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1. PROBLEMS AND RESULTS

Throughout this paper, let $G$ be a finite group. A real G-representation of finite
dimension is meant by a real G-module, a smooth manifold is meant by a manifold,

and a smooth G-manifold is meant by a G-manifold. For a G-manifold $X$ , let $\mathcal{T}\mathcal{R}(X)$

denote the set of all isomorphism classes (as real G-modules) of tangential representations
$T_{x}(X)$ , where $x$ runs over the G-fixed point set $X^{G}$ . We are interested in $\mathcal{T}\mathcal{R}(X)$ for
manifolds $X$ such that $X^{G}$ consists of exactly two points. In particular, the case where
$X$ are homotopy spheres has been studied as Smith Problem.

Smith Problem. Let $\Sigma$ be a homotopy sphere with G-action such that the G-fixed
point set consists of exactly two points $a,$ $b$ . Are the tangential representations $T_{a}(\Sigma)$

and $T_{b}(\Sigma)$ isomorphic to each other (namely $|\mathcal{T}\mathcal{R}(\Sigma)|=1$) ?

We have affirmative answers (e.g. Atiyah-Bott, Milnor, Sanchez) as well as negative

answers (e.g. Petrie, Cappell-Shaneson, Petrie-R,andall, Petrie-Dovermann, Dovermann-
Washington, Dovermann-Suh, Laitinen-Pawalowski, Pawalowski-Solomon), to Smith Prob-

lem under various hypotheses. There are surveys relevant to studies on Smith Problem
in [24], [18] and [6].

To study the problem, we define the following relations $\sim\emptyset,$ $\sim e$ and $\sim\emptyset \mathfrak{S}$ . In the

definition below, $V$ and $W$ are real G-modules.

(1) $V\sim DW$ if there exists a disk $D$ with G-action such that $D^{G}=\{a, b\}$ and
$\{[V], [W]\}=\mathcal{T}\mathcal{R}(D)$ .

(2) $V\sim \mathfrak{S}W$ if there exists a homotopy sphere $\Sigma$ with G-action such that $\Sigma^{G}=\{a, b\}$

and $\{[V], [W]\}=\mathcal{T}\mathcal{R}(\Sigma)$ .
(3) $V\sim DSW$ if $V\sim\otimes W$ and $V\sim e^{W}$ .
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$Here\sim oand\sim \mathfrak{D}\mathfrak{S}$ may not be equivalence relations, although they stably yield equiva-

lence relations. We have been interested in the $relation\sim \mathfrak{S}$ (namely the Smith equiva-
lence), but in the present paper we will mainly pay our attention to the $relation\sim \mathfrak{D}\mathfrak{S}$ .

Let $RO(G)$ denote the real representation ring. We define the subsets $\mathfrak{D}(G),$ $\mathfrak{S}(G)$

and $\mathfrak{D}\mathfrak{S}(G)$ of RO $(G)$ by
$\mathfrak{D}(G)=\{V-W\in RO(G)|V\sim \mathfrak{D}W\}$

$\mathfrak{S}(G)=\{V-W\in RO(G)|V\sim \mathfrak{S}W\}$

$\mathfrak{D}\mathfrak{S}(G)=\mathfrak{D}(G)\cap \mathfrak{S}(G)$

The set $\mathfrak{S}(G)$ was usually denoted by $Sm(G)$ . By R. Oliver [16], there exists a disk with
G-action with $|D^{G}|=2$ if and only if $G$ is an Oliver group (namely, $G$ is not a mod
$\mathcal{P}$ hyperelementary group). Thus it is worthwhile to study $\mathfrak{D}(G)$ and $\mathfrak{D}\mathfrak{S}(G)$ only for
Oliver groups $G$ .

If $M$ is a subset of $RO(G)$ then for families $\mathcal{A},$ $\mathcal{B}$ consisting of subgroups of $G$ we
define

$\Lambda I_{A}^{def}=\{x\in M|res_{H}^{G}x=0\forall H\in \mathcal{A}\}$

$M^{\mathcal{B}^{def}}=\{x=V-W\in M|V^{K}=0=W^{K}\forall K\in \mathcal{B}\}$

$A’I_{A}^{\mathcal{B}^{de}f}=\{x=V-W\in M_{A}|V^{K}=0=W^{K}\forall K\in \mathcal{B}\}$ .
Using the notation with the families

$\mathcal{P}=\mathcal{P}(G)^{def}=$ { $P\leq G||P|=p^{a}(p$ a prime)}

$\mathcal{N}_{2}=\mathcal{N}_{2}(G)^{def}=\{N\underline{\triangleleft}G||G/N|=1,2\}$

$\mathcal{N}=\mathcal{N}(G)^{def}=$ { $N\underline{\triangleleft}G||G/N|=1$ or a prime}
$\mathcal{L}=\mathcal{L}(G)^{def}=$ { $L\leq G|L\supseteq G^{\{p\}}$ for some prime $p$},

we study the subsets $\mathfrak{D}(G),$ $\mathfrak{S}(G)$ and $\mathfrak{D}\mathfrak{S}(G)$ of $RO(G)$ . Here the group $G^{\{p\}}$ is the

smallest normal subgroup of $G$ with prime power index, namely

$G^{\{p\}}=$ $\cap$ $H$.
$H\underline{\triangleleft}G:|G/H|=p^{a}$ for some $a$

An element in $\mathcal{L}$ defined above is called a large $su$bgroup of $G$ .
Many authors (e.g. Petrie-Randall, Petrie-Dovermann, Dovermann-Washington,

Dovermann-Suh, Laitinen-Pawalowski, Pawalowski-Solomon) found various pairs (V, $W$)

of nonisomorphic $\mathfrak{D}\mathfrak{S}$-related real G-modules $V,$ $W$ . But their (V, $W$) with $V\sim\emptyset \mathfrak{S}W$

satisfy $I^{rN}=0=W^{N}$ for all $N\triangleleft G$ with prime index. In other words, they showed

$\mathfrak{D}\mathfrak{S}(G)^{\mathcal{N}}\neq 0$

53



for various $G$ . Now we recall the next proposition.

Proposition 1 ([12], [13]). The implications $\mathfrak{S}(G)\subseteq RO(G)_{Q}^{N_{2}}$ and $\mathfrak{D}\mathfrak{S}(G)\subseteq$

$RO(G)_{P}^{N_{2}}$ hold.

These facts motivate us to study the following problem.

Problem A. Does there exist a finite group $G$ satisfying $\mathfrak{D}\mathfrak{S}(G)\neq \mathfrak{D}\mathfrak{S}(G)^{N}$ ?

The notion gap module is convenient to study this problem as well as Smith Problem.
A real G-module $V$ is called a gap module if it satisfies the following conditions.

(1) $V^{L}=0$ for all $L\in \mathcal{L}(G)$ .
(2) dim $V^{P}>$ dim $V^{H}$ for all pairs $(P, H)$ of subgroups of $G$ such that $P\in \mathcal{P}(G)$

and $H>P$ .
A finite group $G$ is called a gap group if $G$ admits a gap real G-module. Pawalowski-
Solomon showed in [18] that for an arbitrary nonsolvable gap group $G$ with $a_{G}\geq 2$ and
$G\not\cong P\Sigma L(2,27)$ ,

$\mathfrak{D}\mathfrak{S}(G)\supseteq RO(G)_{P}^{\mathcal{L}}\neq 0$ .
Since the appearance of this result, the next problem has been asked.

Problem B. Are the sets $\mathfrak{S}(G)$ and $\mathfrak{D}\mathfrak{S}(G)$ nontrivial in the case $G=P\Sigma L(2,27)$ ?

The purpose of the present paper is to answer to Problems A and $B$ , and we obtained
the following results.

Theorem 2. For each odd prime $p$, there exist a gap Oliver group $G$ and real G-modules
$V$ and $W$ such that $V\sim \mathfrak{D}\mathfrak{S}W$, dim $V^{N}>0$ and dim $W^{N}=0$ for some $N\triangleleft G$ with
$|G/N|=p$ , hence $\mathfrak{D}\mathfrak{S}(G)\neq \mathfrak{D}\mathfrak{S}(G)^{N}$.

Let $SG(m, n)$ denote the small group of order $m$ and type $n$ appearing in the computer

software GAP [5].

Theorem 3. Let $G=P\Sigma L(2,27),$ $SG(864, 2666)$ , or $SG(864, 4666)$ . Then $RO(G)_{P}^{\mathcal{L}}=0$

but
$\mathfrak{S}(G)=\mathfrak{D}(G)=\mathfrak{D}\mathfrak{S}(G)=RO(G)_{\mathcal{P}}^{\{G\}}\cong \mathbb{Z}$.

2. ADDITIONAL INFORMATION

For $g\in G$ , let $(g)$ denote the conjugacy class of $g$ in $G$ . The real conjugacy class $(g)^{\pm}$

of $g$ is the union of $(g)$ and $(g^{-1})$ . Let $a_{G}$ denote the number of all real conjugacy classes
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of elements $g$ of $G$ such that $g$ does not have prime power order. By the representation

theory, we have

$a_{G}=rankRO(G)_{\mathcal{P}}$ .
Let $\delta$ denote the homomorphism from $RO(G)_{\mathcal{P}}$ to $\mathbb{Z}$ given by

$\delta([V]-[W])=\dim V^{G}-\dim tV^{G}$ .

Then by definition,
$RO(G)_{P}^{\{G\}}=Ker[\delta : RO(G)_{\mathcal{P}}arrow \mathbb{Z}]$ .

B. Oliver [17] showed that if $a_{G}\geq 1$ then

$Image[\delta : RO(G)_{\mathcal{P}}arrow \mathbb{Z}]\supseteq 2\mathbb{Z}$ .

Thus the next proposition immediately follows.

Proposition (Laitinen-Pawalowski [8]). If $a_{G}\geq 1$ then rank $RO(G)_{P}^{\{G\}}=a_{G}-1$ .
In addition, B. Oliver [17] implies the next result.

Theorem (Oliver). If $G$ is an Oliver group then $\mathfrak{D}(G)=RO(G)_{\mathcal{P}}^{\{G\}}$ .
Viewing these facts, E. Laitinen conjectured the next.

Laitinen’s Conjecture. If $G$ is an Oliver group with $a_{G}\geq 2$ then $\mathfrak{D}\mathfrak{S}(G)\neq 0$ .
This conjecture had been positively expected until 2006. We, however, have a negative

example.

Theorem 4 ([12], [13]). Let $G=Aut(A_{6})$ . Then Laitinen’s Conjecture fails, in fact
$a_{G}=2$ and $\mathfrak{S}(G)=0=\mathfrak{D}\mathfrak{S}(G)$ .

Most finite Oliver groups are gap groups, but neither $S_{5}$ nor Ant $(A_{6})$ is a gap group,
where $S_{5}$ is the symmetric group on five letters and $A_{6}$ is the alternating group on six
letters. Pawalowski-Solomon [18] showed the next theorem using a deleting-inserting

theorem of G-fixed point sets to disks ([10], [15, Appendix]).

Theorem (Pawalowski-Solomon [18]). If $G$ is a gap Oliver group then

$RO(G)_{P}^{\mathcal{L}}\subseteq \mathfrak{D}\mathfrak{S}(G)$ .

On the other hand, they also showed the next result using the finite group theory.

Theorem (Pawalowski-Solomon [18]). Let $G$ be a nonsolvable gap group with $a_{G}\geq 2$ .
If $G\not\cong P\Sigma L(2,27)$ then

$RO(G)_{\mathcal{P}}^{\mathcal{L}}\neq 0$ .
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Putting these results together, we obtain a corollary.

Corollary (Pawalowski-Solomon [18]). Let $G$ be a nonsolvable gap group with $a_{G}\geq 2$ .

If $G\not\cong P\Sigma L(2,27)$ then $\mathfrak{D}\mathfrak{S}(G)\neq 0$ .

Since $S_{5}\cross C_{2}$ , where $C_{2}$ is the cyclic group of order 2, is not a gap group, the next

result is also interesting.

Theorem (X.M. Ju [6]). In the case $G=S_{5}\cross C_{2}$ , the equalities

$\mathfrak{S}(G)=\mathfrak{D}\mathfrak{S}(G)=RO(G)_{\mathcal{P}}^{\mathcal{L}}\cong \mathbb{Z}$

hold.

We obtained a deleting-inserting theorem [14] of new kind by employing an equivariant
interpretation of Cappell-Shaneson’s surgery obstruction theory for getting homology
(possibly, not homotopy) equivalences as well as employing the induction theory of Wall’s
surgery obstruction groups. We state here the theorem in a simplified form.

Theorem 5. Let $G$ be an Oliver group and $Y$ a disk with G-action. Suppose the following
conditions are satisfied.

(1) $Y^{G}=\{y_{1}, \ldots, y_{m}\}$ , where $m\geq 1$ .

(2) $\partial Y^{L}=\emptyset$ for all $L\in \mathcal{L}(G)$ .
(3) dim $Y^{H}\geq 5$ for all mod $\mathcal{P}$ cyclic subgroups $H,$ $i.e$ . $1\triangleleft P\triangleleft H\mathcal{P}cyclic$

(4) dim $Y^{P}>2(\dim Y^{H}+1)$ for all $P\in \mathcal{P}(G)$ and $H>P$ .
(5) $|\pi_{1}(Y^{P})|<\infty$ and $(|\pi_{1}(Y^{P})|, |P|)=1$ for all $P\in \mathcal{P}(G)$ .
(6) The inclusion induced maps $\pi_{1}(\partial Y^{P})arrow\pi_{1}(Y^{P})$ are isomorphisms for all $P\in$

$\mathcal{P}(G)$ .

Then there exists a disk $X$ with G-action such that $\partial X=\partial Y$ and $X^{G}=\emptyset$ .

Remark that the union $\Sigma=XU_{\partial}Y$ identified along the boundaries of $X$ and $Y$ in

the theorem above is a homotopy sphere such that $\mathcal{T}\mathcal{R}(\Sigma)=\mathcal{T}\mathcal{R}(Y)$ . Since various
G-actions on disks $Y$ are constructed by Oliver’s theory [17], we would obtain G-actions
on homotopy spheres $\Sigma$ from those on disks. In fact, the next result is an outcome of
Theorem 5.

Theorem 6. Let $p$ be an odd prime. Let $G$ be an Oliver group such that $G=G^{\{q\}}$ for
all premes $q\neq p$ and $|G/G^{\{p\}}|=p$ . If $G$ has a dihedral subquotient $D_{2qr}$ (order $2qr$) with
distinct primes $q$ and $r$ and further that $G$ contains distinct real G-conjugacy classes
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$(x)^{\pm},$ $(y)^{\pm}$ of elements $x,$ $y$ not of prime power order, then $\mathfrak{D}\mathfrak{S}(G)$ contains a direct
summand of $RO(G)$ of rank 1.

Theorems 2 and 3 follow from Theorem 6. In addition, we conclude the next.

Theorem 7. Laitinen’s Conjecture is affirmative for any finite nonsolvable gap group.

REFERENCES

[1] M. F. Atiyah and R. Bott, A Lefshetz fixed point formula for elliptic complexes: $\Pi$.
Applications, Ann. of Math, 88 (1968), 451-491.

[2] S. E. Cappell and J. L. Shaneson, Fixed points of periodic maps, Proc. Nat. Acad.
Sci. USA 77 (1980), 5052-5054.

[3] S. E. Cappell and J. L. Shaneson, Fixed points of periodic differentiable maps, Invent.
Math. 68 (1982), 1-19.

[4] S. E. Cappell and J. L. Shaneson, Representation8 at fixed points, Group Actions on
Manifolds (Boulder, Colo., 1983), pp. 151-158, Contemp. Math., 36, Amer. Math.
Soc., Providence, RI, 1985.

[5] GAP, Groups, Algorithms, Programming, a System for Computational Discrete Al-
gebra, Release 4.3, 06 May 2002, URL: http://www.gap-system.org.

[6] X.M. Ju, The Smith isomorphism question: A review and new results, in RIMS
Kokyuroku (2007): The Theory of Transformation Groups and Its Applications,
eds. S. Kuroki and I. Nagasaki, Res. Inst. Math. Sci., Kyoto University, 2007.

[7] E. Laitinen and M. Morimoto, Finite groups with smooth one fixed point actions on
spheres, Forum Math. 10 (1998), 479-520.

[8] E. Laitinen and K. Pawalowski, Smith equivalence of representations for finite perfect
groups, Proc. Amer. Math. Soc. 127 (1999), 297-307.

[9] J. W. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), $358\cdot-426$ .
[10] M. Morimoto, Equivariant surgery theory: Deleting-inserting theorems offixed point

manifolds on spheres and disks, K-Theory 15 (1998), 13-32.
[11] M. Morimoto, Equivariant surgery theory for homology equivalences under the gap

condition, Publ. Res. Inst. Math. Sci. Kyoto Univ. 42 (2006), 481-506.
[12] M. Morimoto, The Smith problem and a counterexample to Laitinen’s conjecture,

RIMS Kokyuroku no. 1517 (2006), Res. Inst. Math. Sci., Kyoto Univ., 25-31.
[13] M. Morimoto, Smith equivalent $Aut(A_{6})$ -representations are isomorphic, accepted

by Proc. Amer. Math. Soc., 2006.
[14] M. Morimoto, Fixed point sets of smooth actions on spheres, accepted by J. K-

Theory, 2007.

57



[15] M. Morimoto and K. Pawalowski, Smooth actions of Oliver groups on spheres, Topol-
ogy 42 (2003), 395-421.

[16] R. Oliver, $Fi,xed$ point sets of groups on finite acyclic complexes, Comment. Math.
Helv. 50 (1975), 155-177.

[17] B. Oliver, Fixed point sets and tangent bundles of actions on disks and euclidean
spaces, Topology 35 (1996), 583-615.

[18] K. Pawalowski and R. R. Solomon, Finite Oliver groups with rank integer $0$ or 1
and Smith equivalence of group modules, Algebr. Geom. Topol. 2 (2002), 843-895
(electronic).

[19] T. Petrie, $G$ surgery. I. A survey, in Algebraic and geometric topology (Santa Bar-
bara, Calif., 1977), pp. 197-233, Lecture Notes in Math., 664, Springer Verlag,
Berlin-Heidelberg-New York, 1978.

[20] T. Petrie, Pseudoequivalences of G-manifolds, Algebraic and Geometric Topology
(Proc. Symps. Pure Math., Stanford Univ., Stanford, Calif, 1976) Part 1, pp. 169-
210, Proc. Symps. Pure Math., 32, Amer. Math. Soc., Providence, RI, 1978.

[21] T. Petrie, Three theorems in transformation groups, Algebraic Topology (Aarhus
1978), pp. 549-572, Lecture Notes in Math., 763, Springer Verlag, Berlin-Heidelberg-
New York, 1979.

[22] T. Petrie, The equivariant $J$ homomorphism and Smith equivalence of representa-
tions, Current Trends in Algebraic Topology (London, Ont., 1981), pp. 223-233,
CMS Conf. Proc. 2, Part 2, Amer. Math. Soc., Providence, RI, 1982,

[23] T. Petrie, Smith equivalence of representations, Math. Proc. Cambridge Philos. Soc.
94 (1983), 61-99.

[24] T. Petrie and J. Randall, Transformation Groups on Manifolds, Marcel Dekker, Inc.,
New York and Basel, 1984.

[25] T. Petrie and J. Randall, Sphencal isotropy representations, Publ. Math. IHES 62
(1985), 5-40.

[26] C. U. Sanchez, Actions of groups of odd order on compact orientable manifolds,
Proc. Amer. Math. Soc. 54 (1976), 445-448.

[27] P. A. Smith, New results and old problems in finite transformation groups, Bull.
Amer. Math. Soc. 66 (1960), 401-415.

58


