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ABSTRACT
The Gross-Pitaevskii equation is algebraically equivalent to the defocusing cubic

nonlinear Schr\"odinger equation, but the natural solutions should approach non-zero
equillibria at the spatial infinity. We study large-time behavior of such solutions in
the simplest case, i.e., for small perturbations of space-independent solutions. In
three or higher dimensions, we see that we need only a linear modification for the
free Schr\"odinger equation to approximate the asymptotic behavior, whereas in two
dimensions, we need some quadratic modifications also. This article is based on the
joint work with Stephen Gustafson and Tai-Peng Tsai $[8, 9]$ .

1. INTRODUCTION
There has been a large amount of study on long-time behavior of solutions for the

nonhnear Schr\"odinger equation (NLS) and similar ones in terms of the scattering
theory. The typical statement is that each solution under some conditions can
be approximated at the time infinity by a sum of bound states solving nonlinear
elliptic equations and a dispersive component evolving by the linear equation. Such
a description relies crucially on the fact that the nonlinear interaction becomes
weaker for the dispersive component both with itself and with the bound states for
large time. To derive time decay of those interactions, the spatial decay of each
component has played dominant roles.

However, it is not always natural in the physical context to assume spatial decay
of the solutions. A typical example is the so-called Gross-Pitaevskii equation (GP)
modelling the Bose-Einstein condensation, or superfluidity
(1.1) $i\psi_{t}+\Delta\psi=(|\psi|^{2}-1)\psi$ , $\psi(t,x):\mathbb{R}^{1+d}arrow \mathbb{C}$ .
This is equivalent to the defocusing cubic NLS by the change of variable $\psi\ovalbox{\tt\small REJECT}\mapsto e^{it}\psi$ .
What makes it different from the usual NLS is the boundary condition given by
(12) $|\psi(t,x)|arrow 1$ $(|x|arrow\infty)$ .

Hence those scattering results in $L^{2}$ or any Sobolev space $H^{\iota}$ for the NLS do not
apply in this context. In fact, the long-time behavior of solutions is generally quite
different between them; it is wel known $[1, 4]$ that there exist finite energy travelig
waves for (GP) of the form

(1.3) $\psi(t, x)=\varphi(x-ct)$ , $\lim_{|x|arrow\infty}\varphi(x)=1$ ,

whereas every $H^{1}$ solution of the same NLS disperses and approach a free solution,
at least in three or higher dimensions [6]. Heuristically the dynamics of (GP) is
more complicated and difficult to analyse, because the interaction with the non-zero
back ground does not decay at the spatial infinity. A consequence of it appears in
the decay of fininte energy traveling waves [7]:
(14) $|\varphi(x)|\sim>|x|^{1-d}$ $(|x|\gg 1)$ ,
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which is in a striking contrast with the exponential decay of solitary waves for the
focusing NLS. We will see a similar phenomenon for the dispersive component of
(GP) in the two dimensional case.

Before going to the scattering problem, it is necessary to recall the global existence
for (GP). It was shown in [1] that the equation (1.1) is globally wellposed in the
class $\psi\in 1+H_{x}^{1}$ for $d\leq 3$ . The $H^{1}$ nom is related to the conserved quantities

(1.5) $E( \psi)=\int_{\mathbb{R}^{\text{\’{e}}}}|\nabla\psi|^{2}+\frac{(|\psi|^{2}-1)^{2}}{2}dx$ , $Q( \psi)=\int_{B^{d}}(|\psi|^{2}-1)dx$ ,

which however do not control the $L^{2}$ norm. Actually the spatial asymptotic (1.4)
implies that finite energy traveling waves do not belong to $L^{2}(\mathbb{R}^{2})$ . Thus [5] extended
the global wellposedness to the natural class of finite energy defined by
(1.6) $\{\varphi\in\dot{H}^{1}\cap L_{loc}^{2}||\varphi|^{2}-1\in L^{2}.\}$ ,

which is equivalent to $1+H^{1}$ for $d=3,4$, but not for $d=2$. In the recent paper
[3], the above result was further extened to include the stationary vortex solutions
(1.7) $\psi(t,x_{1},x_{2})=\varphi(r)e^{in}w$ $x_{1}+ix_{2}=re^{i\theta}$ , $m\in \mathbb{Z}\backslash \{0\}$ ,
which have infinite energy due to the phase gradient. These results use conservation
laws to extend the solutions globally, without specifying the asymptotic behavior at
the time infinity, on which our knowledge is very limited so far.

A natural step toward understanding the asymptotic behavior is to investigate
the dispersive property of small solutions, namely the case where $|\psi-1|$ is small
enough with decay at the spatial infinity. In terms of the standard NLS, this is
equivalent to investigating small perturbation of non-zero plane wave solutions
(1.8) $i\dot{u}+\Delta u=|u|^{2}u$, $u=\sqrt{w-|\xi|^{2}}e^{1\xi ae}e^{-1wt}+$ smaf’,

which by itself seems to be interesting. The main issue is how to control the lower
order interactions with the non-zero constant amplitude. We will see in the two
dimensional case that the quadratic interaction has nontrivial long-time effect on
the dispersive component, besides from the obvious linear interaction.

Now let us formulate the equation for the dispersive component. Putting $\psi=1+u$

in (1.1), we get
(1.9) $iu_{t}+\Delta u+2\Re u=u^{2}+2|u|^{2}+|u|^{2}u$,
where $2\Re$ is the linear interaction with the background 1. We can linearize (in the
complex sense) the left hand side by change of variable $urightarrow v$ defined by the Fourier
multiplier $U:=\sqrt{-\Delta(2-\Delta)^{-1}}$ :
(110) $u=u_{1}+iu_{2}=Uv_{1}+iv_{2}$ , $v=v_{1}+iv_{2}$ ,

where $u=u_{1}+iu_{2}$ denotes the decomposition into the real and $\dot{u}$naginaarryy parts.
Then the equation for $v$ is given

(1.11) $iv_{t}-Hv=3u_{1}^{2}+u_{2}^{2}+|u|^{2}u_{1}+iU^{-1}(2u_{1}u_{2}+|u|^{2}u_{2})$ ,

where $H$ $:=\sqrt{-\Delta(2-\Delta)}$. Then we may ask if the solution $v$ can be approximated
by the unitary evolution group $e^{-itH}$ for large time:
(112) $||v-e^{-itH}\varphi\Vert_{H}\cdotarrow 0$ $(tarrow\infty)$
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for some final state $\varphi$ and some Sobolev space $H^{S}$ . This means that the background
interaction remains effective only for the linear order. We will see that it is the case
for all small solutions in four or higher dimensions, and for a class of solutions in
three dimensions, but not completely correct in two dimensions.

An apparent obstruction in deriving such results is the singularity of $U^{-1}$ at
the Fourier origin in the nonlinearity (1.11), since singularity in the Fourier space
corresponds to slow decay in the physical space. The more essential difficulty is
estimating those quadratic terms especially in two dimensions.

For a comparison, let us mention the known results for the quadratic NLS:

(113) $iu_{t}+\Delta u=B(u,\overline{u})$ , $u:\mathbb{R}^{1+2}arrow \mathbb{C}$.

If $B=\lambda_{1}u^{2}+\lambda_{2}\overline{u}^{2}$ , then it is known $[14, 12]$ that for every small and rapidly
decaying final state $\varphi$ with vanishing moments, there exists a nonlinear solution $u$

which approach the free solution $e^{it\Delta}\varphi$ (i.e., the wave operator can be defined for
such final data). If $B=\overline{\lambda}[\Re(\lambda u)]^{2}$ , then there exists a solution $u$ with the modified
asymptotic profile [11]:

(114) $u \sim u^{0}+\frac{i\overline{\lambda}}{2}\int_{\infty}^{t}|\lambda u^{0}(s)|^{2}ds$, $u^{0}:=e^{1t\Delta}\varphi$ .

But the general case including $|u|^{2}$ remains open (see [15] for nonexistence of the
wave operator). The difficulty is that the quadratic terms have the critical time
decay if approximated by the free solution:

(115) $||u(t)^{2}\Vert_{L_{l}^{2}(B^{2})}>1\sim/t\not\in L^{1}(1, \infty)$,

and therefore the modification is very sensitive to the form of nonhinearity.
Now we state the main results. In four or higher dimensions, we have [8]

Theorem 1.1. Let $d\geq 4$ and $s\geq d/2-1$ . There exists $\delta>0$ such that for
any $\varphi\in H^{\iota}(\mathbb{R}^{d})$ satisfying $\Vert\varphi\Vert_{H}\cdot\leq\delta$ , the $u$nique global solution $\psi$ of (1.1) utth
$\psi(0)=1+\varphi$ satisfies
(1.16) $\psi=1+Uv_{1}+iv_{2}$ , $||v(t)-e^{-iHt}\varphi_{+}\Vert_{H}\cdotarrow 0(tarrow\infty)$ ,

for some $\varphi_{+}\in H^{\iota}(\mathbb{R}^{d})$ . Conversdy for any $\varphi_{+}\in H^{e}(R^{d})$ , there is a global solution
$\psi$ satisMing the above asymptotic behavior. Moreover, the correspondence $\varphi\vdash*\varphi_{+}$

defines a local homeomorphism around $0$ in $H(\mathbb{R}^{d})$ .
The regularity $s=d/2-1$ is the scahng critical exponent for the cubic NLS,

while the $L^{2}$ is that for the quadratic NLS in $d=4$, where the scaling critical means
that the space $\dot{H}^{\iota}$ is invariant under the scahng $\varphi(x)rightarrow\lambda^{\alpha}\varphi(\lambda x)$ which leaves the
equation invariant. Therefore the above seems to be optimal as a scattering result
in $H^{\iota}$ by the current technology of perturbative arguments. However the existence
of traveling waves does not exclude the possibility of this kind of result for $d=2,3$,
because in three dimensions there seems to be a lower bound on the energy of
traveling waves, and in two dimensions they are not in $L^{2}$ .

In three dimensions, we can define a wave operator in smaller spaces [9]
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Theorem 1.2. Let $d=3$ and $q<3/2$ . Then for any $\varphi\in H^{1}\cap W^{1,g}(\mathbb{R}^{3})$ , there
exists a unique global solution $\psi$ of (1.1) satisfy ing

$\psi=1+Uv_{1}+iv_{2}$ , $\Vert v(t)-e^{-iHt}\varphi\Vert_{(L_{t}^{\infty}H_{l}^{1}\cap L^{2}W_{*}^{1.6})(T,\infty)}=o(T^{-1/4})$ ,
(1.17)

$\Vert v(t)\Vert_{W^{1,3}}=O(t^{-1/2})$ .

The same result holds true for small $\varphi\in H^{1}\cap W^{1,3/2}$ . The spaces $W^{1,3/2}$ and
$W^{1,3}$ are related to the $L^{p_{-}}L^{q}$ decay of the linearized operator:

(118) $\Vert e^{-itH}\varphi\Vert_{B_{S,2}^{0}}<\sim|t|^{-1/2}\Vert\varphi\Vert_{B_{S/2,2}^{Q}}$ ,

where $B_{p,2}^{0}$ denotes the Besov space with the $L_{x}^{p}$ nom on each dyadic frequency and
the $\ell^{2}$ on the dyadic parameter. The criticality of this estimate for quadratic terms
can be observed by applying it to the Duhamel formula for the nonlinear term:

(1.19) $t^{1/2} \Vert\int_{\infty}^{t}e^{-i(t-\iota)H}u(s)^{2}ds\Vert_{L_{\sim\sim}^{S}}<\int^{\infty}(s/t-1)^{-1/2}\frac{ds}{s}\Vert t^{1/2}u(t)\Vert_{L_{1}^{\infty}L_{x}^{S}}^{2}$.

In the hardest case $d=2$, we have the following modified asymptotics [9]. We
denote by $\mathcal{F}$ the Fourier transform on $\mathbb{R}^{d}$ .
Theorem 1.3. Let $d=2$ . There $e$ vists $\delta>0$ such that for any $\varphi\in H^{1}$ satisfying
$\Vert\varphi\Vert_{\dot{B}_{1,1}^{1}}\leq\delta$ and $\langle\xi\rangle^{-1/2}|\xi|^{|\alpha|}P\mathcal{F}\varphi(\xi)\in L_{\xi}$ $\cap L_{\xi}^{2}$ for $|\alpha|\leq 2$ , there enists a unique
global solution $\psi$ of (1.1) satisfying

$\psi=1+Uv_{1}+iv_{2}$ , $||v+\nu-z^{0}-z^{1}||_{H^{1}}<t^{-1+\epsilon}\sim$
’

(1.20)
$\nu:=H^{-1}|\psi-1|^{2}$ , $z^{0}:=e^{-1Ht}\varphi$ , $z^{1}:=i \int_{\infty}^{t}e^{-iH(t-\iota)}|Uz^{0}(s)|^{2}ds$,

for any $\epsilon>0$ .
Those quadratic modifiers have decay

(1.21) $\Vert\nu||_{\dot{H}^{1}\cap\dot{H}^{2}}+\Vert z^{1}\Vert_{\dot{H}^{1}\sim}<t^{-1+\epsilon}$ , $\Vert\nu\Vert_{\dot{H}}$. $+\Vert z^{1}||_{\dot{H}\sim}<t^{-\epsilon/2}$ ,

for $0<\epsilon<1$ . However, they do not belong to $L^{2}$ in general. It is ea8y to see that
$\nu\not\in L_{x}^{2}$ (unless $\psi=1$ ) due to the singularity of $H^{-1}$ at $\xi=0$ . Moreover, we have
the following asymptotic of $z^{1}$ in the Fourier space. Let $\xi_{1}+i\xi_{2}=re^{1\theta}$ . Then we
have

(1.22) $\lim_{rarrow+0}r\mathcal{F}[e^{1Ht}z^{1}(t)](\xi)=i\int_{0}^{\infty}\int_{R^{2}}e^{:(t2-\nabla H(\eta)\cdot\theta)t}|\mathcal{F}\varphi(\eta)|^{2}d\eta ds$.

Since $1/|\xi|\not\in L^{2}(\mathbb{R}^{2})$ , we deduce that $u_{2}(t)\not\in L_{x}^{2}$ unless the right hand side vanishes
for all $\theta\in$ R. The modifier $z^{1}$ is essentially the same as that in (1.14), but the
latter was simplified by using $e^{1t\Delta}\sim 1+it\Delta$ , which is not useful in the case of $e^{-itH}$ .
Both the results exploit special structure of the nonlinearity. The argument in [11]
crucialy depends on the fact that the modilier is completely killed in the nonhnearity
because of the special choice of coefficients. In our argument, we exploit the fact
that the modifier has singularity only at $\xi=0$ , which is compensated by $U$ in the
nonhnearity after a certain change of variable, which we will detail below.
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The key ingredient of our proof is the following nonlinear transform of the solution,
which resolves both the difficulties, the $U^{-1}$ singularity and the slow decay of the
quadratic terms in two dimensions. Let $z=v+H^{-1}|u|^{2}$ . Then we have

il-Hz $=2u_{1}^{2}-4iH^{-1}\nabla\cdot(u_{1}\nabla u_{2})+|u|^{2}u_{1}+iU[|u|^{2}u_{2}]$ ,
(1.23)

$u_{1}+(2-\Delta)^{-1}|u|^{2}=Uz_{1}$ , $u_{2}=z_{2}$ .
Hence the $U^{-1}$ singularity has disappeared and moreover the quadratic terms are
roughly of the form $(Uz)^{2}$ and the cubic terms are like $z^{2}Uz$ . Thus the above
transform can be regarded as a “partial” normal form removing the most singular
part around $\xi=0$ ; similar arguments have been successfully used for the NLS, see
for example [10].

For the linear evolution $e^{-iHt}$ , we have the following $L^{p}$ decay estimate by the
stationary phase argument [8]:

(1.24) 11 $e^{-iHt}\varphi\Vert_{\dot{B}_{p,2}^{0}}\leq|t|^{-d(1/2-1/p)}||U^{(d-2)(1/2-1/p)}\varphi||_{\dot{B}_{p2}^{0}},,$ ’

for $2\leq p\leq\infty$ and $1/p+1/p’=1$ . Thus we gain some power of $U$ if $d\geq 3$ , compared
with the free Schr\"odinger evolution. Then the Strichartz estimmate with some gam
at $\xi=0$ follows from the above one by a standard argument, and the above results
in three or higher dimensions are obtained by using those linear estimates together
with the H\"older and the Sobolev inequalities on the nonlinear terms.

In the two dimensional case, the H\"older with the linear decay estimate is not
sufficient and we have to exploit the oscillatory property of the quadratic terms for
dispersive solutions. The key ingredient is the folowing decay estimate on the first
approximation of the quadratic terms:

(1.25) $\Vert\int_{\infty}^{t}e^{iH\iota}B(Uz_{1}^{0}+z_{2}^{0})ds\Vert_{\dot{H}^{1}}=O(t^{-1}\log^{2}t)$ ,

where $B(u)$ denotes the quadratic terms in the equation for $z(1.23)$ . We have the
same bound in $H^{\iota}$ for $0<s<1$ if we subtract the tem I $Uz^{0}|^{2}$ . The above estimate
is proved by a non-stationary phase argument in space-time $(t,\xi)$ away from $\xi=0$ .
The $Uga\dot{i}$ in the quadratic terms is used to remove the stationary point $\xi=0$

and also to compensate the singularity in the derivatives of $H$ appearing in partial
integrations. Once we obtain the above estimate, it is easy to solve the equation
(1.23) for $(z,u)$ by the iteration argument.
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