Assembly in Surgery

岡山理科大学•理学部 山崎 正之（Masayuki Yamasaki）
 Faculty of Science，
 Okayama University of Science

1．Introduction

In［ Y$]$ ，I discussed glueing and splitting operations of geometric quadratic Poincaré complexes， and studied the $L^{-\infty}$－theory assembly map

$$
A: H_{*}\left(X ; \mathbb{L}^{-\infty}(p: E \rightarrow X)\right) \rightarrow L^{-\infty}\left(\pi_{1} E\right)
$$

for certain polyhedral stratified systems of fibrations $p: E \rightarrow X$ ，following the general description of assembly maps by Quinn $[Q, \S 8]$ ．This assembly map was constructed in two steps；first we used the gluing operation to construct a map

$$
\alpha: H_{*}\left(X ; \mathbb{L}^{-\infty}(p: E \rightarrow X)\right) \rightarrow L_{*}^{-\infty}(p)
$$

from the homology to the controlled L－group，and then composed it with the forget－control map

$$
F: L_{*}^{-\infty}(p: E \rightarrow X) \rightarrow L_{*}^{-\infty}(E \rightarrow\{*\})=L_{*}^{-\infty}\left(\pi_{1} E\right) .
$$

The following was claimed in（3．9）of［Y］．
Theorem．If $p: E \rightarrow X$ is a polyhedral stratified system of fibrations on a finite polyhedron X ，then the map α is an isomorphism．

The map α was constructed in the following way：an element of $H_{k}\left(K ; \mathbb{L}^{-\infty}(p: E \rightarrow X)\right)$ can be thought of as a $P L$－triangulation V of the product $S^{N} \times \Delta^{k}$ of a shpere S^{N}（ N large）and the k－somplex Δ^{k} together with
1．a simplicial map $\phi: V \rightarrow X$ ，and
2．a compatible family $\{\rho(\Delta) \mid \Delta \in V\}$ ，where $\rho(\Delta)$ is a quadratic Poincaré（ $\operatorname{dim} \Delta+2$ ）－ad on the pullback q of $\bar{p}: \mathbb{R}^{l} \times E \rightarrow E \rightarrow X$ via the map $\Delta \rightarrow V \rightarrow X$ ，and $\rho(\Delta)$ is 0 if Δ is a simplex in the boundary．
I claimed that these ads $\rho(\Delta)$＇s can be glued together to give a geometric quadratic Poincaré complex on q ：

Theorem (Glueing over a manifold) [Y, 2.10] Let L be the barycentric subdivision of a PLtriangulation K of a compact n-dimensional manifold M possibly with a non-empty boundary ∂M and $p: E \rightarrow M$ be a map. And suppose each n-simplex $\Delta \in L$ is given an m-dimensional geometric quadratic Poincaré $(n+2)$-ad on $\left(p^{-1}(\Delta), p^{-1}\left(\partial_{*} \Delta\right)\right)$ which are compatible on common faces. Then one can glue them together to get an m-dimensional geometric quadratic Poincaré pair on $\left(E, p^{-1}(\partial M)\right)$.

If this is possible, then its functorial image on \bar{p} gives a geometric quadratic complex on \bar{p}. By the 'barycentric subdivision argument' [$\mathrm{Y}, \mathrm{p} .589$], this assembled complex is equivalent to arbitrarily small complex and defines an element of $L_{*}^{-\infty}(p)$.

Unfortunately the argument given in $[\mathrm{Y}]$ is insufficient to prove this. The aim of this short note is to describe how to remedy this.

2. Glueing over a manifold

In $[Y]$, I described the glueing operation of two quadratic Poincaré pairs along a common codimension 0 subcomplex of the boundaries. If there is an order of the n-simplices $\Delta_{1}, \ldots, \Delta_{r}$ of L so that $\left(\Delta_{1} \cup \ldots \cup \Delta_{i}\right) \cap \Delta_{i+1}$ is the union of $(n-1)$-simplices for each i, then we can successively glue the pieces in this linear order. But this seems very difficult to achieve. The strategy used in $[\mathrm{Y}]$ is the following:

For each vertex v of K, consider its star $S(v)$ in L, i.e. the dual cone of v. Two such dual cones are either disjoint or meet along codimension 1 cells. The glueing problem over $S(v)$ can be solved by looking at the link $L(v)$ of v in L. Note that $L(v)$ is an ($n-1$)-dimensional sphere or disk and the triangulation is the first barycentric subdivision of another. Thus we can keep on reducing the dimension until the link becomes a circle or an arc, and in this case there is an obvious order of 2-simplices and glueing can be done.

The fact is that the induction fails, since any two n-simplices of $S(v)$ have the vertex v in common and are never disjoint.

There are two possible remedies for this. The first one is to use a different definition for the homology groups. This was actually done in $[\mathrm{R}]$.

Here I propose another remedy. Let us look at the dual cone at the vertex v. Let c denote the quadratic Poincare complex lying over v. Split each of the pieces of the dual cone so that the pieces near v are of the form $c \otimes$ (a small simplex):

Here we do not need stabilization to split. We would like to glue the pieces away from v first, and then fill in the hole with a piece of the form $c \otimes$ (a small copy of the dual cone):

To carry out the induction steps, we need to deal with holes of more complicated forms, and I have not worked out the details yet.

Remarks. (1) The control map should be a polyhedral stratified system of fibrations.
(2) The picture above may be misleading. The 'hole' itself lies over the vertex v, because $c \otimes$ (a small copy of the dual cone) can only live over v.
(3) Splitting needs a similar treatment.

References

[Q] F. Quinn, Ends of Maps II, Invent. math. 68, 353-424 (1982).
[R] A. Ranicki, Algebraic L-theory and Topological Manifolds, Cambridge Tracts in Mathematics 102, Cambridge Univ. Press (1992).
[Y] M. Yamasaki, L-groups of crystallographic groups, Invent. math. 88, 571-602 (1987).

