|_{L^{m *}\left(\mathbf{R}^{m}\right)}^{n}\|u\|_{p}, \quad n=2, \ldots \tag{3.10}
\end{gather*}
$$

It follows that the series (3.4) converges in the operator norm of $\mathbf{B}\left(L^{p}\right)$ for any $1 \leq p \leq \infty$ if $\left\|\mathcal{F}\left(\langle x\rangle^{2 \sigma} V\right)\right\|_{L^{m *}\left(\mathbf{R}^{m}\right)}$ is sufficiently small and we obtain the following theorem.

Theorem 3.4. Suppose $m \geq 3$ and V satisfies $\mathcal{F}\left(\langle x)^{2 \sigma} V\right) \in L^{m *}\left(\mathbf{R}^{m}\right)$ for some $\sigma>1 / m_{*}$. Then, there exists a constant $C>0$ such that $W_{ \pm}$are bounded in $L^{p}\left(\mathbf{R}^{m}\right)$ for all $1 \leq p \leq \infty$ provided that $\left\|\mathcal{F}\left(\langle x\rangle^{2 \sigma} V\right)\right\|_{L^{m *}\left(\mathbf{R}^{m}\right)}<$ C.

Note that that H is of generic type if $\left\|\mathcal{F}\left(\langle x\rangle^{2 \sigma} V\right)\right\|_{L^{m_{*}\left(\mathbf{R}^{m}\right)}}$ is sufficiently small. We remark that the condition $\mathcal{F}\left(\langle x\rangle^{\sigma} V\right) \in L^{m *}\left(\mathbf{R}^{m}\right)$ requires some smoothness of V if the dimension m becomes larger. Recall that a certain smoothness condition on V is necessary for $W_{ \pm}$to be bounded in L^{p} for all $1 \leq p \leq \infty$ by virtue of the counter-example of Golberg-Vissan ([6]) for the dispersive estimates for dimensions $m \geq 4$.

In dimension $m=2$, the factor $\left(s_{1} \ldots s_{n}\right)^{m-2}$ is missing from (3.5) and it is evident that estimates (3.7) nor (3.8) do not hold. Nonethless, we have the following result.

Lemma 3.5. Let $m=2$. Then, for any $s>1$ and $1<p<\infty$, we have

$$
\left\|\Omega_{1} u\right\|_{p} \leq C_{p s}\left\|\langle x\rangle^{s} V\right\|_{2}\|u\|_{p} .
$$

If $\tilde{\chi}(\lambda) \in C^{\infty}(\mathbf{R})$ vanishes near $\lambda=0$, then for any $s>2$ and $1<p<\infty$, we have

$$
\left\|\Omega_{2} \tilde{\chi}\left(H_{0}\right) u\right\|_{p} \leq C_{p s}\left\|\langle x\rangle^{s} V\right\|_{2}^{2}\|u\|_{p}
$$

3.2 High energy estimate

We let $\chi \in C_{0}^{\infty}(\mathbf{R})$ and $\tilde{\chi} \in C^{\infty}(\mathbf{R})$ be such that

$$
\begin{gathered}
\chi(\lambda)=1 \text { for }|\lambda|<\varepsilon, \chi(\lambda)=0 \text { for }|\lambda|>2 \varepsilon \text { for some } \varepsilon>0 \\
\text { and } \chi\left(\lambda^{2}\right)+\tilde{\chi}(\lambda)^{2}=1 \text { for all } \lambda \in \mathbf{R} .
\end{gathered}
$$

Then, the high energy part of the wave operator $W \tilde{\chi}\left(H_{0}\right)$ may be studied by a unified method for all $m \geq 2$ and we may show that W is bounded in $\mathbf{B}\left(L^{p}\left(\mathbf{R}^{m}\right)\right)$ for all $1 \leq p \leq \infty$ when $m \geq 3$ and for $1<p<\infty$ for $m=2$:

Theorem 3.6. Let V satisfy $|V(x)| \leq C\langle x\rangle^{-\delta}$ for some $\delta>m+2$. Suppose, in addition, that $\mathcal{F}\left(\langle x\rangle^{\sigma} V\right) \in L^{m *}\left(\mathbf{R}^{m}\right)$ if $m \geq 4$. Then $W_{ \pm} \tilde{\chi}\left(H_{0}\right)$ is bounded in $\mathbf{B}\left(L^{p}\left(\mathbf{R}^{m}\right)\right.$) for all $1 \leq p \leq \infty$ when $m \geq 3$ and for $1<p<\infty$ for $m=2$.

We outline the proof. We write $\nu=(m-2) / 2$. Iterating the resolvent equation, we have

$$
G(\lambda) V=\sum_{1}^{2 n}(-1)^{j-1}\left(G_{0}(\lambda) V\right)^{j}+G_{0}(\lambda) N_{n}(\lambda)
$$

where $N_{n}(\lambda)=\left(V G_{0}(\lambda)\right)^{n-1} V G(\lambda) V\left(G_{0}(\lambda) V\right)^{n}$. If we substitute this for $G(\lambda) V$ in the stationary formula (3.3), we obtain

$$
\begin{gather*}
W \tilde{\chi}\left(H_{0}\right)^{2}=\tilde{\chi}\left(H_{0}\right)^{2}+\sum_{j=1}^{2 n}(-1)^{j} \Omega_{j} \tilde{\chi}\left(H_{0}\right)^{2}-\tilde{\Omega}_{2 n+1} \tag{3.11}\\
\tilde{\Omega}_{2 n+1}=\frac{1}{i \pi} \int_{0}^{\infty} G_{0}(\lambda) N_{n}\left(G_{0}(\lambda)-G_{0}(-\lambda)\right) \tilde{\Psi}(\lambda) d \lambda \tag{3.12}
\end{gather*}
$$

where $\tilde{\Psi}(\lambda)=\lambda \tilde{\chi}\left(\lambda^{2}\right)^{2}$. The operators $\tilde{\chi}\left(H_{0}\right)$ and $\Omega_{1} \tilde{\chi}\left(H_{0}\right)^{2}, \ldots, \Omega_{2 n} \tilde{\chi}\left(H_{0}\right)^{2}$ are bounded in $L^{p}\left(\mathbf{R}^{m}\right)$ for any $1 \leq p \leq \infty$ if $m \geq 3$ and for $1<p<\infty$ if $m=2$ by virtue of Lemma 3.3 and Lemma 3.5, since $\tilde{\chi}\left(H_{0}\right)$ is clearly bounded in $L^{p}\left(\mathbf{R}^{m}\right)$ for all $1 \leq p \leq \infty$ and $m \geq 2$. We then show that, for sufficiently large $n, \tilde{\Omega}_{2 n+1}$ is also bounded in $L^{p}\left(\mathbf{R}^{m}\right)$ for all $1 \leq p \leq \infty$ and $m \geq 2$ by showing that its integral kernel

$$
\tilde{\Omega}_{2 n+1}(x, y)=\frac{1}{\pi i} \int_{0}^{\infty}\left\langle N_{n}(\lambda)\left(G_{0}(\lambda)-G_{0}(-\lambda)\right) \delta_{y}, G_{0}(-\lambda) \delta_{x}\right\rangle \lambda \Psi^{2}\left(\lambda^{2}\right) d \lambda
$$

where $\delta_{a}=\delta(x-a)$ is the unit mass at the point $x=a$, satisfies the estimate that

$$
\begin{equation*}
\sup _{x \in \mathbf{R}^{m}} \int\left|\tilde{\Omega}_{2 n+1}(x, y)\right| d y<\infty \text { and } \sup _{y \in \mathbf{R}^{m}} \int\left|\tilde{\Omega}_{2 n+1}(x, y)\right| d x<\infty \tag{3.13}
\end{equation*}
$$

It is a result of Schur's lemma that estimates (3.13) imply that $\tilde{\Omega}_{2 n+1}$ is bounded in $L^{p}\left(\mathbf{R}^{m}\right)$ for all $1 \leq p \leq \infty$. Note that $\left[G_{0}(\lambda) \delta_{y}\right](x)=G_{0}(\lambda, x-y)$ is the integral kernel of $G_{0}(\lambda)$ and $G_{0}(\lambda, x)$ is given by

$$
\begin{equation*}
G_{0}(\lambda, x)=\frac{e^{i \lambda|x|}}{2(2 \pi)^{\nu+\frac{1}{2}} \Gamma\left(\nu+\frac{1}{2}\right)|x|^{m-2}} \int_{0}^{\infty} e^{-t} t^{\nu-\frac{1}{2}}\left(\frac{t}{2}-i \lambda|x|\right)^{\nu-\frac{1}{2}} d t \tag{3.14}
\end{equation*}
$$

As a slight modification of the argument is necessary for the case $m=2$, we restrict ourselves to the case $m \geq 3$ and, for definiteness, we assume m is even in what follows in this subsection. We define

$$
\tilde{G}_{0}(\lambda, z, x)=e^{-i \lambda|x|} G_{0}(\lambda, x-z)
$$

and

$$
\begin{equation*}
T_{ \pm}(\lambda, x, y)=\left\langle N_{n}(\lambda) \tilde{G}_{0}(\pm \lambda, \cdot, y), \tilde{G}_{0}(-\lambda, \cdot, x)\right\rangle \tag{3.15}
\end{equation*}
$$

so that

$$
\begin{equation*}
\tilde{\Omega}_{2 n+1}(x, y)=\frac{1}{\pi i} \int_{0}^{\infty}\left(e^{i \lambda(|x|+|y|)} T_{+}(\lambda, x, y)-e^{i \lambda(|x|-|y|)} T_{-}(\lambda, x, y)\right) \tilde{\Psi}(\lambda) d \lambda . \tag{3.16}
\end{equation*}
$$

We may compute derivatives $\tilde{G}_{0}^{(j)}(\lambda, z, x)$ with respect to λ using Leibniz's formula. If we set $\psi(z, x)=|x-z|-|x|$, they are linear combinations over (α, β) such that $\alpha+\beta=j$ of

$$
\frac{e^{i \lambda \psi(z, x)} \psi(z, x)^{\alpha}}{|x-z|^{m-2-\beta}} \int_{0}^{\infty} e^{-t} t^{\nu-\frac{1}{2}}\left(\frac{t}{2}-i \lambda|x-z|\right)^{\nu-\frac{1}{2}-\beta} d t
$$

Since $|\psi(z, x)|^{\alpha} \leq\langle z\rangle^{j}$ for $0 \leq \alpha \leq j$ and

$$
|z-x| \leq C_{\varepsilon}\left|\frac{t}{2}-i \lambda\right| z-x| | \leq C_{\varepsilon}(t+\lambda|z-x|)
$$

when $|\lambda| \geq 1$, we have for $|\lambda| \geq \varepsilon$

$$
\begin{equation*}
\left|\left(\frac{\partial}{\partial \lambda}\right)^{j} \tilde{G}_{0}(\lambda, z, x)\right| \leq C_{j}\left(\frac{\langle z\rangle^{j}}{|x-z|^{m-2}}+\frac{\lambda^{\frac{m-3}{2}}\langle z\rangle^{j}}{|x-z|^{\frac{m-1}{2}}}\right) . \tag{3.17}
\end{equation*}
$$

for $j=0,1,2, \ldots$
Note that $\dddot{\tilde{G}}_{0}(\lambda, z, x) \sim C|x-z|^{2-m}$ near $z=x$ and $\tilde{G}_{0}(\lambda, z, x) \notin L_{\mathrm{loc}}^{2}\left(\mathbf{R}_{z}^{m}\right)$ for a fixed x if $m \geq 4$. However, the LAP (3.1) implies

$$
\begin{equation*}
\left\|\langle x\rangle^{-\gamma-j} G_{0}^{(j)}(\lambda)\langle x\rangle^{-\gamma-j}\right\|_{\mathbf{B}\left(H^{\varepsilon}, H^{++2}\right)} \leq C_{s j \gamma}|\lambda|, \quad|\lambda| \geq \varepsilon \tag{3.18}
\end{equation*}
$$

for any $\gamma>1 / 2, s \in \mathbf{R}$ and $j=0,1, \ldots$ and k times application of $G_{0}(\lambda) V$ to $\tilde{G}_{0}(\lambda, \cdot, x), k>(m-2) / 2$, makes it into a function in $L_{-\gamma}^{2}\left(\mathbf{R}_{z}^{m}\right)$ for any $\gamma>$ $1 / 2$. Thus, if we take $n=k>(m-2) / 2, T_{ \pm}(\lambda, x, y)$ are well defined continuous functions of (x, y) which are $(m+2) / 2$ times continuously differentiable with respect to λ. This, however, produces the increasing factor λ^{k} by virtue
of the increase of the norm of (3.18). We, therefore, take n larger so that $n>m$ and use the fact (3.1) that $\left\|\langle x\rangle^{-\gamma-j} G_{0}^{(j)}(\lambda)\langle x\rangle^{-\gamma-j}\right\|_{\mathbf{B}\left(L^{2}, L^{2}\right)} \leq C|\lambda|^{-1}$ decays as $\lambda \rightarrow \pm \infty$. Then, the decay property of extra factors $\left(G_{0}^{(j)}(\lambda) V\right)^{n-k}$ cancels this increasing factor and makes $T_{ \pm}(\lambda, x, y)$ integrable with respect to λ. Using also the fact that $\tilde{G}_{0}(\lambda, \cdot, x) \sim|x|^{-\frac{m-1}{2}}$ as $|x| \rightarrow \infty$, we in this way obtain the following estimate:

Lemma 3.7. Let $0 \leq s \leq \frac{m+2}{2}$. We have

$$
\begin{equation*}
\left|\left(\frac{\partial}{\partial \lambda}\right)^{s} T_{ \pm}(\lambda, x, y)\right| \leq C_{n s} \lambda^{-3}\langle x\rangle^{-\frac{m-1}{2}}\langle y\rangle^{-\frac{m-1}{2}} \tag{3.19}
\end{equation*}
$$

To obtain the desired estimate for $\tilde{\Omega}_{2 n+1}(x, y)$, we apply integration by parts $0 \leq s \leq(m+2) / 2$ times with respect to the variable λ in (3.16):

$$
\begin{aligned}
& \int_{0}^{\infty} e^{i \lambda(|x| \pm|y|)} T_{ \pm}(\lambda, x, y) \tilde{\Psi}(\lambda) d \lambda \\
& =\frac{1}{(|x| \pm|y|)^{s}} \int_{0}^{\infty} e^{i \lambda(|x| \pm|y|)}\left(\frac{\partial}{\partial \lambda}\right)^{s}\left(T_{ \pm}(\lambda, x, y) \tilde{\Psi}(\lambda)\right) d \lambda
\end{aligned}
$$

and estimate the right hand side by using (3.19). We obtain

$$
\left|\tilde{\Omega}_{n+1}(x, y)\right| \leq C \sum_{ \pm}\langle | x| \pm|y|\rangle^{-\frac{m+2}{2}}\langle x\rangle^{-\frac{m-1}{2}}\langle y\rangle^{-\frac{m-1}{2}}
$$

It is then an easy exercise to show that $\tilde{\Omega}_{n+1}(x, y)$ satisfies the estimate (3.13).

3.3 Low energy estimate, generic case

By virtue of the intertwining property we have $W_{ \pm} \chi\left(H_{0}\right)^{2}=\chi(H) W_{ \pm} \chi\left(H_{0}\right)$ and, from (3.3), we may write the low energy part $W_{ \pm} \chi\left(H_{0}\right)^{2}$ as the sum of $\chi(H) \chi\left(H_{0}\right)$ and

$$
\begin{equation*}
\Omega=\frac{i}{\pi} \int_{0}^{\infty} \chi(H) G_{0}(\lambda) V\left(1+G_{0}(\lambda) V\right)^{-1}\left(G_{0}(\lambda)-G_{0}(-\lambda)\right) \chi\left(H_{0}\right) \lambda d \lambda . \tag{3.20}
\end{equation*}
$$

Here $\chi\left(H_{0}\right)$ and $\chi(H)$ both are integral operators of which the integral kernels satisfy for any $N>0$

$$
\begin{equation*}
\left|\chi\left(H_{0}\right)(x, y)\right| \leq C_{N}\langle x-y\rangle^{-N}, \quad|\chi(H)(x, y)| \leq C_{N}\langle x-y\rangle^{-N} \tag{3.21}
\end{equation*}
$$

and are, a fortiori, bounded in $L^{p}\left(\mathbf{R}^{m}\right)$ (see [16]). If H is of generic type and $m \geq 3$ is odd, then $\left(1+G_{0}(\lambda) V\right)^{-1}$ has no singularities at $\lambda=0$ and we may prove that Ω is bounded in $L^{p}\left(\mathbf{R}^{m}\right)$ for all $1 \leq p \leq \infty$ by proving that its integral kernel $\Omega(x, y)$ satisfies the estimate (3.13) by a method similar to the one used for the high energy part. The argument is simpler in the point that we do not have to expand $\left(1+G_{0}(\lambda) V\right)^{-1}$ since the range of the integration with respect to λ in (3.20) is compact and since the integral kernels of $G_{0}(\lambda) \chi\left(H_{0}\right)$ and $G_{0}(\lambda) \chi(H)$ have no singularalities at the diagonal set by virtue of (3.21). It is, however, more complicated than in the high energy case in that the integral kernels of

$$
\frac{i}{\pi} \int_{0}^{\infty} \chi(H) G_{0}(\lambda) V\left(1+G_{0}(\lambda) V\right)^{-1} G_{0}(\pm \lambda) \chi\left(H_{0}\right) \lambda d \lambda
$$

do not separately satisfy the estimate (3.13) but only their difference does.
If H is of generic type and m is even, then $\left(1+G_{0}(\lambda) V\right)^{-1}$ or its derivatives contain logarithmic singulaities at $\lambda=0$ which are stronger when the dimensions are lower. Thus, the anaysis becomes more involved than the odd caseparticularly when $m=2$ and $m=4$. However, basically the idea as in the odd dimensional case works and we obtain the following theorem. We write $B(x, 1)=\left\{y \in \mathbf{R}^{m}:|y-x|<1\right\}$.
Theorem 3.8. Suppose that H is of generic type:
(1) Let $m=2$. Suppose that V satisfies $|V(x)| \leq C\langle x\rangle^{-6-\varepsilon}$ for some $\varepsilon>0$. Then, $W_{ \pm}$are bounded in L^{p} for all $1<p<\infty$.
(2) Let $m=3$. Suppose that V satisfies $|V(x)| \leq C\langle x\rangle^{-5-\varepsilon}$ for some $\varepsilon>0$. Then, $W_{ \pm}$are bounded in L^{p} for all $1 \leq p \leq \infty$.
(3) Let $m=4$. Suppopse that V satisfies for some $q>2$

$$
\|V\|_{L^{q}(B(x, 1))}+\|\nabla V\|_{L^{q}(B(x, 1)} \leq C\langle x\rangle^{-7-\varepsilon}
$$

for some $\varepsilon>0$. Then, $W_{ \pm}$are bounded in L^{p} for all $1 \leq p \leq \infty$.
(4) Let $m \geq 5$. Suppose that V satisfies $|V(x)| \leq C\langle x\rangle^{-m-2-\varepsilon}$ for some $\varepsilon>0$ in addition to $\mathcal{F}\left(\langle x\rangle^{2 \sigma} V\right) \in L^{m_{*}}\left(\mathbf{R}^{m}\right)$ for some $\sigma>1 / m_{*}$. Then, $W_{ \pm}$are bounded in L^{p} for all $1 \leq p \leq \infty$.

Remark 3.9. When $m=2$, at the end point, the same remark as in the one dimension applies: We believe $W_{ \pm}$are not bounded in L^{1} nor in L^{∞} at the end point and they are bounded from Hardy space H^{1} into L^{1} and L^{∞} to BMO. However, we have no proofs.

3.4 Low energy estimate, exceptional case

We assume H is of exceptional type in this subsection. Then, $\left(1+G_{0}(\lambda) V\right)^{-1}$ of (3.20) is not invertible at $\lambda=0$ and it has singularities at $\lambda=0$. As we have no result when $m=2$ and only a partial result when $m=4$ which we mention at the end of this subsection, we assume $m=3$ or $m \geq 5$ before the statement of Theorem 3.12. We study the singularities of $\left(1+G_{0}(\lambda) V\right)^{-1}$ as $\lambda \rightarrow 0$ by expanding $1+G_{0}(\lambda) V$ with respect to λ around $\lambda=0$ and examining the structure of $1+G_{0}(0) V$. The result is: If $m \geq 3$ is odd, we have

$$
\left(1+G_{0}(\lambda) V\right)^{-1}=\lambda^{-2} P_{0} V+\lambda^{-1} A_{-1}+1+A_{0}(\lambda)
$$

where A_{-1} is a finite rank operator involving 0 eigenfunctions and the resonance function and $A_{0}(\lambda)$ has no singularities; if $m \geq 6$ is even, then

$$
\begin{equation*}
\left(1+G_{0}(\lambda) V\right)^{-1}=\frac{P_{0} V}{\lambda^{2}}+\sum_{j=0}^{2} \sum_{k=1}^{2} \lambda^{j}(\log \lambda)^{k} D_{j k}+I+A_{0}(\lambda), \tag{3.22}
\end{equation*}
$$

where $D_{j k}$ are finite rank operators involving 0 eigenfunctions and $A_{0}(\lambda)$ has no singularities. We substitute this expression for $\left(1+G_{0}(\lambda) V\right)^{-1}$ in (3.20). Then, the operator produced by $I+A_{0}(\lambda)$ may be treated as in the previous section for the case when H is of gereric type. The operators produced by singular terms may be treated by using the machinaries of harmonic analysis, the wighted inequalities for the Hilbert transform and the Hardy-Littlewood maximal functions, which is a little too complicated to explain here. In this way we otain the following theorem. We refer the readers to [19] and [5] for the proof respectively for odd and even dimensional case.

Theorem 3.10. Suppose that H is of exceptional type.
(1) Let $m \geq 3$ be odd. Suppose that V satisfies $|V(x)| \leq C\langle x\rangle^{-m-3-\varepsilon}$ for some $\varepsilon>0$ and $\mathcal{F}\left(\langle x\rangle^{2 \sigma} V\right) \in L^{m *}\left(\mathbf{R}^{m}\right)$ in addition for some $\sigma>1 / m_{*}$. Then, $W_{ \pm}$are bounded in $L^{p}\left(\mathbf{R}^{m}\right)$ between $m /(m-2)$ and $m / 2$.
(2) Let $m \geq 6$ be even. Suppose that V satisfies $|V(x)| \leq C\langle x\rangle^{-m-3-\varepsilon}$ if $m \geq 8,|V(x)| \leq C\langle x\rangle^{-m-4-\varepsilon}$ if $m=6$ for some $\varepsilon>0$ and $\mathcal{F}\left(\langle x\rangle^{2 \sigma} V\right) \in$ $L^{m *}\left(\mathbf{R}^{m}\right)$ for some $\sigma>1 / m_{*}$ in addition. Then, $W_{ \pm}$are bounded in $L^{p}\left(\mathbf{R}^{m}\right)$ for $m /(m-2)<p<m / 2$.

Remark 3.11. When H is of exceptional type, the $W_{ \pm}$are not bounded in $L^{p}\left(\mathbf{R}^{m}\right)$ if $p>m / 2$ and $m \geq 5$, or if $p>3$ and $m=3$. This can be deduced from the results on the decay in time property of the propagator
$e^{-i t H} P_{a c}$ in the weighted L^{2} spaces $[12,7]$, or in L^{p} spaces $[4,18]$. We believe the same is true for p 's on the other side of the interval given in (b), viz. $1 \leq p \leq m /(m-2)$ if $m \geq 5$ and $1 \leq p \leq 3 / 2$ if $m=3$, but we have again no proofs.

In the case when $m=2$ or $m=4$, and if 0 is a resonance of H, then the results of [12] and [7] mentioned above imply that the $W_{ \pm}$are not bounded in $L^{p}\left(\mathbf{R}^{m}\right)$ for $p>2$ and, though proof is missing, we believe that this is the case for all p 's except $p=2$. However, when $m=4$ and if 0 is a pure eigenvalue of H and not a resonance, the $W_{ \pm}$are bounded in $L^{p}\left(\mathbf{R}^{4}\right)$ for $4 / 3<p<4$:
Theorem 3.12. Let $|V(x)|+|\nabla V(x)| \leq C\langle x\rangle^{-\delta}$ for some $\delta>7$. Suppose that 0 is an eigenvalue of H, but not a resonance. Then the $W_{ \pm}$extend to bounded operators in the Sobolev spaces $W^{k, p}\left(\mathbf{R}^{4}\right)$ for any $0 \leq k \leq 2$ and $4 / 3<p<4$:

$$
\begin{equation*}
\left\|W_{ \pm} u\right\|_{W^{k, p}} \leq C_{p}\|u\|_{W^{k, p}}, \quad u \in W^{k, p}\left(\mathbf{R}^{4}\right) \cap L^{2}\left(\mathbf{R}^{4}\right) \tag{3.23}
\end{equation*}
$$

We do not explain the proof of this theorem and refer the readres to the recent preprint [8]. Again, the results of $[12,7]$ imply that the $W_{ \pm}$are unbounded in $L^{p}\left(\mathbf{R}^{4}\right)$ if $p>4$ under the assumption of Theorem 3.12. We believe that this is the case also for $1 \leq p<4 / 3$, though we do not have proofs.

References

[1] G. Artbazar and K. Yajima, The L^{p}-continuity of wave operators for one dimensional Schrödinger operators, J. Math. Sci. Univ. Tokyo 7 (2000), 221-240.
[2] J. Bergh and J. Löfström, Interpolation spaces, an introduction, Springer Verlag, Berlin-Heidelberg-New York (1976).
[3] P. D'Ancona and L. Fanelli, L^{p}-boundedness of the wave operator for the one dimensional Schrödinger operator, preprint (2005).
[4] M. B. Erdoğan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three I. Dynamics of PDE, 1 (2004), 359.
[5] D. Finco and K. Yajima, The L^{p} boundedness of wave operators for Schrödinger operators with threshold singularities II. Even dimensional case, to appear in J. Math. Sci. Univ. Tokyo.
[6] M. Goldberg and M. Visan, A counter example to dispersive estimates for Schrödinger operators in higher dimensions, preprint (2005).
[7] A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in $L^{2}\left(\mathbf{R}^{4}\right)$, J. Math. Anal. Appl. 101 (1984), 397-422.
[8] A. Jensen and K. Yajima, A remark on L^{p}-boundedness of wave operators for two dimensional Schrödinger operators, Commun. Math. Phys. 225 (2002), 633-637.
[9] A. Jensen and K. Yajima, A remark on L^{p} boundedness of wave operators for four dimensional Schrödinger operators with threshold singularities.
[10] T. Kato, Wave operators and similarity for non-selfadjoint operators, Ann. Math. 162 (1966), 258-279.
[11] S. T. Kuroda, Introduction to Scattering Theory, Lecture Notes, Aarhus University
[12] M. Murata, Asymptotic expansions in time for solutions of Schrödingertype equations, J. Funct. Anal., 49 (1982), 10-56.
[13] E. M. Stein, Harmonic analysis, real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ. (1993).
[14] R. Weder, $L^{p}-L^{p^{\prime}}$ estimates for the Schrödinger equations on the line and inverse scattering for the nonliner Schrödinger equation with a potential, J. Funct. Anal. 170 (2000), 37-68.
[15] K. Yajima, The $W^{k, p}$-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan 47 (1995), 551-581.
[16] K. Yajima, The $W^{k, p}$-continuity of wave operators for Schrödinger operators III, J. Math. Sci. Univ. Tokyo 2 (1995), 311-346.
[17] K. Yajima, The L^{p}-boundedness of wave operators for two dimensional Schrödinger operators, Commun. Math. Phys. 208 (1999), 125-152.
[18] K. Yajima, Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue, Commun. Math. Phys. 259 (2005), 475-509.
[19] K. Yajima, The Lp boundedness of wave operators for Schrödinger operators with threshold singularities I, Odd dimensional case, J. Math. Sci. Univ. Tokyo 7 (2006), 43-93.

