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SECTION 1. INTRODUCTION

In 1987, W. Browder [Br] claimed afundamental thmrem relating equivariant
$vs$ . isovariant homotopy equivalenc\’e, under the Gap Hypothesis. Twenty years have
passed since then, but the claim is still “folklore”, despite the fact that many pmple
(cf. [We 1]) have developed thmri\’e under the assumption that Browder’s claim is
true. The current author’s earlier works $[N2],$ $[N3]$ also relied on it.

In 2006, R. Schultz [Sch] published aproof of Browder’s thmrem for semi-hee
actions. He used homotopy thmretlc methods, and built anew obstruction theory in
order to construct an isovariant homotopy equivalence&om an equivariant homotopy
equivalence in the semi-&ee situation. However, for general (non-semi-hee) cas\’e, the
situation is not settled yet. If one wants to generalize Schultz’ proof for non-semi-hee
casae, one would have to construct even more complicated obstruction thmri\’e, which
do not look so straightforward.

In this note, we would like to invaetigate some methods for apossible proof of
Browder’s thmrem in the general case, using more naive gmmetric methods, rather
than the homotopy thmretic methods done by Schultz. We have not succeeded in
proving the thmrem yet, but we will give some construction that we hope to be able
to be applied in the general situation, which we would like to work on ekewhere.
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SECTION 2. DEFINITION AND THE BASIC EXAMPLE
Let $G$ be a finite group. Let $M$ be a closed, connected, G-oriented smooth

G-manifold. For any subgroup $H$ of $G$ , let $M^{H}$ be the fixed-point set, which may
consist of submanifolds of various dimension. A G-manifold $M$ is said to $satis\phi$ the
Gap Hypothesis if the following holds:
The Gap Hypothesis. For any pair of subgroups $K\lessgtr H$ of $G$ , and for any pair
of connected components $B\subset M^{H}$ and $C\subset M^{K}$ such that $B\subsetneqq C$, the inequality
2 dim $B+2\leq\dim C$ , in other words, dim $B<$ [ $\frac{1}{2}$ dim $C$], holds.

The Gap Hypothesis provides general position arguments and transversality
between each isotropy typ$e$ pieces, thus making it possible to provide various geo-
metric constructions in the equivariant settings. Madsen and Rothenberg $([MR2])$
constructed a beautiful surgery exact sequence in an equivariant category, and used
it to $classi\phi$ spherical space forms.

Browder’s insight told us to use this condition to construct isovariant homotopy
equivalences $hom$ equivariant homotopy equivalences. And that is what we would like
to consider here.
Definition. A map $f$ : $Xarrow Y$ between G-sapces $X$ and $Y$ is called equivariant if
$f(gx)=gf(x)$ for all $g\in G$ and $x\in X$ . In other words, the isotropy subgroup $G_{x}$ is
included in the isotropy subgroup $c_{f(x)}$ for all $x\in X$ . The map $f$ is called isovariant
if $G_{x}$ is equal to $G_{f(x)}$ for all $x\in X$ .

Browder [Br] claimed the folowing:
Theorem (Browder). Let $M$ and $N$ be closed, connected, G-onented smooth G-
manifolds. Assume that $M$ satisfies the Gap Hypothesis. Then, any G-homotopy
equivalence $f$ : $Marrow N$ is G-equivariantly homotopic to a G-isovari ant homotopy
equivalence $f’$ . Moreover, if $M\cross I$ satisfies the Gap Hypothesis, then the $f’$ is unique
up to G-homotopy.

Here is an example, given by Browder, that illustrates the principal obstruction
in deforming an equivariant map into an isovariant map:

Let $G$ be a cyclic group of prime order, and let it act on the sphere $S^{q}$ by
rotation, with 2 fixed points $0$ and $\infty$ . Let $Y=S^{k}\cross S^{q}$ where $G$ acts trivially on
the first coordinate $S^{k}$ , thus the fixed point set is $Y^{G}=(S^{k}\cross 0)\cup(S^{k}\cross\infty)$ . Let
$X=(S^{k}\cross S^{q})\# GG(S^{k}xS^{q})$ , the equivariant connected sum of $Y=S^{k}\cross S^{q}$ and
$|G|$ copies of G-trivial $(S^{k}\cross S^{q})$ with $G$ heely acting by circulating the $|G|$ copies,
and the equivariant connected sum is made on a free orbit.

Define $f$ : $Xarrow Y$ to be the identity on the first component $S^{k}\cross S^{q}$ , and
via the composition of the projection $G(S^{k}\cross S^{q})arrow GS^{q}$ and the canonical G-map
$GS^{q}arrow S^{q}$ on the second component of the equivariant connected sum.

By construction, $f$ is a degree 1 equivariant map. But it is not an isovari-
ant map, because the fixed point set $X^{G}$ is just the “central” $(S^{k}\cross 0)$ on the first
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component, thus $f^{G}$ : $X^{G}arrow Y^{G}$ is just the identity, but the free part of $X$ is
$X-X^{G}=S^{k}\cross(S^{q-1}\cross \mathbb{R})\# cG(S^{k}\cross S^{q})$ , which contains all the $S^{q}$-cycles on the
$|G|$ copies of $(S^{k}\cross S^{q})$ . When mapped onto $Y$ , this hee part must intersect with the
fixed-point set $Y^{G}$ in $Y$ , thus $f$ could not be deformed in any way to an isovariant
map.

Note that both $X$ and $Y$ satisfy the Gap Hypothesis if $q\geq k+2$ , thus it is
a serious obstruction in considering Browder’s deformation of equivariant things into
isovariant things. The Gap Hypothesis and degree 1 maps are not enough; being an
equivariant homotopy equivalence is an essential condition, and so this is really a deep
geometrical problem.

SECTION 3. THE METHODS OF SCHULTZ

Schultz [Sch] gave aproof of Browder’s theorem under the additional assump-
tion that the $G$-actlon is semi-hee (that is, $M-M^{G}$ is G-hee) everywher$e$ . In the
semi-hee case, the only possible isotropy types ar$e$ G-hee and trivial typae, so one
can do the construction considering only those two distinct types. Thus, Schultz (and
Dula and Schultz [DS]) constructed an obstruction theory in aform of equivarirt co-
homology, which they called “diagram cohomology”, of triads of the form (mtifold;
regular neighborhood of the fix$ed$-point set, and the hee-part).

Since the fixed point sets $N^{G}=II_{\alpha}^{N_{\alpha}}$ and $M^{G}=U_{\alpha}M_{\alpha}$ with $M_{\alpha}=$

$f^{-1}(N_{\alpha})\cap M^{G}$ is in one-to-one corr\’epondence component-wise, one can first deform$\cdot$

$f$ inside the regular neighborhood of each of the components $M_{\alpha}$ of the fixed-point
set. The normal bundles of $M_{\alpha}$ and $N_{\alpha}$ are stably fiber homotopy $equivalent^{t}$,but
thanks to the Gap Hypoth\’eis, it is unstably fiber homotopy equivalent. Therefore,
it is possible to deform $f$ to be isovariant in the regular neighborhood of $M_{\alpha}$ for each
$\alpha$ , by using standard cootruction.

Next one push\’e down the non-isovarlant points into the system of tubular
neighborhoods of $M_{\alpha}$ . That is, deform the map $f$ so that any non-isovariant point is
contained in aclosed tubular neighborhood $W_{\alpha}$ of $M_{\alpha}$ for some $\alpha$ . ( $See$ Proposition
4.2 of [Sch].) Here, the deformation is done via the “diagram cohomology” obstruction
thmry. One not\’e that the map $f$ : $Xarrow Y$ in the example of the previous section
cannot be deformed this way, since the “diagram cohomology” detects its non-trivial
obstruction.

FinaUy, one deforms the result map into a $G$-isovariant map. $Ag\dot{\Re}n$ , one us\’e

the “diagram cohomology” to detect the deformatlon obstruction. First, one usae G-
transversality (due to the Gap Hypothesis) to cootruct appropriate “diagram maps”
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that have necessary local isovariancy properties (which they call “almost isovariant
maps,”) and then apply the “diagram cohomology” obstruction theory to see that the
obstruction vanishes, producing the desired deformation, to get a global G-isovariant
map. (See Proposition 5.3 of [Sch].)

Schultz has successfully built an appropriate obstruction theory just enough
for proving the theorem in the semi-hee case. As he remarks in the last section in
his paper, he seems to be interested in applying the obstruction theory to situations
where the Gap Hypothesis fails, and to build a new hamework of applications of
equivariant homotopy theory into equivariant surgery. However, in non-semi-hee
cases, the “diagram cohomology” obstruction theory (of [DS]) does not seem to be
directly applicable, and things seem to be much complicated if one pursues to reduce
them into algebraic topology methods. So, here we try to consider a different direction,
that is, to look into more naive geometric methods, to reduce things into the deep
theories of equivariant surgery.

SECTION 3. EQUIVARIANT SURGERY

First we make use of the following theorem of W. L\"uck:

Theorem (L\"uck). Let $M$ and $N$ be smooth G-manifolds with codimension $\geq 3$

gaps, $f$ : $Marrow N$ a G-homotopy equivalence, and $x\in M^{G}$ . Then, the tangent
representation at $x\in M$ is G-homotopy equivalent to that of $f(x)\in N$ .

Therefore, under our Gap Hypothesis, the equivariant normal bundles of the
fixed-point sets are G-homotopy invariant between $M$ and $N$ . We would like to
construct an equivariant unstable fiber homotopy equivalence between the regular
neighborhoods of the fixed-points sets, and so we rely on the following cl\"assic theorem
of C. T. C. Wall ([W], \S 11 and \S 12) :

Codimension 1 Embedding Theorem (Wall). Let $M$ and $N$ be smooth G-
manifolds Utth the Gap Hypothesis, and $f$ : $Marrow N$ a G-homotopy equivdence.
Assume that $N$ is divided into G-submanifolds $N=N_{1}\cup N_{2}$ such that $N_{0}=N_{1}\cap N_{2}=$

$\partial N_{1}=\partial N_{2}$ and $\pi_{1}N_{0}\cong\pi_{1}N_{1}$ . Assume $fi_{4}rther$ that $N_{0}$ is in the G-free part
N–SN, where $SN= \bigcup_{H\neq\epsilon}N^{H}$ . Then, $f$ is G-homotopic to a map $f^{l}$ such that
$M_{i}=f^{\prime-1}(N_{i})$ is G-homotopy equivalent to $N_{i},$ respectively for $i=0,1,2$, via the
map $f’$ .

Making use of it, we can deform the G-homotopy equivalence between the
normal bundles of the fixed-point sets into an (unstable) fiber homotopy equivalence
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between the regular neighborhoods. Thus far, the argument is similar to the one
explained in Schultz’ paper [Schj.

In order to approach toward the proof of Browder’s theorem, we proceed in-
ductively on the system of isotropy types. For now, we start by assuming that the
theorem is true over $SM$ .

So, we assume $that\backslash f$ : $Marrow N$ a G-homotopy equivalence such that $f|_{\partial M}$ is
already an isovariant homotopy equivalence. We need to deform $f$ (by G-homotopy)
relative to $\partial M$ into a G-isovariant map.

Let $U$ be a regular neighborhood of $SN$ in N. $N-\partial N$ is G-free, and $f^{-1}(N-$

$U)\subset M=\partial M$ by assumption. Now let $N_{1}=\overline{U}$ and $N_{2}=\overline{N-U}$ , which readily
satisfles the assumptions in the Codimension 1 Embedding Theorem because $f|_{\partial M}$ is
assumed to be an isovariant homotopy equivalence.

Now apply the Codimension 1 Embedding Theorem to deform the map to get
a thickening (in the line of the argument of \S 11 of Wall’s book [W])

$M=V\cup M_{2}arrow U\cup N_{2}=N$

where $Varrow U$ is a $G$-homotopy equivalence, and $V$ is G-h-cobordant to the regular
neighborhood $W$ of $SM$ .

We have now “divided” the manifolds into the “interior” and the “exterior” of
the regular neighborhoods of $SM$ and $SN$ r\’epectively.

Note that the argument is still similar to Schultz’ paper [Sch]. He has ako
divided things to “interior” (good neighborhood of the singular set) td (exterior’

(hee part on the target manifold, where the map may go non-isovariant). Rom here,
Schultz goes ahead to construct $\bm{t}$ obstruction thmry to handle the deformation
obstruction of the “exterior” relative to the “interior”. We would like to go $R$om
here toward the equivariant surgery methods, to avoid amuch complicated algebraic
syst$em$ in the non-semi-bee case.

Since the $regular|$ neighborhoods $are$ (unstably) G-fiber homotopy equivalent to
$ea\bm{i}$ other, the proof could be complet$ed$ once we could perform an equivariant surgery
procaes to deform the $G$-homotopy equivalence $f|_{\partial W}$ into a $G$-homotopy $e$quivalence
$f|\partial V$.

That last procaes could be reduced to the $\pi-\pi$ Theorem in the equivariant
surgery. We now $re1y$ on the arguments of \S 13.2 of Weinberger’s book [We 1]. As-
suming some varirt of the Gap Hypothesis, Weinberger has \’etablished aform of
the equivariant surgery exact sequence. (See \S 13.2 of [We 1], p.225):

Equivariant Surgery Exact Sequence. Suppose that $G$ is a finite group acting
orientation preservingly an a (topological) manifold $M$ with small gap8 and with all
fixed point sets locally flat submanifolds. Suppose also that all fixed sets have dimen-
sion at least five. Then we have a long exact surgery sequence for isovariant structure
sets.

We could follow Weinberger’s techniques, to perform equivariant surgery to de
form the G-homotopy equivalence $f|_{\partial W}$ into a G-homotopy equivalence $f|_{\partial V}$ . How-
ever, In the non-semi-hee situation, the deformation must be done relative to the
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system of pieces of neighborhoods of the isotropy sets that ar$e$ already deformed to
be isovariant. So, we $n\dot{e}$ed to rely on some kind of “stratification” of such pieces of
isotropy set neighborhoods.

Since we have assumed the Gap Hypothesis, those pieces can be assumed to
be in the general position, and thus the stratified surgery can be applied. We use the
following form of the $\pi-\pi$ Theorem. (See Section 7.1 of [We 1]):

Stratifled $\pi-\pi$ Theorem. Suppose $(Y, X)$ is a strongly stratified pair, $X=\partial Y$ , and
each pure stratum of $Y$ touches exactly one stratum of $X$ for which the inclusion is a
l-equivalence. If all strata of $X$ are of dimension $\geq 5$ , then any normal invariant of
$(W, V)arrow(Y, X)$ can be suryed into a simple homotopy equivalence.

Since our Gap Hypothesis is stronger than the condition needed here, our gen-
eral position situation is enough to apply the Stratified $\pi-\pi$ Theorem to our stratified
data, we can surger the data to construct a K-homotopy equivalence. However, in
order to get an equivariant homotopy equivalence map in the global level, we still
need a destabilization obstruction, as explained in Section 6.2 of [We 1]:

$S(X)arrow S^{-\infty}(X)arrow\hat{H}(\mathbb{Z}/2$ : $Wh^{Top}(X))$

where the latter term is 2-torsion only. Thus, the surgery can be done up to 2-torsion.
This provid\’e the d\’eired deformation, at least up to 2-torsIon.

In order to handle the 2-torsion obstruction, we probably need to make use of
the Nil arguments of Cappell and Weinberger (see \S 14.2 of We 1]), which was origi-
nally invented by Cappell in order to deepen Wall’s submanifold embedding thmrems.

The $L$-group $term$ in the equivariant surgery exact sequence consists of the
hierarchical strata-wise $L$-group claeses, each of which is interpreted (by the origi-
nal realization thmrem of C. T. C. Wall ([W], Section3)) as appropriate class\’e of
equivariant normal maps. They were computed by various pmple in various situa-
tion, including Madsen-Rothenberg $([MR2]),$ CappeU-Weinberger-Yan $([c\iota v\eta)$ and
Weinberger-Yan $([WY2])$ . In our case, since we have started with aG-homotopy
equivalence, we could be successful in reducing the surgery obstruction into the $\pi-\pi$

Theorem situation, at least up to 2-torsion, as above.
In this way, reducing the deformation construction into the stratified $\pi-\pi$ The-

orem seems to work in the general non-semi-hee case. Unlike.Schultz’s methods, it
$reaUy$ depends on the deep geometric results of equivariant surgery thmries, but on
the other hand, it may open up adaeper gmmetric understanding on the propertiae
of isovariant homotopy equivalenc\’e, so we hop$e$ to work further in this direction. We
hope to provide more detaik to this generality in afuture work.
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