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Abstract
The mutual entropy (information) denotes an amount of information

transmitted correctly from the input system to the output system through
a channel. The (semi-clas$s$ ical) mutual entropies for classical input and
quantum output were defined by several researchers. The fully quantum
mutual entropy, which is called Ohya mutual entropy, for quantum input
and output by using the relative entropy was defined by Ohya in 1983.
In this paper, we compare with mutual entropy-type measures and show
some resuls for quantum capacity

1 Introduction
The development of communication $th\infty ry$ is closely connected with study of
entropy theory. The signal of the input system is carried through a physical de
vice, which is called a channel. The mathematical representation of the channel
is a mapping ffom the input state space to the output state space. In classical
communication theory, the mutual entropy was formulated by using the joint
probability distribution between the input system and the output system. The
(seni-classical) mutual entropies for classical input and quantum output were
defined by several researchers $[9, 10]$ . In fUlly quantum system, there does not
exist the joint probability distribution in goneral. Instead of the joint prob-
ability distribution, Ohya [14] invented the quantum (Ohya) compound state,
and he introduced the fully quantum mutual entropy (information), which is
caUed Ohya mutual entropy, for quantum input and output systerns, describes
the amount of information correctly sent from the quantum input system to the
quantum output system through the quantum channel.

In this paper, we compare with mutual entropy-type measures and show
some resuls for quantum capacity for the attenuation channel. $\mathcal{H}$
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2 Quantum Channels
The concept of channel has been carried out an important role in the progress
of the quantum communication $th\infty ry$. In particular, an attenuation channel
introduced in [14] is one of the most inportaint model for discussing the infor-
mation transmission in quantum optical communication. Here we review the
definition of the quantum channels.

Let $\mathcal{H}_{1},\mathcal{H}_{2}$ be the complex separable Hilbert spaces of an input and an
output systems, respectively, and let $B(\mathcal{H}_{k})$ be the set of all bounded linear
operators on $\mathcal{H}_{k}$ . We denote the set of all density operators on $\mathcal{H}_{k}$ $(k=1,2)$
by

$\mathfrak{S}(\mathcal{H}_{k})\equiv\{\rho\in B(\mathcal{H}_{k});\rho\geq 0,tr\rho=1\}$ . (1)

A map $\Lambda^{*}$ from the quantum input system to the quantum output system is
$cag_{ed}$ a (fully) quantum channel.

1. $\Lambda^{*}$ is $caUd$ a linear channel if it $s$atisfies the affine property, i.e.,

$\sum_{k}\lambda_{k}$
$=$ 1 $(\forall\lambda_{k}\geq 0)$

$\Rightarrow$ $\Lambda^{*}(\sum_{k}\lambda_{k}\rho_{k})=\sum_{k}\lambda_{k}\Lambda^{*}(\rho_{k}),\forall\rho_{k}\in \mathfrak{S}(\mathcal{H}_{1})$ .

2. $\Lambda^{*}$ : $\mathfrak{S}(\mathcal{H}_{1})arrow \mathfrak{S}(\mathcal{H}_{2})$ is called a completely positive (CP) channel
if its dual map A satisfies

$\sum_{j,k=1}^{n}B_{j}^{*}\Lambda(A_{j}^{*}A_{k})B_{k}\geq 0$ (2)

for any $n\in N$ , any $B_{j}\in B(\mathcal{H}_{1})$ and any $A_{k}\in B(\mathcal{H}_{2})$ , where the dual
map $\Lambda:B(\mathcal{H}_{2})arrow B(\mathcal{H}_{1})$ of
$\Lambda^{*}$ : $\mathfrak{S}(\mathcal{H}_{1})arrow \mathfrak{S}(\mathcal{H}_{2})$ satisfies $tr\rho\Lambda(A)=tr\Lambda^{*}(\rho)$ $A$ for any $\rho\in \mathfrak{S}(\mathcal{H}_{1})$

and any $A\in B(\mathcal{H}_{2})$ .

2.1 Quantum Communication Process
Let $\mathcal{K}_{1}$ and $\mathcal{K}_{2}$ be two Hilbert spaces expressing noise and loss systems, respec-
tively. Quantum communication process including the influence of noise and
loss is described by the quantum channel [14]:

$\Lambda^{*}(\rho)\equiv tr_{\mathcal{K}_{2}}\pi^{*}(\rho\otimes\xi)$

for any input state $\rho$ in $\mathfrak{S}(\mathcal{H}_{1})$ and a noise state $\xi$ in $\mathfrak{S}(\mathcal{K}_{1})$ , where the map
$\pi^{*}$ is a CP channel from $\mathfrak{S}(\mathcal{H}_{1}\otimes \mathcal{K}_{1})$ to $\mathfrak{S}(\mathcal{H}_{2}\otimes \mathcal{K}_{2})$ determined by physical
properties of the communication device.
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3Ohya Mutual Entropy and Capacity
The quantum entropy was introduced by von Neumann around 1932 [13], which
is defined by

$S(\rho)\equiv-trp$ log $\rho$

for any density operators $\rho$ in $S(\mathcal{H}_{1})$ . It denotes the amount of information of
the quantum state $\rho$ .

In order to define such a quantum mutual entropy, we need the quantum
relative entropy and the joint state, which is called a compound state, describing
the correlation between an input state $\rho$ and the output state $\Lambda^{*}\rho$ through a
channel $\Lambda^{*}$ . For a state $\rho\in \mathfrak{S}(\mathcal{H}_{1})$ ,

$\rho=\Sigma_{k}\lambda_{k}E_{k}$ , (3)

is called a Schatten decomposition [24] of $\rho$ , where $E_{k}$ is the $on\triangleright d\dot{m}$ensional
orthogonal projection associated with $\lambda_{k}$ . The Schatten decomposition is not
unique usually depending on a degeneracy of the eigenvalue of p.For $\rho\in \mathfrak{S}(\mathcal{H}_{1})$

and $\Lambda^{*}$ : $\mathfrak{S}(\mathcal{H}_{\sim}\backslash )arrow \mathfrak{S}(\mathcal{H}_{2})$ , the compound states are define by

$\sigma_{E}=\sum_{n}\lambda_{n}E_{n}\otimes\Lambda^{*}E_{n}$
, $\sigma_{0}=\varphi\otimes\Lambda^{*}\varphi$ . (4)

The first compound state is called a Ohya compund state associating with the
Schatten docomposition $\rho=\Sigma_{k}\lambda_{k}E_{k}$ , which generalizes the joint probability in
classical dynamical system and it shows a certain correlation between the initial
state $\rho$ and the final state $\Lambda^{*}\rho$ .

Ohya mutual entropy with respect to $\rho$ and $\Lambda^{*}$ is defined by

$I( \rho;\Lambda^{*})\equiv\sup\{S(\sigma_{E},\sigma_{0});E=\{E_{n}\}\}$ , (5)

where $S(\sigma_{E}, \sigma_{0})$ is Umegaki’s relative entropy [25]. $I(\rho;\Lambda^{*})$ satisfies the Shan-
non’s type inequality :

$0 \leq I(\rho, \Lambda^{*})\leq\min\{S(\rho),S(\Lambda^{*}\rho)\}$ .

3.1 Quantum Capacity
The capacity means the ability of the information transmission of the channel,
which is used as a measure for construction of channels. The quantum capacity
is formulated by taking the supremum of the Ohya mutual entropy with respect
to a certain subset of the initial state space. The capacity of quantum channel
was studied in [17, 18, 19, 20].

Let $S$ be the set of all input states $satis\theta ing$ some physical conditions. Let
us consider the ability of information transmission for the quantum channel $\Lambda^{*}$ .
The answer of this question is the capacity of quantum channel $\Lambda^{*}$ for a certain
set $S\subset S(\mathcal{H}_{1})$ defined by

$C_{q}^{S}( \Lambda^{*})\equiv\sup\{I(p;\Lambda^{*});p\in S\}$ . (6)

When $S=S(\mathcal{H}_{1})$ , the capacity of quantum channel $\Lambda^{*}$ is denoted by $C_{q}(\Lambda$
“

$)$ .
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4 Quantum Entropy for Quantum Communica-
tion Channels

4.1 Attenuation channel
One of the example of the quantum communication channels is the attenuation
channel $\Lambda_{0}^{*}$ introduced by Ohya [14], which is defined by

$\Lambda_{0}^{*}(p)$ iii $tr_{\mathcal{K}_{2}}\pi_{0}^{*}(p\otimes\xi_{0})$ , $\xi_{0}\equiv|0\rangle$ \langle$0|$ and $\pi_{0}^{*}(\cdot)\equiv V_{0}(\cdot)V_{0}^{l}$ , (7)

where $|0\rangle$ $\langle 0|$ is vacuum state in $\mathcal{H}_{1}$ and $V_{0}$ is a linear mapping &om $\mathcal{H}_{1}\otimes \mathcal{K}_{1}$ to
$\mathcal{H}_{2}\otimes \mathcal{K}_{2}$ given by

$V_{0}(|n \rangle\otimes|0\rangle)\equiv\sum_{j=0}^{n}\sqrt{\frac{n!}{j!(n-j)!}}\alpha^{j}\overline{\beta}^{n-j}|j\rangle\otimes|n-j\rangle$ (8)

for any $|n\rangle$ in $\mathcal{H}_{1}$ and $\alpha,\beta$ are complex numbers $satis\theta ing|\alpha|^{2}+|\beta|^{2}=1$ . $\eta=$

$|\alpha|^{2}$ , which is the transmission rate of the channel. $\pi_{0}^{*}$ is called a beam splittings,
which means that one beam comes and two beams appear after passing through
$\pi_{0}^{*}$ . The attenuation channel is generalized by the noisy optical channel $[20, 21]$ ,
which is also reformulated by Accardi and Ohya [1] using the liftinge. The
noisy optical channel consists of the generaliezed beam splittings $\pi^{*}$ , which was
extended on generalized Fock space by Fichtner, Freudenberg and Libsher [6]
by means of the concept of compound Hida-Malliavin derivative [8] and so on.

For the attenuation channel $\Lambda_{0}^{*}$ , one can obtain the following theorem proved
in [22].

Theorem 1 For a subset $S_{n}\equiv$ {$\rho\in S(\mathcal{H}_{1})$ ; dim 8 ($\rho)=n$}, the capacity of the
auenmtion channel $\Lambda_{0}^{*}$ satisfies

$C_{q}^{S_{n}}(\Lambda_{0}^{*})=\log n$ ,

where $s(\rho)$ is the support $p$rojection of $\rho$ .

When the mean energy of the input state vectors $\{|\tau\theta_{k}\rangle\}$ can be taken
infinite, i.e., $\lim_{\tauarrow\infty}|\tau\theta_{k}|^{2}=\infty$, the above $th\infty rem$ tells that the quantum
capacity for the attenuation channel $\Lambda_{0}^{*}$ with respect to $S_{n}$ becomes log $n$ . It is
a natural result, however it is impossible to take the mean energy of input state
vector infinite.

4.2 Quantum Teleportation Channel
In usual quantum communication processes, quantum states are transmitted
from input system to an output system through a channel. Since the channel
representing a physical apparatus is affected by outside system, the final state
sent through the channel is different from the $\dot{i}$itial state. On the contrary, in
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telePortation scheme, a particle is not transmitted from Alice’s system to Bob’s
system, but one can reconstruct the initial state by means of the entangled
state located at Bob’s system. Bennett et al. $[2, 3]$ proposed a state change,
so-called a quantum teleportation, in terms of EPR entangled state denoted
by Bell’s base. It is difficult to realize such telePortation scheme because the
EPR entangled state dissipates easily. In order to avoid this demerit, Ohya td
Fichtner $[4, 5]$ introduced a new teleportation scheme on boson-Fock space by
means of the entangled coherent states and the general beam splitting.

In perfect quantum telePortation scheme, the total Process of the quantum
teleportation is consist of three systems denoted by the complex 正駈 lbert spaces
$\mathcal{H}_{1},$ $\mathcal{H}_{2},$ $\mathcal{H}_{3}$ . Alice controls $\mathcal{H}_{1},\mathcal{H}_{2}$ and Bob treats $\mathcal{H}_{3}$ . Alice has an unknown
initial state $\rho^{(1)}\in \mathfrak{S}(\mathcal{H}_{1})$ and she teleports it to Bob by using an entangled
state $\sigma^{(23)}\in \mathfrak{S}(\mathcal{H}_{2}\otimes \mathcal{H}_{3})$ belonging to Alice and Bob. At first, Alice measures
for the Part of $\mathcal{H}_{1}\otimes \mathcal{H}_{2}$ in the state $\rho^{(1)}\otimes\sigma^{(23)}$ by means of an observable $F^{(12)}\equiv$

$\sum_{l,m}z_{lm}F_{lm}^{(12)}\in \mathbb{B}(\mathcal{H}_{1}\otimes \mathcal{H}_{2})$ , where $\{p_{lm}^{(12)}\}$ is a set of orthogonal projections

$F_{lm}^{(12)}\in \mathbb{B}(\mathcal{H}_{1}\otimes \mathcal{H}_{2})$ . If Alice obtains a vaIue $z_{lm}$ after measurement, then the
state $\rho^{(1)}\otimes\sigma^{(23)}$ is changed to

$\rho_{lm}^{(123)}=\frac{(F_{lm}^{(12)}\otimes I_{3})(p^{(1)}\otimes\sigma^{(23)})(F_{lm}^{(12)}\otimes I_{\partial})}{tr_{12}s(F_{lm}^{(12)}\otimes I_{3})(\rho^{(1)}\otimes\sigma^{(23)})(F_{lm}^{(12)}\copyright I_{3})}$ . (9)

Alice send the result $z_{lm}$ of the measurement to Bob through a classical com-
munication channel. Bob reconstructs the unknown initial state $\rho^{(1)}$ from
$\Lambda_{lm}^{*}(\rho^{(1)})\equiv tr_{12}p_{lm}^{(123)}\in \mathfrak{S}(\mathcal{H}_{3})$ by applying a unitary key $U_{lm}$ created by the
value $z_{lm}$ received ffom Alice. The total process of the perfect teleportation
scheme is described by

$\rho^{(1)}\cong U_{lm}(\Lambda_{lm}^{*}(\rho^{(1)}))U_{lm}^{*}$. (10)

In the perfect teleportation scheme, Bob can reconstruct the unknown initial
state $\rho^{(1)}$ by applying the unitary key once. On the contrary, in the non-perfect
teleportation scheme, Bob can obtain the unknown initial state $\rho^{(1)}$ by applying
the unitary operator $V_{nm}$ more than twice. Applying the unitary operator $V_{nm}$

once to the state $\Lambda_{nm}^{l}(p^{(1)})$ , the state change of the non-perfect teleportation
scheme is denoted by

$—*nm(\rho^{(1)})\equiv V_{nm}\Lambda_{nm}^{*}(\rho^{(1)})V_{nm}^{*}$ . (11)

For the perfect teeportation, we have the following theorem [11]:

Theorem 2 If the perfect teleportation channel is lnear and the input state $\rho^{(1)}$

is finite rank operator, then one can obtain

$I(\rho^{(1)},\Lambda_{T}^{*})=S(\rho^{(1)})$

for
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4.3 Quantum channel for $Ekedkin-Toffoli$-Milburn gate
In usual computer, we could not determine two inputs for the logical gates AND
and OR after we know the output for these gates. This property is called an
irreversibility of logical gate. This property leads to the loss of information and
the heat generation. Thus there exists an upper bound of computational speed.

Fredkin and Toffoli proposed a conservative gate, by which any logical gate
is realized and it is shown to be a reversible gate in the sense that there is no loss
of information. This gate was developed by Milburn as a quantum gate with
quantum input and output. We call this gate Redkin-Toffoli-Milburn (FTM)
gate. Recently, we reformulate a quantum channel for the FTM gate and we
rigorously study the conservation of information for FTM gate [23].

The FTM gate is composed of two input gates $I_{1},$ $I_{2}$ and one control gate
C. Two inputs come to the first beam splitter and one spliting input passes
$throug_{1}$ the control gate made from an optical Kerr device, then two spliting
inputs come in the second beam splitter and appear as two outputs (Fig.2.1).
Two beam splitters and the optical Kerr medium are needed to describe the
gate.

$I_{l}$ $0$

$F$

h) Beam splitters: (a) Based on [19], let $V_{1}$ be a mapping from $\mathcal{H}_{1}\otimes \mathcal{H}_{2}$ to
$\mathcal{H}_{1}\otimes \mathcal{H}_{2}$ with transmission rate $\eta_{1}$ given by

$V_{1}(|n_{1} \rangle\otimes|n_{2}\rangle)\equiv\sum_{j=0}^{n_{1}+n_{3}}C_{j}^{n_{1},n_{2}}|j\rangle\otimes|n_{1}+n_{2}-j\rangle$ (12)

for any photon number state vectors $|n_{1}\rangle$ $\otimes|n_{2}\rangle$ $\in \mathcal{H}_{1}\otimes \mathcal{H}_{2}$ . The quantum
channel $\Pi_{BS1}^{*}$ expressing the first beam splitter (beam splitter 1) is defined by
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$\Pi_{BS1}^{*}(\rho_{1}\otimes p_{2})\equiv V_{1}(\rho_{1}\otimes p_{2})V_{1}^{*}$ (13)

for any states $\rho_{1}\otimes\rho_{2}\in \mathfrak{S}(\mathcal{H}_{1}\otimes \mathcal{H}_{2})$ . In particular, for an input state in two
gates $I_{1}$ and $I_{2}$ given by the tensor product of two coherent states $\rho_{1}\otimes p_{2}=$

$|\theta_{1}\rangle\langle\theta_{1}|\otimes|\theta_{2}\rangle\langle\theta_{2}|,$ $\Pi_{BS1}^{*}(p_{1}\otimes\rho_{2})$ is written as

$\Pi_{BS1}^{*}(p_{1}\otimes\rho_{2})$

$|\sqrt{\eta_{1}}\theta_{1}+\sqrt{1-\eta_{1}}\theta_{2}\rangle\langle\sqrt{\eta_{1}}\theta_{1}+\sqrt{1-\eta_{1}}\theta_{2}|$

$\otimes|-\sqrt{1-\eta_{1}}\theta_{1}+\sqrt{\eta_{1}}\theta_{2}\rangle\langle-\sqrt{1-\eta_{1}}\theta_{1}+\sqrt{\eta_{1}}\theta_{2}|$ . (14)

(b) Let $V_{2}$ be a mapping $hom\mathcal{H}_{1}\otimes \mathcal{H}_{2}$ to $\mathcal{H}_{1}\otimes \mathcal{H}_{2}$ with transmission rate $\eta_{2}$

$\dot{g}ven$ by

$V_{2}(|n_{1} \rangle\otimes|n_{2}\rangle)\equiv\sum_{j=0}^{n_{1}+n_{2}}C_{j}^{n_{2},n\iota}|n_{1}+n_{2}-j\rangle\otimes|j\rangle$ (15)

for any photon number state vectors $|n_{1}\rangle$ $\otimes|n_{2}\rangle$ $\in \mathcal{H}_{1}\otimes \mathcal{H}_{2}$ . The quantum
channel $\Pi_{BS2}^{*}$ expressing the second beam splitter (beam splitter 2) is defined
by

$\Pi_{BS2}^{*}(p_{1}\otimes p_{2})\equiv V_{2}(p_{1}\otimes\rho_{2})V_{2}^{*}$ (16)

for any states $\rho_{1}\otimes\rho_{2}\in \mathfrak{S}(\mathcal{H}_{1}\otimes \mathcal{H}_{2})$ . In particular, for coherent input states
$p_{1}\otimes\rho_{2}=|\theta_{1}\rangle\langle\theta_{1}|\otimes|\theta_{2}\rangle\langle\theta_{2}|,$ $\Pi_{BS2}^{*}(\rho_{1}\otimes\rho_{2})$ is written as

$\Pi_{BS2}^{*}(\rho_{1}\otimes p_{2})$ $=$ $|\sqrt{\eta_{2}}\theta_{1}-\sqrt{1-\eta_{2}}\theta_{2}\rangle\langle\sqrt{\eta_{2}}\theta_{1}-\sqrt{1-\eta_{2}}\theta_{2}|$

$\otimes|\sqrt{1-\eta_{2}}\theta_{1}+\sqrt{\eta_{2}}\theta_{2}\rangle\langle\sqrt{1-\eta_{2}}\theta_{1}+\sqrt{\eta_{2}}\theta_{2}|$ . (17)

(2) Optical Kerr medium: The interaction Hamiltonian in the optical Kerr
medium is given by the number operators $N_{1}$ and $N_{c}$ for the input system 1
and the Kerr medium, respectively, such as

$H_{int}=\hslash\chi(N_{1}\otimes I_{2}\otimes N_{a})$ , (18)

where $\hslash$ is the Plank constant divided by $2\pi,$ $\chi$ is a constant proportional to the
susceptibility of the Kerr medium and $I_{2}$ is the identity operator on $\mathcal{H}_{2}$ . Let $T$

be the passing time of a beam through the Kerr medium and put $\sqrt{F}=\hslash\chi T$,
a parameter exhibiting the power of the Kerr effect. Then the unitary operator
$U_{K}$ describing the evolution for time $T$ in the Kerr medium is given by

$U_{K}=\exp(-i\sqrt{F}(N_{1}\otimes I_{2}\otimes N_{c}))$ . (19)
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We assume that an initial (input) state of the control gate is the $n$ photon
number state $\xi=|n\rangle$ \langle$n|$ , a quantum channel $\Lambda_{K}^{*}$ representing the optical Kerr
effect is given by

$\Lambda_{K}^{*}(p_{1}\otimes p_{2}\otimes\xi)\equiv U_{K}(p_{1}\otimes p_{2}\otimes\xi)U_{K}^{l}$ (20)

for any state $p_{1}\otimes\rho_{2}\otimes\xi\in \mathfrak{S}(\mathcal{H}_{1}\otimes \mathcal{H}_{2}\otimes \mathcal{K})$ . In particular, for an initial state
$p_{1}\otimes p_{2}\otimes\xi=|\theta_{1}\rangle\langle\theta_{1}|\otimes|\theta_{2}\rangle\langle\theta_{2}|\otimes|n\rangle\langle n|,$ $\Lambda_{K}^{*}(\rho_{1}\otimes p_{2}\otimes\xi)$ is denoted by

$\Lambda_{K}^{*}(p_{1}\otimes\rho_{2}\otimes\xi)$

$|$ exp $(-i\sqrt{F}n)\theta 1\rangle\langle$ exp $(-i\sqrt{F}n)\theta 1|$

$\otimes|\theta_{2}\rangle\langle\theta_{2}|\otimes|n\rangle\langle n|$ , (21)

Using the above channels, the quantum channel for the whole FTM gate is
constructed as follows: Let both one input and output gates be described by
$\mathcal{H}_{1}$ , another input and output gatos be described by $\mathcal{H}_{2}$ and the control gate
be done by $\mathcal{K}$ , all of which are Fock spaces. For a total state $\rho_{1}\otimes\rho_{2}\otimes\xi$ of
two input states and a control state, the quantum channels $\Lambda_{BS1}^{*},$ $\Lambda_{BS2}^{*}$ from
$\mathfrak{S}(\mathcal{H}_{1}\otimes \mathcal{H}_{2}\otimes \mathcal{K})$ to $\mathfrak{S}(\mathcal{H}_{1}\otimes \mathcal{H}_{2}\otimes \mathcal{K})$ are written by

$\Lambda_{BSk}^{*}(p_{1}\otimes\rho_{2}\otimes\xi)=\Pi_{BSk}^{*}(\rho_{1}\otimes\rho_{2})\otimes\xi$ $(k=1,2)$ (22)

Therefore, the whole quantum channel $\Lambda_{FTM}^{*}$ of the FTM gate is defined by

$\Lambda_{FTM}^{*}\equiv\Lambda_{BS2}^{l}0\Lambda_{K}^{*}0\Lambda_{BS1}^{*}$ . (23)

In particular, for an initial state $p_{1}\otimes\rho_{2}\otimes\xi=|\theta_{1}\rangle$ $\langle\theta_{1}|\otimes|\theta_{2}\rangle\langle\theta_{2}|\otimes|n\rangle\langle n|$,
$\Lambda_{FTM}^{*}(\rho_{1}\otimes p_{2}\otimes\xi)$ is obtained by

$\Lambda_{FTM}^{*}(\rho_{1}\otimes\rho_{2}\otimes\xi)$

$=$ $|\mu_{n}\theta_{1}+\nu_{n}\theta_{2}\rangle$ $\langle\mu_{n}\theta_{1}+\nu_{n}\theta_{2}|$

$\otimes|\nu_{n}\theta_{1}+\mu_{n}\theta_{2}\rangle(\nu_{n}\theta_{1}+\mu_{n}\theta_{2}|\otimes|n\rangle$ \langle$n|$ (24)

where

$\mu_{n}$ $=$ $\frac{1}{2}\{\exp(-i\sqrt{F}n)+1\}$ , (25)

$\nu_{n}$ $=$ $\frac{1}{2}\{\exp(-i\sqrt{F}n)-1\}$ , $(k=0,1,2, \cdots)$ . (26)

Then we obtain the following $th\infty rem$ :

$Th\infty rem3$ If $\sqrt{F}$ satisfies the conditions $\sqrt{F}n=0$ or $\sqrt{F}n=(2m+1)\pi$

$(m=0,1,2, \cdots)$ , then one can obtain

$I(\rho_{1}\otimes\rho_{2},\tilde{\Lambda}_{FTM}^{*})=S(\rho_{1})+S(\rho_{2})$
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for input states $p_{1}\otimes\rho_{2}$ given by

$\rho_{i}=\lambda_{i}|0\rangle\langle 0|+(1-\lambda_{i})|x_{i}\rangle\langle x_{i}|\in \mathfrak{S}(\mathcal{H}_{i})$ , $\lambda_{i}\in[0,1]$ , $(i=1,2)$ ,

where $|x_{i}\rangle$ is defined by

$|x_{i} \rangle=\frac{|\theta_{i}\rangle-|-\theta_{i}\rangle}{\sqrt{2(1+\exp(-\frac{1}{2}|\theta_{i}|^{2}))}}$

.
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