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This note is based on my talk given in the RIMS on the 4th of
December, 2006.

The attention of specialists in the Kleinian group theory is now
shifted to the study of the topological structure of deformation spaces
ffier the major problems like Maxden’s tameness conjecture and the
ending lamination conjecture $axe$ solved. Although we know, by the res-
olution of the Bers-Thurston density conjecture ([4]) using the proof
of the ending lanination conjecture by Minsky with his collaborators
that every finitely generated Kleinian group is an algebraic hmit of
quasi-conformal deformations of a(minimally parabolic) geometricany
finite group, the structure of deformation spaces as topological spaces
is far ffom completely understood.

To understtd sucha global structure of deformation spaces, the
first step would be to give acriterion for sequences in the deformation
space to converge or diverge. Let us put it in more concrete tems fo-
cusing only on the case of Kleinian groups isomorphic to surface groups.
Consider ahyperbolic surface $S$ of ffiite type $\bm{t}d$ the space of faithful
&screte representations of $\pi_{1}(S)$ to $PSL_{2}\mathbb{C}$ preserving the parabolicity
modulo conjugacy(both as elements of $PSL_{2}\mathbb{C}$ and complex conjuga-
tion), whii is usually denoted by $AH$(-S). Since the hyperbolic metric
of $S$ determines aFuchsian representation of $\pi_{1}(S)$ to $PSL_{2}\mathbb{R}\subset PSL_{2}\mathbb{C}$ ,
as the space of quasi-conformal deformations of tbis representation, we
$C\bm{t}$ consider the space of quasi-Kchsit representations $QF(S)$ embed-
ded as $\bm{t}$ open set in $AH(S)$ . What we are interested in is the problem
to determine in which directions $QF(S)$ has bontier in $AH(S)_{\bm{t}}d$ in
which directions it is open-ended. Since by the theory of Ahlfors-Bers,
$QF(S)$ is parametrised by $\mathcal{T}(S)\cross \mathcal{T}(\overline{S})$ , we can describe the directions
in $QF(S)$ in terms of the Teichm\"uller spaces.

The $ma\dot{i}$ results in this talk is the following.

Theorem 1. Let $\{(m_{i},n_{i})\}$ be a sequence in $\mathcal{T}(S)\cross \mathcal{T}(\overline{S})$ satisfy ing
the following conditions.
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(1) $\{m_{i}\}$ converges to a projective lamination $[\mu^{-}]\in \mathcal{P}\mathcal{M}\mathcal{L}(S)$

whereas $\{n_{i}\}$ converges to $[\mu^{+}]\in \mathcal{P}\mathcal{M}\mathcal{L}(S)$ .
(2) The supports of $\mu^{-}$ and $\mu^{+}$ share a component $\mu_{0}$ which is not

a simple closed curve.
Then the sequence $\{qf(m_{i}, n_{i})\}\subset QF(S)$ diverges in $AH(S)$ .
Theorem 2. Let $\mu^{-}$ and $\mu^{+}$ be two measured laminations on $S$ such
that the components shared by $|\mu^{-}|and|\mu^{+}|$ are all simple closed curves,
which we denote by $c_{1},$ $\ldots,$

$c_{r}$ .
(1) Suppose that none of $c_{1},$ $\ldots,$

$c_{r}$ lie on the $bounda\eta$ of support-
ing surfaces of components of $\mu^{-}$ or $\mu^{+}$ . Then there is a se-
quence $\{(m_{i},n_{i})\}$ in $\mathcal{T}(S)\cross \mathcal{T}(\overline{S})$ with convergent $qf(m_{i},n_{i})$

such that $m_{i}$ converges $[\overline{\mu}^{-}]$ and $n_{i}$ converges to $[\overline{\mu}^{+}]and|\overline{\mu}^{-}|=$

$|\mu^{-}|,$ $|\overline{\mu}^{+}|=|\mu^{+}|$ . Moreover, if $|\mu^{+}|=c_{1}\cup\cdots\cup c_{r}$ , we choose
$\{(m_{\dot{j}}, n_{i})\}$ so that $qf(m_{i}, n_{i})$ converges exotically to a b-group.

(2) Otherwise for every $\{m_{i}\}$ converging to $[\mu^{-}]$ and $\{n_{i}\}$ converg-
ing to $[\mu^{+}]$ , the sequence $\{qf(m_{i}, n_{i})\}\subset QF(S)$ diverges in
$AH(S)$ .

The proofs of Theorem 1 and Theorem 2 take quite different strate-
gies. For Theoren 1, which is apparently the more complicated case
of the two, we can use a rather standard technique of pleated surfaces
originally due to Thurston. For Theorem 2, we need to invoke much
more sophisticated tool of model manifolds due to Minsky.

In this note we only explain Theorem 1.

1. A SKETCH OF PROOF OF THEOREM 1.

Let $S$ be a hyperbolic surface of finite area. Let $\phi_{i}$ : $\pi_{1}(S)arrow PSL_{2}\mathbb{C}$

be a quasi-Fttchsian representation representing $qf(m_{i}, n_{i})$ as was given
in Theorem 1. Let $G_{i}$ be the image of $\phi_{i}$ , and $M_{i}$ the hyperbolic 3-
manifold $\mathbb{H}^{3}/G_{i}$ . Since $G_{i}$ is a quasi-conformal deformation of the
Fuchsian representation of $\pi_{1}(S)$ associated to the hyperbolic metric
on $S$ , there is a natural homeomorphism $\Phi_{i}$ : $S\cross \mathbb{R}arrow M_{i}$ induced
by a quasi-conformal homeomorphism, where we regard $S\cross \mathbb{R}$ as the
hyperbolic 3-manifold containing the hyperbolic surface $S$ in the form
of $S\cross\{0\}$ as a totally geodesic submanifold. Since $G_{i}$ is quasi-FUchsian,
the manifold $M_{i}$ is geometrically finite and has convex core $C(M_{i})$ ,
which is homeomorphic to $S\cross I$ preserving the parabolicity. We can
isotope $\Phi_{i}$ above so that $\Phi_{i}(S\cross[-1,1])=C(M_{i})$ .

Let $\Sigma_{i}^{-},$ $\Sigma_{i}^{+}$ be the two frontier components of $C(M_{i})$ corresponding
to $\Phi_{i}(S\cross\{-1\})$ and $\Phi_{i}(S\cross\{1\})$ respectively. The hyperbolic metric
on $M_{2}$ induces hyperbolic structures on $\Sigma_{i}^{-}$ and $\Sigma_{i}^{+}$ as length metrics.
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We give markings on $\Sigma_{i}^{-}$ and $\Sigma_{i}^{+}$ by natural homeomorphism between
$S$ and $S\cross\{-1\}$ and $S\cross\{1\}$ obtained by forgetting the second coordi-
nates. It should be noted the orientation given on $\Sigma^{+}$ is different $hom$

the ordinry one induced $homC(M_{i})$ . Let $(p_{i}, q_{i})$ be points In $\mathcal{T}(S)$

determined by these hyperbolic structures on $\Sigma_{i}^{-},$ $\Sigma_{i}^{+}$ and markings.
Since $(G_{i}, \phi_{i})=qf(m_{i}, n_{i})$ with respect to the Ahlfors-Bers parametri-
sation, by Bers’ inequality, there is auniversal bound $K$ between the
Teichm\"uUer dlstances between $m_{i},p_{i}$ and $n_{i},$ $q_{i}$ .

The pleating loci on $\Sigma_{i}^{-}$ td $\Sigma_{i}^{+}$ give two measured laminations
$\lambda_{i}^{-},$ $\lambda_{i}^{+}$ on $S$ by pulling ba&them to $S$ using the inverse of $\Phi_{i}|S\cross\{\pm 1\}$ .
By passing to asubsequence, we can assume that both $[\lambda_{i}^{-}]$ and $[\lambda_{i}^{+}]$

converge to projective laminations $[\lambda_{\infty}^{-}]$ and $[\lambda_{\infty}^{+}]$ . We can $aJso$ assume
that the sequences of supports $\{|\lambda_{i}^{-}|\}$ and $\{|\lambda_{i}^{+}|\}$ converge to geodesic
laminations $\ell_{\infty}^{-}\bm{t}d\ell_{\infty}^{+}$ in the Hausdorff topoloy.

We shall prove Theorem 1by contradiction. Assume that $\{(G_{i}, [\phi_{i}])\}$

converges to $(\Gamma, \psi)$ in $AH(S)$ by taking conjugates and asubsequence.
We divide our argument into three cases:

(1) The first case is when either $i(\mu^{-}, \lambda_{\infty}^{-})$ or $i(\mu^{+}, \lambda_{\infty}^{+})is$ non-zero.
(2) The second case is when both $\lambda_{\infty}^{-}$ and $\lambda_{\infty}^{+}$ contain acomponent

shared by $\mu^{\mp}$ which is not asimple cloeed curve.
(3) Finally, the third case is when either $\lambda_{\infty}^{+}$ or $\lambda_{\infty}^{-}$ is disjoint $hom$

$\bm{r}y$ component of $\mu^{+}$ shared with $\mu^{-}$ that is not asimple closed
curve.

In the first case, we assume that $i(\mu^{-}, \lambda_{\infty}^{-})>0$ . The argument
for the case when $i(\mu^{+}, \lambda^{+})>0$ is completely the same. By the
definition of the Thurston compactification of the Teichm\"uller space
(see $Fathi- Laudenbach- Po\acute{e}naru[2]$) or the argument in Otal [5], we
have $1engh_{\Sigma^{-}}$. $(\lambda_{i}^{-})arrow\infty$ . Since $\lambda_{j}^{-}$ is realised on $\Sigma^{-}$ , its length on
$\Sigma_{i}^{-}$ with respect to $p_{i}$ is equal to that in $M_{i}$ . Therefore we have

. $1engh_{M}:(\Phi_{i}(\lambda_{i}^{-}))arrow\infty$ . On the other hand, by the continuity of the
length function (Brock [1]), we have

$\lim 1ength_{M:}(\Phi_{i}(\lambda_{i}^{-}))=1engh_{N}(\Psi(\lambda_{\infty}^{-}))$

and the right hand side is finite. This is a contradiction, and we have
completed the proof of the first case.

Now let us turn to the second case. Let $\lambda_{0}$ be the component shared
by I $\lambda_{\infty}^{+}|$ and $|\lambda_{\infty}^{-}|$ , which is not a simple closed curve.

Using the technique of interpolating pleated surfaces due to Thurston,
we prove the following.

Proposition 3. We can take a constant $L>0$ for which the following
holds for large $i$ . There is $t_{i}\in[0,1]$ such that $H_{i}(S(\mu_{0}),t_{i})$ is homotopic
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to $f_{i}|S(\mu_{0})$ by a homotopy staying within the distance $L$ from $f_{i}(S(\mu_{0}))$

which keeps the frontier inside the Margulis tubes all the time.

Then the pleated surface $g_{i}|S(\mu_{0})$ converges to a pleated surface
$g_{\infty}$ : $S(\mu_{0})arrow M_{\infty}$ homotopic to $f_{\infty}$ since the homotopy between
$g_{i}|S(\mu_{0})$ and $f_{i}|S(\mu_{0})$ has bounded diameter and converges to a homo-
topy between $g_{\infty}$ and $f_{\infty}|S(\mu_{0})$ . The limit pleated surface $g_{\infty}$ realises
the limit of the measured laminations $\alpha_{i}(t_{i})|S(\mu_{0})$ . By taking a subse-
quence we can assume that $\alpha(t_{i})$ converges to a projective lamination
on $\alpha([0,1])$ , which must have the same support as $\mu_{0}$ if it $lis$ restricted
in $S(\mu_{0})$ . Therefore the limit pleated surface realises $\mu_{0}$ . Since $f_{\infty}$ is
lifted to $f’$ : $Sarrow N$ , the pleated surface $g_{\infty}$ is also lifted to a pleated
surface, which also realises $\mu_{0}$ . This contradicts the fact that $\mu_{0}$ rep-
resents an ending lamination. Thus we have completed the proof of
Theorem 1 in this case.

The third case is the most difficult. We need to make an eclectic
approach considering Hausdorff limits of the bending loci. The key
steps are as follows.

Lemma 4. Let $\ell$ be a minimal component of $\ell_{\infty}^{-}$ or $\ell_{\infty}^{+},$ Then $\ell$ does
not intersect a component of $\mu$ transversely.

Lemma 5. Suppose that the Hausdorff limits $\ell_{\infty}^{\mp}$ of I $\lambda_{i}^{\mp}|$ contain a
common component which coincides with the support a component $\mu_{0}$

of $\mu^{\mp}$ . Then there is an arc $\alpha_{i}$ : $[0,1]arrow \mathcal{P}\mathcal{M}\mathcal{L}(S)$ connecting $[\lambda_{i}^{-}]$ Utth
$[\lambda_{i}^{+}]$ converging uniformly to an arc $\alpha_{\infty}$ such that for any sequence $\{t_{k}\}$

in $[0,1]$ and monotone increasing $\{i_{k}\}$ for which $|\alpha_{i_{k}}(t_{k})|$ converges in
the Hausdorff topology, the limit contains a minimat component which
coincides with $|\mu_{0}|$ except for the case when $t_{k}=1/4i_{\dot{k}}$ or $t_{k}=1-1/4i_{k}$

for all large $k$ , in which case we have $[\alpha_{i_{k}}(t_{k})]=[\lambda_{\infty}^{+}]$ or $[\lambda_{\infty}^{-}]$ .
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