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1 Introduction
In this note, we report two results on modules over finite groups. Both of them
arise in order to solve problems of actions of finite groups on $C^{*}$-algebras. These
problems as well as a brief introduction of $C^{*}$-algebras can be found in Section 4.

In the next section, we introduce the notion of permutation presentations of
modules over finite groups. Then we completely determined finlte groups over which
every modules have permutation presentations (Theorem 2.4). In Section 3, we
introduce the notion of completely cohomologically trivial (CCT) modules over finite
groups. Then we give various characterization of CCT modules and a relation with
known notions (Theorem 3.9).

We consult the books of Brown [B] and Serre [Se] for a definition and results of
the Tate cohomologies $\hat{H}^{n}(-, -)$ .

2 Permutation presentations of modules
Let $G$ be a finite group. By a G-module, we mean an abelian group with a left
action of $G$ . A G-module can be naturally considered as a $\mathbb{Z}G$-module where $\mathbb{Z}G$ is
the group ring of $G$ over the integer ring $\mathbb{Z}$. A G-set is a set with a left action of $G$ .

Definition 2.1. For a G-set $X$ , the free abelian group $\mathbb{Z}[X]$ whose basis is given
by $\{[x]\}_{x\in X}$ is a G-module in a natural way. A G-module $F$ which is isomorphic to
this kind of G-modules is called a permutation module.

A permutation G-module is a direct sum of a G-module in the form $\mathbb{Z}[G/G’]$ for
a subgroup $G’$ of $G$ .

Deflnition 2.2. A permutation presentation of a G-module $M$ is a G-equivariant
exact sequence

$0arrow Farrow Farrow Marrow 0$

数理解析研究所講究録
第 1564巻 2007年 32-45 32



where $F$ is a permutation G-module.

Example 2.3. Let $G=\langle\sigma|\sigma^{2}=1\rangle\cong \mathbb{Z}/2\mathbb{Z}$ . Let $M=\mathbb{Z}/3\mathbb{Z}$ be a G-module
where an action of $G$ on $M$ is defined by $\sigma(m)=-m$ . Then $M$ has a permutation
presentation

$0arrow \mathbb{Z}[X]arrow^{\varphi}\mathbb{Z}[X]arrow^{\psi}Marrow 0$

where $X=\{1,2\}$ with the G-action defined by $\sigma(1)=2$ and $\sigma(2)=1$ , and $\varphi$ and
$\psi$ are defined by

$\varphi([1])=2[1]-[2]$ , $\psi([1])=1$ ,
$\varphi([2])=-[1]+2[2]$ , $\psi([2])=2$ .

One can see that the map $\varphi$ can be expressed by a $2\cross$ 2-matrix

$D=(\begin{array}{ll}2 -1-l 2\end{array})\in M_{2}(\mathbb{Z})$ .

In this way, a permutation presentation can be given by a G-set $X$ and a G-
equivariant” $X\cross X$ matrix with integer entries.

We are interested in problems to determine modules having permutation presen-
tations, or determine finite groups over which all modules have permutation presen-
tations. We solve the first problem partially (Proposition 2.6 and Lemma 2.9), and
the second problem completely as follows.

Theorem 2.4 ([Kl, Theorem 1.4]). For a finite group $G$ , every G-module has a
permutation presentation if and only if every Sylow subgrvup of $G$ is cyclic.

There exists an explicit description of finite groups all of whose Sylow subgroups
are cyclic. Such a group is isomorphic to a semi-direct product $G=(\mathbb{Z}/m\mathbb{Z})\rtimes$

$(\mathbb{Z}/n\mathbb{Z})$ such that $m$ and $n$ are relatively prime integers and that $\mathbb{Z}/m\mathbb{Z}$ is the
commutator group of $G$ (for detail, see [Ro, 10.1.10] for example).

Arnold [A] considered a similar problem for finitely generated modules, and got
a similar answer to Theorem 2.4 using a result by Endo and Miyata in [EM]. Many
arguments on finitely generated modules in [A] and [EM] can be applied without
paying large fees. However, in one step in [EM] a property of finitely generated
modules, which ls no longer true for general modules, was used. We need a new idea
to complete this step in our case.

We first see the reduction of our problem to a problem on coflasque modules
over cyclic p-groups (Theorem 2.12) following the ideas of [EM] and [A], and then
mention a little bit about the proof of this problem. We sketch proofs of some
results. For the detail, see [K1].

There exists a cohomological obstruction for a G-module to have a permutation
presentation. Note that for $n\geq 1$ the Tate cohomologies $\hat{H}^{n}(-, -)$ coincide with the
group cohomologies $H^{n}(-, -)$ . Recall that the exponent $\exp(G)$ of a finite group $G$
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is the smallest positive integer $n$ satisfying $g^{n}=1$ for all $g\in G$ . It is easy to see
that $\exp(G)$ divldes the order $|G|$ of $G$ , and we have $\exp(G)=|G|$ if and only if
every Sylow subgroup of $G$ is cyclic.

Lemma 2.5. For a permutation G-module $F$ , we have $\hat{H}^{1}(G, F)=0$ and $\hat{H}^{2}(G, F)$

is annihilated by $\exp(G)$ .

Proof. This follows from $ShapIros$) lemma. $\square$

Proposition 2.6. If a G-module $M$ has a permutation presentation, then $\hat{H}^{1}(G, M)$

is annihilated by $\exp(G)$ .

Proof. Apply Lemma 2.5 to the long exact sequence of the Tate cohomologies in-
duced by a permutation presentation. $\square$

The converse of this proposition does not hold (see [Kl, Example 2.7]).
Recall that the augmentation ideal $I_{G}$ is the kernel of the surjection $\pi:\mathbb{Z}Garrow \mathbb{Z}$

defined by $\pi(g)=1$ for all $g\in G$ . Since $I_{G}$ is an ideal of the group ring $\mathbb{Z}G$ , it is a
G-module.

Proposition 2.7. If $I_{G}$ has a permutation poesentation, then every Sylow subgmup
of $G$ is cyclic.

Proof. We can easlly compute $\hat{H}^{1}(G, I_{G})\cong \mathbb{Z}/|G|\mathbb{Z}$ . IFlirom this computation and
Proposition 2.6, we have $\exp(G)=|G|$ if $I_{G}$ has a permutation presentatIon. Thus
every Sylow subgroup of $G$ is cyclic. $\square$

This proposition proves the “only if” part of Theorem 2.4. We are going to see
$ho\dot{w}$ to prove its “if” part. We need the following notions.

Definition 2.8. A G-module $M$ is saId to be permutation projective if it is isomor-
phic to a direct summand of some permutation module, and coflasque if $M$ is free
as an abelian group and $\hat{H}^{1}(G’, M)=0$ for all subgroups $G’$ of $G$ .

By Lemma 2.5, one can see that a pemutation projectlve G-module is coflasque.
The converse is not true in general, and actually the difference of these two notions
measures the numbers of G-modules without having permutation presentations (see
Lemma 2.9 and Proposition 2.10).

For a G-module $M$ , let $N_{M}$ be the kernel of the surjection $\pi:\mathbb{Z}[M]arrow M$ defined
by $\pi([m])=m$ :

$0arrow N_{M}arrow \mathbb{Z}[M]arrow^{\pi}Marrow 0$

Then one can show the following.

Lemma 2.9. The G-module $N_{M}$ is always coflasque, and it is permutation projective
if and only if $M$ has a permutation presentation.
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Proof. The first assertion follows from the long exact sequence of the Tate coho-
mologies, and the second one follows similarly to “Schanuel’s lemma” ([$B$ , Lemma
VIII.4.2]). $\square$

Using this lemma, we get the next proposition.

Proposition 2.10. Every G-module has a permutation presentation if and only if
every coflasque G-module is permutation projective.

Proof. We only need the “if” part which easily follows from Lemma 2.9. 口

In order to check that a finite group $G$ satisfies the property that every coflasque
module is permutation projective, it suffices to see that every Sylow subgroup $G’$ of
$G$ has this property, by the next lemma.

Lemma 2.11. A G-module $M$ is coflasque (resp. permutation projective) if and
only if $M$ is a coflasque (resp. permutation projective) $G’$ -module for every Sylow
subgroup $G’$ of $G$ .

Hence the “if” part of Theorem 2.4 follows from the next theorem.

Theorem 2.12. Let $G$ be a cyclic p-group. Then every coflasque G-module is per-
mutation $p$rvjective.

Endo and Miyata proved this theorem for finitely generated modules using the
fact that a finitely generated module over the Dedekind domain $\mathbb{Z}[\zeta_{q}]$ , where $q$ is a
power of a prime number, is projective if and only if it is torsion-free. Since this
fact is valid only for finitely generated modules, we cannot use their argument. We
prove Theorem 2.12 by force using an induction and explicit computations of Tate
cohomologies. We sketch our proof in [K1].

Let $G$ be the cyclic group of order $p^{K}$ where $p$ is a prime number and $K$ is a
positive integer. Let $\sigma\in G$ be the generator, and define $\sigma_{k}=\sigma^{p^{k}}$ for $k=0,1,$ $\ldots,$

$K$ .
For each $k=0,1,$ $\ldots,$

$K$ , let $G_{k}$ be the subgroup of $G$ generated by $\sigma_{k}$ . Then
$G_{k}\cong \mathbb{Z}/p^{K-k}\mathbb{Z}$ and $G/G_{k}\cong \mathbb{Z}/p^{k}\mathbb{Z}$ holds for $k=0,1,$ $\ldots$ , $K$, and

$G=G_{0}\supset G_{1}\supset\cdots\supset G_{K-1}\supset G_{K}=\{1\}$

exhausts all subgroups of $G$ . We identify $G/G_{k}$-modules with G-modules on which
$\sigma_{k}$ act trivially. We see that a permutation G-module is a direct sum of free $G/G_{k}-$

modules for $k=0,1,$ $\ldots,$
$K$ . This description of permutation G-modules can be

possible because we can list all subgroups of $G$ and all of them are normal. For a
general finite group $G$ , there is no such nioe description of permutation G-modules.

Definition 2.13. Let $k=0,1,$ $\ldots$ , $K$ . We write $M\in C_{k}$ if $M$ is a coflasque G-
module such that $M^{\sigma_{k}}$ $:=\{m\in M|\sigma_{k}m=m\}$ is a projective $G/G_{k}$-module.
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Note that $M\in C_{0}$ if and only lf $M$ is a coflasque G-module, and $M\in C_{K}$ If and
only if $M$ is a projective G-module. The following technical proposition enables us
to prove Theorem 2.12 by an inductive argument.

Proposition 2.14. Let $k\in\{0,1, \ldots, K-1\}$ . For $M\in C_{k}$ , there exists a G-
equivariant short exact sequence

$0arrow Farrow M\oplus Parrow M’arrow 0$

where $F$ is a free $G/G_{k}$ -module, $P$ is a projective $G/G_{k}$ -module, and $M’\in C_{k+1}$ .

Proof. Sinoe $M^{\sigma_{k}}$ is a projective $G/G_{k}$-module, we can find a projective $G/G_{k}-$

module $P$ such that $M^{\sigma_{k}}\oplus P$ is a free $G/G_{k}$-module. We need to find a free
$G/G_{k}$ -module $F\subset M^{\sigma_{k}}\oplus P$ such that $M’$ $:=(M\oplus P)/F$ is in $C_{k+1}$ . It is not
difficult to get conditIons on $F$ so that $M’$ is cofiasque. To show that the $G/G_{k+1^{-}}$

module $M”$ $:=(M’)^{\sigma_{k+1}}$ is projective, we use the well-known theorem of Rim (see
[$B$ , Theorem VI.8.10]) which says, in this situatlon, that $M”$ is projective if and only
if $\hat{H}^{n}(G/G_{k+1}, M’’)=0$ for all $n\in \mathbb{Z}$ . These cohomology groups can be computed
as

$\hat{H}^{n}(G/G_{k+1}, M’’)=\{\begin{array}{ll}\{m\in M’’|sm=0\}/(1-\sigma)M’’ if n is odd,\{m\in M’’|(1-\sigma)m=0\}/sM’’ if n is even.\end{array}$

where $s= \sum_{j=0}^{p^{k+1}-1}\sigma^{j}\in \mathbb{Z}G$ (see $[B$ , Example III.1.2]). $Rom$ these arguments,
we can write down $t^{\backslash }he$ conditions on a free $G/G_{k}$-module $F\subset M^{\sigma_{k}}\oplus P$ so that
$M’$ $:=(M\oplus P)/F$ is in $C_{k+1}$ . A straightforward argument using bases shows that
there exists such $F$ . We are done. $\square$

Flrom Proposition 2.14, we can prove Theorem 2.12.

Proof of Theorem 2.12. Take a coflasque G-module $M_{0}$ . We have $M_{0}\in C_{0}$ . By
applying Proposltion 2.14 inductively, we get G-modules $\{F_{k}, P_{k}\}_{k=0}^{K-1}$ and $\{M_{k}\}_{k=1}^{K}$

where $F_{k}$ is a free $G/G_{k}$-module, $P_{k}$ is a projective $G/G_{k}$-module and $M_{k}\in C_{h}$ such
that there exist G-equivariant short exact sequences

$0arrow F_{k}arrow M_{k}\oplus P_{k}rightarrow M_{k+1}arrow 0$.

Since $M_{K}\in C_{K}$ is a projective G-module, there exists a projective G-module $P_{K}$

such that $F_{K}=M_{K}\oplus P_{K}$ is a free G-module. Then we can show that

$M_{k} \oplus\bigoplus_{l=k}^{K}P_{l}\cong\bigoplus_{l=k}^{K}F_{l}$

holds for $k=0,1,$ $\ldots,$
$K$ by the induction on $k$ from above using the fact that an

extension of a permutation module by a permutation module splits ([Kl, $p_{ro}I^{osi-}$

tion 3.5]). Hence $M_{0}$ is a direct summand of the permutation G-module $\oplus_{l=0}F_{l}$ .
This completes the proof. $\square$

By Theorem 2.12, we get the “if” part of Theorem 2.4. Thus we complete the
proof of Theorem 2.4.
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3Completely cohomologically trivial modules
Let $G$ be a finite group. The following notion and the result were due to Nakayama
and Rim (see $[B$ , Section VI.8]).

Deflnition 3.1. A G-module $M$ is said to be cohomologically trivial (abbreviated
as CT) if $\hat{H}^{n}(G’, M)=0$ for all $n\in \mathbb{Z}$ and all subgroups $G’\subset G$ .

Proposition 3.2 ( $[B$ , Theorem VI.8.12]). A G-module $M$ is $CT$ if and only if there
enists a G-equivareant short exact sequence $0arrow P’arrow Parrow Marrow 0$ where $P$ and $P’$

are projective G-modules.
In the study of the Rohlin actions on a certain class of $C^{*}$ -algebras, Izumi intro-

duced the following notion.

Deflnition 3.3 ( $[I$ , Definition 3.8]). A G-module $M$ is said to be completely cohomo-
logically trim$al$ (abbreviated as CCT) if the G-module $kM$ $:=\{km 1 m\in M\}\subset M$

is CT for every positive integer $k$ .
A CCT G-module is CT, but the converse is not true.

Example 3.4. Let $G=\langle\sigma|\sigma^{2}=1\rangle\cong \mathbb{Z}/2\mathbb{Z}$ and $M=\mathbb{Z}/8\mathbb{Z}$ a G-module where
an action of $G$ is defined by $\sigma(m)=3m$ . Then $G$ Is a CT G-module, but it is not
CCT because $\hat{H}^{0}(G, 2M)\cong \mathbb{Z}/2\mathbb{Z}$ .

To solve one problem on Rohlin actions, we need a concrete description of CCT
G-modules (see the end of Section 4). The following gives a concrete example of
CCT G-modules.
Definition 3.5. For an abelian group $V$ , let us define a G-action on an abelian
group

$V[G]$ $:= \{\sum_{h\in G}v_{h}[h]$ : $v_{h} \in V\}\cong\bigoplus_{h\in G}V$

by $g( \sum_{h\in G}v_{h}[h])=\sum_{h\in G}v_{h}[gh]$ for $g\in G$ . A G-module is said to be induced if it
is isomorphic to such a G-module $V[G]$ for some abelian group $V$ . A G-module is
said to be relatively projective if it is a direct summand of an induced G-module.

By Shapiro’s lemma, we can see that an induced G-module is CCT. Since a
dlrect summand of a CCT G-module is CCT, a relatively projective G-module is
CCT. Thus we get the following implications for G-modules:

$induced\Rightarrow relativelyprojective\Rightarrow CCT\Rightarrow CT$

It is not difficult to find relatively projective G-modules which are not induced.
However, the difference between relatIvely projective G-modules and CCT G-modules
is more subtle, and we need detailed analysis to find CCT G-modules which are not
relatively projective. The following gives various characterization of relatively pro-
jective G-modules. Note that for G-modules $M,$ $N$ , the G-action on the abelian
group $Hom(M, N)$ of $aU$ homomorphisms from $M$ to $N$ is defined by $(g\varphi)(m)=$

$g(\varphi(g^{-1}m))$ for $g\in G,$ $\varphi\in Hom(M, N)$ and $m\in M$ .

37



Theorem 3.6 ([K3]). For a G-module $M$ , the following conditions are equivalent:

(i) $M$ is relatively projective.

(ii) For every G-module $N,$ $Hom(M, N)$ is relatively project\’ive.

(iii) For every G-module $N,$ $Hom(M, N)$ is $CCT$.

(iv) For every G-module $N,$ $Hom(M, N)$ is $CT$.
(ii)’ For every G-module $N,$ $Hom(N, M)$ is relatively projective.

(iii)’ For every G-module $N,$ $Hom(N, M)$ is $CCT$.

(iv)‘ For every G-module $N,$ $Hom(N, M)$ is $CT$.

(ii)” $Hom(M, M)$ is relatively projective.

(iii)” $Hom(M, M)$ is $CCT$.
(iv)” $Hom(M, M)$ is $CT$.
(v) $\hat{H}^{0}(G, Hom(M, M))=0$ .

(vi) For every G-module $F$ , all $su\dot{\eta}ective$ G-equivariant homomomphism $Farrow M$

splitting as abelian groups has a G-equivari,ant splitting.

Note that the condition (vi) is close to the original definition of relatively projec-
tive G-modules, or more precisely $(\mathbb{Z}G, \mathbb{Z})$-relatively projective modules (see [H]).

Using this theorem, we can find an example of a CCT G-module which is not
relatively projective.

Example 3.7. Let $G=\langle\sigma|\sigma^{2}=1\rangle\cong \mathbb{Z}/2\mathbb{Z}$ and $M=\mathbb{Z}[1/3]\oplus \mathbb{Z}$ a G-module where
an actim of $G$ is defined by $\sigma((x, y))=(x+y, -y)$ . Then $M$ is a torsion-free CT
G-module, and hence a CCT G-module. We can check that $\hat{H}^{0}(G, Hom(M, M))\underline{\simeq}$

$\mathbb{Z}/2\mathbb{Z}$ . Hence $M$ is not relatively projective by Theore$m3.6$ .

The main theorem of this section is several characterization of CCT G-modules.
To get a similar result as Proposition 3.2 for CCT G-modules, we need the fofowing
notion.

Definition 3.8. A short exact sequence $0arrow M_{1}arrow M_{2}arrow M_{3}arrow 0$ of abelian
groups is said to be pure if for all positive integer $k$ the sequence $0arrow kM_{1}arrow$

$kM_{2}arrow kM_{3}arrow 0$ is exact.

Recall that a subgroup $N$ of an abelian group $M$ is said to be pure lf for all
positive integer $k$ we have $N\cap kM=kN$ . We can see that $N$ is a pure subgroup of
$M$ if and only if the short exact sequence $0arrow Narrow Marrow M/Narrow 0$ is pure. We
can also see that if two of the three G-modules in a G-equivariant pure short exact
sequence $0arrow M_{1}arrow M_{2}arrow M_{3}arrow 0$ are CCT then the rest is CCT.
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Theorem 3.9 ( $[I$ , K3]). For a G-module $M$ , the following are equivalent:

(i) $M$ is $CCT$.
(ii) There exists a G-equivari ant pure short exact sequence $0arrow P’arrow Parrow Marrow 0$

such that $P$ and $P’$ are relatively projective G-modules.
(iii) For every finitely generated G-module $N_{f}Hom(N, M)$ is $CCT$.
(iv) For every finitely generated G-module $N,$ $Hom(N, M)$ is $CT$.
(v) For every finitely generated G-module $N_{f}\hat{H}^{0}(G, Hom(N, M))=0$ .
(vi) For every finitely generated G-module $N_{f}$ every G-equivariant homomo$7phism$

$\varphi:Narrow M$ factors through a finitely generated induced module.
(vii) $M$ is isomorphic to an inductive limit of finitely generated induced modules.

Note that the equivalence (1) $\Leftrightarrow(ii)$ is an analogue of Proposition 3.2, and
the implication $(i)\Rightarrow(vll)$ gives a concrete description of CCT G-modules. This
implication was proved and used in $C^{*}$-algebra theory by Izumi (see Theorem 4.20).

4 $C^{*}$-algebras, K-theory and group actions
In this section, we give definitions of $C^{*}$-algebras and their K-groups, and discuss
how we get problems on modules over finite groups from problems on group actIons
on $C^{*}$-algebras. For precise definitions, properties and examples of $C^{*}$-algebras and
K-theory, see [RLL] or [W] for example. All linear spaces are over the complex
numbers field $\mathbb{C}$ .

Definition 4.1. For alinear space $\mathcal{A}$ , a map $\mathcal{A}\ni a\mapsto a^{*}\in \mathcal{A}$ is called an involution
if it satisfies

$(a+b)^{*}=a^{*}+b^{*}$ , $(\lambda a)^{*}=\overline{\lambda}a^{*}$ , $(a^{*})^{*}=a$

for $a,$ $b\in \mathcal{A}$ and $\lambda\in \mathbb{C}$ .

Definition 4.2. A C’-algebra is a Banach space with respect to a norm $||$ . Il and
simultaneously an algebra with an involution $\mathcal{A}\ni arightarrow a^{*}\in A$ such that

$\Vert ab||\leq||a\Vert\cdot||b\Vert$ , (ab)* $=b^{*}a^{*}$ , $||a^{*}a\Vert=||a||^{2}$

for $a,$ $b\in A$ .

The condition 11 $a^{*}a\Vert=\Vert a\Vert^{2}$ is called the $C^{*}$-condition, and it implies 1I $a^{*}\Vert=||a||$

for $a\in \mathcal{A}$. Note that a $C^{*}$-algebra is not necessarily commutative nor unital.

Example 4.3. For a positive integer $n$ , the algebra $M_{n}(\mathbb{C})$ of all $n\cross n$ matrices is a
$C^{*}$-algebra with respect to the involution defined by the transpose conjugation and
the operator norm (see the next example).
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Example 4.4. Let $\mathcal{H}$ be a Hilbert space. A linear map $T:\mathcal{H}arrow \mathcal{H}$ is called a
bounded operator if its operator norm

$\Vert T||$ $:= \sup\{||T(\xi)\Vert : \xi\in \mathcal{H}, ||\xi||=1\}$

is finite. The set of all bounded operators on $\mathcal{H}$ is denoted by $B(\mathcal{H})$ which becomes
a $C^{*}$-algebra where for $T\in B(\mathcal{H}),$ $\tau*\in B(\mathcal{H})$ is defined by the unique bounded
operator satisfying $(T(\xi), \eta)=(\xi, T^{*}(\eta))$ for $\xi,$ $\eta\in \mathcal{H}$ . When $\mathcal{H}=\mathbb{C}^{n},$ $B(\mathbb{C}^{n})$ is
nothing but $M_{n}(\mathbb{C})$ .

A norm closed, $*$-invariant subalgebra of $B(\mathcal{H})$ becomes a $C^{*}$-algebra. By the
Gelfand-Naimark Theorem, every $C^{*}$-algebra is isomorphic to this type of $C^{*}$-alge-
bras.

Example 4.5. For a compact space $X$ , the algebra $C(X)$ of all complex continuous
functions on $X$ is a $C^{*}$-algebra with respect to the sup nom defined by llfll $:=$

$\sup_{x\in X}|f(x)|$ and the involution defined by $f^{*}(x)$ $:=\overline{f(x)}$ for $f\in C(X)$ and $x\in X$ .

Example 4.6. Let $X$ be a locally compact space. A continuous function $f\in C(X)$

is said to vanish at the infinity if for each $\epsilon>0$ the subset $\{x\in X : |f(x)|\geq\epsilon\}$

is compact. We denote by $C_{0}(X)$ the set of all continuous functions on $X$ vanish-
ing at the infinity. Then $C_{0}(X)$ becomes a $C^{*}$-algebra by the same operations in
Example 4.5.

We remark that $C_{0}(X)=C(X)$ for a compact space $X$ . We also remark that
$C_{0}(X)\cong\{f\in C(\tilde{X}) : f(\infty)=0\}$ where $\overline{X}=X\cup\{\infty\}$ is the one-point compactifi-
cation of a locally compact space $X$ .

Theorem 4.7 (Gelfand). By $X\mapsto C_{0}(X)$ , locally compact spaces correspond bijec-
tively to commutative $C^{*}$-algebras.

Based on this theorem, we sometimes say that a non-commutative $C^{*}$-alge-
bra is the algebra of “continuous functions” vanishing at the infinity on a “non-
commutative space”. Examples of “Non-commutative spaces” include orbit spaces
of group actions on spaces (such as $\mathbb{R}/\mathbb{Q}$ ), foliations, manifolds with singularity.
Fhrom this point of view, one may extend some theories on locally compact spaces
to non-commutative spaces or $C^{*}$-algebras. One nice such example is K-theory.

Definition 4.8. For each $C^{*}$-algebra $\mathcal{A}$, one can define abelian groups $K_{0}(\mathcal{A})$ and
$K_{1}(\mathcal{A})$ called K-groups of $\mathcal{A}$ . We denote by $K_{*}(\mathcal{A})$ the pair $(K_{0}(\mathcal{A}), K_{1}(\mathcal{A}))$ of
abelian groups.

For a commutative $C^{*}$-algebra $C_{0}(X)$ , the K-groups $K_{i}(C_{0}(X))$ coincides with
the ordinary K-groups $K^{i}(X)$ of $X$ for $i=0,1$ defined by using line bundles,
suspensions and so on.
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For $i=0,1$ , the map $\mathcal{A}\mapsto K_{i}(\mathcal{A})$ is a covariant functor from the category of
$C^{*}$-algebras to the category of abelian groups. Hence there exists a group homomor-
phism from the automorphism group $Aut(\mathcal{A})$ of a $C^{*}$-algebra $\mathcal{A}$ to the automorphism
group $Aut(K_{*}(\mathcal{A}))$ of its K-groups where

$Aut(K_{*}(\mathcal{A})):=Aut(K_{0}(\mathcal{A}))\cross Aut(K_{1}(\mathcal{A}))$.

Let us take an action of a group $G$ on a $C^{*}$-algebra $\mathcal{A}$ , which is a homomorphism
from $G$ to $Aut(\mathcal{A})$ . Then we get an action of $G$ on the K-groups $K_{0}(\mathcal{A})$ and $K_{1}(\mathcal{A})$

of $\mathcal{A}$ by composing the natural map $Aut(\mathcal{A})arrow Aut(K_{*}(\mathcal{A}))$ . Thus $K_{0}(\mathcal{A})$ and
$K_{1}(\mathcal{A})$ become G-modules.

Problem 4.9. For a group $G$ and a $C^{*}$-algebra $\mathcal{A}$ , do every actions $G\cap K_{*}(\mathcal{A})$

com$e$ from actions $G\cap \mathcal{A}$? In other words, do every homomorphisms $Garrow$

$Aut(K_{*}(\mathcal{A}))$ lift to $Garrow Aut(A)$ ?
$G$

$Aut(A)$
$e^{\prime’}arrow$ $Aut(K_{*}(\mathcal{A}))\downarrow$

This problem has a negatlve answer in general.

Example 4.10. For a positive integer $n$ , we have $K_{0}(M_{n}(\mathbb{C}))\cong \mathbb{Z}$ and $K_{1}(M_{n}(\mathbb{C}))=$

$0$ . All actions $G\cap M_{n}(\mathbb{C})$ induce the trivial action on $K_{*}(M_{n}(\mathbb{C}))\cong(\mathbb{Z}, 0)$ although
there exists a non-trlvial action of $G=\mathbb{Z}/2\mathbb{Z}$ on $K_{0}(M_{n}(\mathbb{C}))\cong \mathbb{Z}$ .

We concentrate the following class of $C^{*}$-algebras.

Definition 4.11. A Kirchberg algebra is a simple separable nuclear purely infinite
$C^{*}$-algebra satisfying the UCT.

For the definition see $[R\emptyset]$ . In many literatures including $[R\emptyset]$ , Kirchberg algebras
are not assumed to satisfy the UCT. It is an open problem that this condition is
automatically satisfied from other conditions.

Example 4.12. Let $n$ be an integer grater than 1. Then the $C^{*}$-algebra generated
by operators $S_{1},$ $S_{2},$

$\ldots,$
$S_{n}$ on a Hilbert space satisfying

$S_{1}^{*}S_{1}=S_{2}^{\cdot}S_{2}= \cdots=S_{n}^{*}S_{n}=\sum_{i=1}^{n}S_{i}S_{1}^{*}=1$

does not depend on the choices of $S_{1},$ $S_{2},$
$\ldots,$

$S_{n}$ . We denote this $C^{*}$-algebra by $O_{n}$ ,
and call a Cuntz algebm. A Cuntz algebra $\mathcal{O}_{n}$ is a Kirchberg algebra, and we have
$K_{*}(\mathcal{O}_{n})=(\mathbb{Z}/(n-1)\mathbb{Z}, 0)$ .

The propertIes on Kirchberg algebras we will use in this note can be summarized
in the following theorem.
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Theorem 4.13 (Kirchberg, Phillips, Rrdam). The correspondence $\mathcal{A}\mapsto K_{*}(\mathcal{A})=$

$(K_{0}(\mathcal{A}), K_{1}(\mathcal{A}))$ is a bijection from the class of all non-unital Kirchberg algebras
to the class of all pairs of countable abelian groups. Moreover for each non-unital
Kirchberg algebra $\mathcal{A}_{f}$ the natural homomorphism $Aut(\mathcal{A})arrow Aut(K_{*}(\mathcal{A}))$ is $su\dot{\eta}ec-$

tive.

A simllar statement holds for unital Kirchberg algebras by considering the posi-
tion of the element $[1_{A}]\in K_{0}(\mathcal{A})$ defined by the unit $1_{A}\in \mathcal{A}$ . We are not serious
about this point although in order to make statements precise we need to treat the
non-unital case and the unital case separately, and to worry about the position of
$[1_{A}]$ in the unital case.

Theorem 4.13 implies that Problem 4.9 has an affirmative answer for $G=\mathbb{Z}$ and
a Kirchberg algebra $\mathcal{A}$ . So far, no counterexample to Problem 4.9 has been known
for Kirchberg algebras $\mathcal{A}$ . From now on we only consider the case that $G$ is a finite
group and $\mathcal{A}$ is a Kirchberg algebra. The first result on this direction is due to
Benson, Kumjian and Phillips who solved Problem 4.9 affirmatively for $G=\mathbb{Z}/2\mathbb{Z}$

and Kirchberg algebras satisfying a certain condition ([BKP]). Several years after,
Spielberg extended their result to the case $G$ is a cyclic group with a prime order
and $\mathcal{A}$ is an arbitrary Kirchberg algebra ([Sp]). The following theorem extends the
two results mentioned above.

Theorem 4.14 ([K2, Theorem 3.5]). Let $G$ be a finite group all of whose Sylow
subgroups are cyclic and $\mathcal{A}$ a Kirchbe$rg$ algebra. Then every action $Gr\backslash K_{*}(A)$ lifts
to an action $G’\backslash \mathcal{A}$ .

We remark that Izumi also got a result on Problem 4.9 (see Theorem 4.20).
Theorem 4.14 is easily deduced from Theorem 2.4 and Theorem 4.16 below. We
explain how to prove Theorem 4.16. In [K2], a construction of a Kirchberg algebra
$\mathcal{O}_{A,B}$ from two matrices $A,$ $B\in M_{N}(\mathbb{Z})$ satisfying certain conditions was introduced.
Here $N$ is either a positive integer or the countable infinite cardinal $\infty$ . We consider
an element of $M_{N}(\mathbb{Z})$ as an endomorphism of the free abelian group $\mathbb{Z}^{N}$ . Take an
action of a finite group $G$ on the set $\{1, 2, \ldots, N\}$ . This induces an action $G\cap \mathbb{Z}^{N}$ .
When two endomorphisms $A,$ $B\in M_{N}(\mathbb{Z})$ of $\mathbb{Z}^{N}$ commute with this G-action, we can
define an action $G\cap \mathcal{O}_{A,B}$ . This action makes $K_{i}(\mathcal{O}_{A,B})$ G-modules for $i=0,1$ .
On the other hand, since $A,$ $B\in M_{N}(\mathbb{Z})$ are G-equivariant, the action $G\cap \mathbb{Z}^{N}$

induces actions of $G$ on

$coker(I-A)$ , $ker(I-A)$ , $coker(I-B)$ , and $ker(I-B)$ .

In this setting, we get the following.

Proposition 4.15, There exist G-equivariant isomorphisms

$K_{0}(\mathcal{O}_{A,B})\cong coker(I-A)\oplus ker(I-B)$

$K_{1}(\mathcal{O}_{A,B})\cong coker(I-B)\oplus ker(I-A)$ .
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From this computation, we can prove the following theorem.

Theorem 4.16 ([K2, Theorem 3.3]). Let $G$ be a fin\’ite group, and $\mathcal{A}$ a Kirchberg
algebm. An act\’ion $G\cap K_{*}(\mathcal{A})$ lifts to an action $G\cap \mathcal{A}$ if the induced two G-
modules $K_{0}(\mathcal{A})$ and $K_{1}(\mathcal{A})$ have permutation presentations.

Proof. Let $D_{0}\in M_{N_{0}}(\mathbb{Z})$ and $D_{1}\in M_{N_{1}}(\mathbb{Z})$ be the matrices appeared in permutation
presentations of $K_{0}(\mathcal{A})$ and $K_{1}(\mathcal{A})$ , respectively, that is, ker $D_{0}=$ ker $D_{1}=0$ ,
coker $D_{0}\cong K_{0}(\mathcal{A})$ and coker $D_{1}\cong K_{1}(\mathcal{A})$ . We may assume that $N_{0}=N_{1}$ , and
two actions $G\subset\sim\{1,2, \ldots, N_{0}\}$ and $G\cap\{1,2, \ldots, N_{1}\}$ coincide. We can also
arrange $D_{0},$ $D_{1}$ so that two matrices $A$ $:=I-D_{0}$ and $B$ $:=I-D_{1}$ satisfy the
conditions that we can define a Kirchberg algebra $\mathcal{O}_{A,B}$ . Then by Proposition 4.15
and Theorem 4.13, we get $\mathcal{O}_{A,B}\cong \mathcal{A}$ and the action $G\cap O_{A,B}$ is the desired
one. $\square$

Problem 4.9 asks the existence of a lifting $G\cap \mathcal{A}$ of a given action $G\cap K_{*}(\mathcal{A})$ .
We can ask the uniqueness of a lifting. In general cases, the uniqueness of a lifting
fails in various reasons. However, for special actions called Rohlin actions, Izumi
showed the uniqueness of lifting.

Definition 4.17 ( $[I$ , Definition 2.8]). Let $G$ be a finite group, and $\mathcal{A}$ a unital $C^{*}-$

algebra. An action $\alpha:Gr\sim \mathcal{A}$ is said to be a Rohlin action if for all $\epsilon>0$ and
all finite subset $\mathcal{F}\subset \mathcal{A}$ , there exists a partition of unity $\{e_{9}\}_{g\in G}$ of $\mathcal{A}$ such that
$||\alpha_{g}(e_{h})-e_{gh}||<\epsilon$ and $\Vert e_{g}x-xe_{g}\Vert<\epsilon$ for all $g,$ $h\in G$ and $x\in \mathcal{F}$.

Here a partition of unity $\{e_{g}\}_{g\in G}$ of $\mathcal{A}$ means that $e_{g}$ is a projection (i.e. satisfies
$e_{9}^{2}=e_{g}^{*}=e_{g})$ for every $g\in G$ , and $\sum_{g\in G}e_{g}=1_{A}$ .

Theorem 4.18 ( $[I$ , Theorem 4.2]). If two Rohlin actions of a finite group $G$ on a
unital Kirchberg algebra $\mathcal{A}$ induce conjugate actions on K-groups $K_{*}(\mathcal{A})$ , then they
are conjugate.

$Re$call that two actions $\alpha,$ $\beta:G\cap X$ are said to be conjugate if there exists
$\theta\in Aut(X)$ such that $\alpha_{9}=\theta\circ\beta_{g}\circ\theta^{-1}$ holds for all $g\in G$ .

This uniquenes$s$ theorem produces the following new existence problem.

Problem 4.19. Let $G$ be a finite group and $\mathcal{A}$ a unital Kirchberg algebra. Which
action $G\cap K_{*}(\mathcal{A})$ lifts to a Rohlin action $Gc\sim \mathcal{A}$?

Izumi solved this problem by introducing the concept of CCT G-modules.

Theorem 4.20 ( $[I$ , Corollary 5.4]). Let $G$ be a finite group and $\mathcal{A}$ a unital Kirchberg
algebra. An action $G\cap K_{*}(\mathcal{A})$ lifts to a Rohlin action $G’\backslash \mathcal{A}$ if and only if G-
modules $K_{\mathfrak{i}}(\mathcal{A})$ are CCT for $i=0,1$ .
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Note that the lifting is unique up to conjugacy by Theorem 4.18. The “only
$1f$’part was proved by combining in a very beautiful way the standard arguments
of Rohlin actions and cohomological arguments on G-modules $K_{i}(\mathcal{A})$ involving the
$(mod n)$ K-groups $K_{i}(\mathcal{A}, \mathbb{Z}/n\mathbb{Z})$ ( $[I$ , Theorem 3.3]). To get the “if” part, Izumi
showed the following two propositions using model actions for Rohlin actions and the
conjugacy argument which is used to prove the uniqueness theorem (Theorem 4.18),
respectively.

Proposition 4.21. An action $G\cap K_{*}(\mathcal{A})$ lifls to a Rohlin action $G\cap \mathcal{A}$ if G-
modules $K_{i}(\mathcal{A})$ are induced for $i=0,1$ .

Proposition 4.22. An $ac$tion $G\cap K_{*}(\mathcal{A})$ lifts to a Rohlin action $G\cap A$ if
G-modules $K_{i}(\mathcal{A})$ are inductive limits of G-modules $\{K_{i}(\mathcal{A}_{n})\}_{n=1}^{\infty}$ such that $G\cap$

$K_{*}(\mathcal{A}_{n})$ lifts to a Rohlin action $G\cap \mathcal{A}_{n}$ .
Now the “If” part of Theorem 4.20 follows from the two propositions above and

the implication $(i)\Rightarrow(vii)$ of Theorem 3.9.
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