
Time Optimal Quantum Operartion for Mixed States

Alberto Carlini,1,* Akio Hosoya,1,\dagger Tatsuhiko Koike,2,\ddagger and Yosuke Okudaira1,\S
1 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

2Department of Physics, Keio University, Yokohama, Japan
(Dated: January 26, 2007)

We formulate a variational principle for finding the time.optimal quantum evolution of mixed
states subject to a master equation, when the Hamiltonian $H$ and the Lindblad operators $L_{f}$ are
subject to certain constraints. We show that the problem can be reduced to solving first a fun-
damental equation (the “quanbum brachistochrone“) for $H(t)$ , which can be written down once the
$\infty nstraints$ are specified, and then solving the constraints and the master equation for the $L_{f}(t)s$

and the density operator $\rho(t)$ . As an application of our fomalism, we $an\Phi ticM$ solve a simple
one $qu$, bit model where the optimal Lindblad operators correspond either to a measurement or to a
decoherence process by the environment.

PACS numbers:

I. INTRODUCTION

Quantum control theory of pure states has been stud-
ied by many people (for an excellent review of the subject,
see, e.g., [1]). For the mixed state case, the master $\Re ua-$

tion in the Lindblad form has been used in [10]. A natural
problem to investigate is the optimal quantum control of
such systems. Around twenty years ago, Peirce, Dahleh
and Rabitz [2] considered a variational method to man-
ufacture a wave packet as close as possible to a target
wave packet starting from a given initial wave packet. In
our previous work we have established a general theory
based on the variational principle to find a (time) opti-
mal Hamiltonian which transforms a given initial state
to a target state [26], and to find the (time) optimal uni-
tary operation for arbitrary initial states [27] which is
more relevant for quantum computation, where the in-
put may be unknown. Recently, many works related to
time optimal quantum computation have appeared in the
literature [15-18,20-25] (for a review see, e.g., [27]). The
minimization of physical time to achieve a given unitary
transformation provides a more physical description of
the complexity of quantum algorithms.

Here we extend our previous works $[26, 27]$ on the time
optimal unitary evolution for pure quantum states and
we formulate a variational principle for the time optimal
quantum control of open systems where the dynamics is
driven by a master equation in Lindblad $[12, 13]$ form:

$\frac{d\rho}{dt}$

$:= \mathcal{L}(\rho)=-i[H,\rho]+\sum_{j}(L_{j}\rho L_{j}^{\dagger}-\frac{1}{2}\{L_{j}^{\dagger}L_{j)}\rho\}),$
$(1)$

for the density operator $\rho(t)$ , where $H(t)$ is the Hamilto-
nian, $L_{j}(t)(j=1, \ldots N^{2}-1)$ are the Lindblad operators
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and $N$ is the dimension of the Hilbert space of the systern.
The Hamiltonian represents the unitary evolution part
while the Lindblad operators express generalized $me*$
surements or decoherence processes due to the coupling
of the system with an environment. Note that $H(t)$ and
$L_{j}(t)$ are considered here as dynamical variables evolv-
ing in time, besides the usual time dependent $\rho(t)$ . The
master equation is a Markovian, i.e. zero memory evolu-
tion equation that defines a quantum mechanical semi-
group, and it can be physically realized if the interaction
between the main physical system and with the environ-
ment is weak and the interaction time is small compared
with the typical time scale of the physical system. The
Hamiltonian and the Lindblad operators are constrained
by some conditions due to physical laws or the experi-
mental set-up. E.g., a normalization $\infty nstraint$ for the
Hamiltonian is necessary because one can afford only a
finite amount of energy in experiments. The condition
on the Lindblad operators is necessary because at least
one should know the worst noise (i.e. decoherence rate)
to perform any sensible experiment.

Note that the authors of [14] also considered the prob-
lem of control in dissipative quantum dynamics in or-
der to achieve optimal purification of a quantum state,
but they worked within the standard framework of a set
of constant Lindblad operators. Furthermore, although
there should be no conceptual difficulty in extending our
work to the problem of optimal quantum control via
quantum feedback by introducing a stochastic tem in
the master equation [5, 7, 8], we will not discuss this
problem here.

The paper is organiaed as follows. In Section II we
introduce the problem by defining an action principle for
the time optimal unravelling of an open system under
the condition that the evolution is driven by a master
equation in Lindblad form and of the existence of a set
of constraints for the available Hamiltonians and Lind-
blad operators, and we derive the fundamental equations
of motion. In Section III we explicitly show how our the
ory via the example of a one-qubit system and we derive
the time optimal Hamiltonian, which generates the uni-
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tary evolution part of the density operator, and the time
optimal Lindblad operators, which can represent either
a measurement or a decoherence process by the environ-
ment. Finally, Section IV is devoted to the summary and
discussion of our results.

II. A VARIATIONAL PRINCIPLE

Let us consider the problem of making the transition
from a given initial state to a target state in the shortest
time by controlling a certain physical system. We assume
that the mixed state is governed by the master equation
(1) with the traceless Hamiltonian $H$ and the traceless
Lindblad operators $\{L_{j}\}$ . Mathematically this is a time
optimality problem for the evolution of the density $ma_{r}$.
trix $\rho(t)$ according to (1) and by controlling the Hamilto-
nian and the Lindblad operators. We assume that at least
the ‘magnitude’ of the Hamiltonian and of the Lindblad
operators is bounded. Physically this corresponds to the
fact that one can afford only a finite energy in the exper-
iment, and that a maximum level of noise is tolerated.
Besides this $no_{\mathfrak{R}^{alizati_{0}n}}$ constraint, the available op-
erations may be subject also to other constraints, which
can represent either experimental requirements (e.g., the
specifications of the apparatus in use) or theoretical con-
ditions (e.g., allowing no operations involvin$g$ three or
more qubits). The mixed state is repraeented by an N-
dimensional positive definite matrix, $\rho\in \mathcal{M}_{N}$ , whose
trace is preserved through the evolution by the master
equation. We then define the following action for the
dynamical variables $\rho(t),$ $H(t)$ and $\{L_{j}(t)\}$ .

$S= \int dt\{c(\rho, H, L_{j})+b[\sigma(\dot{\rho}-\mathcal{L}(\rho))]$

$+ \frac{1}{2}\lambda_{0}(hH^{2}-Nw^{2})+\sum_{j}\frac{1}{2}\lambda_{j}(hL_{j}^{\dagger}L_{j}-N\gamma_{j}^{2})\gamma_{2})$

where the first term gives the time duration as the cost
when we choose $c=1$ , the second term guarantees that
the quantum evolution is governed by the master equa-
tion through the Lagrange multiplier $\sigma$ , while the third
and fourth terms constrain the amplitude of the Hamilto-
nian $H$ and of the Lindblad operators $\{L_{j}\}$ through the
Lagrange multipliers $\{\gamma_{j}\}$ . The operator $\sigma$ is traceless
because the master equation does not contain the trace
part. Therefore, .Qaking variations of the action with re-
spect to $G$ and $th^{\dot{j}}e$ traceless part of $\rho$ , we obtain:

$\dot{\rho}=\mathcal{L}(\rho)$ (3)
$\dot{\sigma}=i[\sigma)H]-P[\sum_{j}(L_{j}^{\dagger}\sigma L_{j}+\tau 1\{\sigma, L_{j}^{\dagger}L_{j}\})]$ , (4)

where $P(X)=x_{-\pi}^{I}$ CE $X$ is a projection from $X\in \mathcal{M}_{N}$

to the traceless part of $X$ . Iiurthermore, variations with
respect to $H$ and $L_{j}^{\dagger}$ give

$-i[\rho, \sigma]=\lambda_{0}H$ (5)
$P(\sigma L_{j}\rho-\frac{1}{2}L_{j}\{\rho, \sigma\})=\lambda_{j}L_{j}$ . (6)

III. ONE QUBIT EXAMPLE

For a onequbit system, the equations above can be
decomposed into three dimensional vector equations by
using the Pauli baeis $\{\sigma_{x}, \sigma_{y}, \sigma_{z}\}$ . Namely, we have $\rho=$

$\frac{1}{2}+r\cdot\sigma,$ $\sigma=s\cdot\sigma,$ $H=h\cdot\sigma$ and $L_{j}=l_{j}\cdot\sigma$ where $r,$ $s$

and $h\in R^{3}$ and $l_{j}\in \mathbb{C}^{3}$ . According to this notation, the
set of equations (1), (4), (5) and (6) can be rewritten as
follows:

$?=2h \cross r+\sum_{l}(2R\epsilon((l\cdot r)l^{*})-2|l|^{2}r+ilxl\cdot)(7)$

$\dot{\epsilon}=2[hxs-\sum_{l}({\rm Re}((l\cdot\epsilon)l^{*})-|l|^{2}\epsilon)]$ (8)
$rx\epsilon=\lambda_{0}h$ (9)

$(s\cdot l_{j})r+(r\cdot l_{j})\epsilon+i\epsilon xl_{j}=\nu_{j}l_{j}$, (10)

where $v_{j};=r\cdot s+\lambda_{j}$ . When $r$ and $\epsilon$ are not parallel,
the components of the Hamiltonian $h$ are given by

$h= \pm w\frac{r\cross\epsilon}{|rx\epsilon|}$ (11)

because of the constraint Tr $H^{2}=2\omega^{2}$ . Using the master
equation (7), (8) and the eigenvalue equation (10), one
can see that

$\frac{d}{dt}(rx\epsilon)=2hx(\sigma\cdot x\epsilon)$ (12)

which, together with (9), guarantees the conservation of
the vector $rxs$ .

Components of the Lindblad operators $\{l_{j}\}$ are deter-
mined as eigenvectors of the eigenvalue equation (10)
with constraints $|l_{j}|=\gamma_{j}$ . In some instant, we can
parametrize $r$ and $s$ as

$r=r( \cos\frac{\theta}{2}e_{x}+\sin\frac{\theta}{2}e_{y})$ (13)
$\epsilon=s(coe\frac{\theta}{2}eae-\sin_{5}^{\theta}e_{y})$ (14)

where $r\cdot\epsilon=rs$ cos $\theta$ with the range $r \in[0, \int]$ and $\theta\in$

$[0, \pi]$ , and rewrIte (10) as

$[0-2rs \sin_{\theta}^{2\theta}iscoe_{E}0\mathfrak{T}-is\cos-is\sin\frac{\theta}{\int_{f}}0]l_{j}=\lambda_{j}l_{j}$ . (15)

If the initial conditions satisfy $r(O)xs(O)=0$, then
we also have $r(t)\cross\epsilon(t)=0$ because of (12), and the
components of the Lindblad operators are given by (15)
as the following constants:

$\iota_{\pm}=\frac{\gamma\pm}{\sqrt{2}}(e_{l}\pm ie_{y})$ (16)

$l_{0}=\gamma_{0}e_{z}$ , (17)

where $e_{\iota}$ is the unit vector parallel to $r$ . Since the Hamil-
tonian cannot be zero, except for the $ca\epsilon e\cdot of\omega=0$, from
(11) we see that $\lambda_{0}=0$ and $h$ is arbitrary. To get rid
of the effect of the Hamiltonian, we move to the inter-
action picture by the transformation $\rho’=U_{0}\rho U_{0}^{\dagger}$ with

37



$U_{0}(t)= \mathcal{T}\exp(-i\int H(t)dt)$ . In the new frame, the mas-
ter equation reads

$\dot{r}=\sum_{l}[2R(l\cdot r)l^{*}-2|l|^{2}r+ilxl^{*}]$
,$(i18))$

and for the initial conditions as above we have

$\dot{r}=-2(\gamma_{+}^{2}+\gamma_{-}^{2})r+(\gamma_{+}^{2}-\gamma_{-}^{2})\epsilon_{z}$ (19)

which guarantees $\dot{e}_{z}=0$ . Therefore we obtain the follow-
ing solution for the components of the density operator

$r(t)= \{\frac{(\gamma_{+}^{2}-\gamma_{-}^{2})}{2(\gamma_{+}^{2}+\gamma_{-}^{2})}+c_{e^{-2(\gamma_{*}^{2}+\gamma_{-}^{l})t}}\}e_{z}$. (20)

Choosing magnitudes of the Lindblad operators as $\gamma+=$

$\gamma_{-}$ , the state will just lose the coherence, but the $\infty her-$

ence can be recovered when magnitudes of the Lindblad
operators are different (see fig.1).

FIG. 1: Analytlcal, time optimal evolution of $\rho(t)$ in the Bloch
sphere for the case of $rxs=0$ with a constant Hamiltonian
$H=h\cdot\sigma,$ $\gamma+\neq 0,$ $\gamma_{-}=\gamma 0=0$ and $\rho(0)=(1+\sigma_{l})/2$ .
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