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1 Introduction
This is a sequel to [3]. Our initial problem is the following.

Problem 1.1. Characterize the combinatorial structures of the Ford do-
mains for hyperbolic structures on a 3-manifold which has a pair of punctured
tori as boundary.

The Jorgensen theory tells in detail the combinatorial structures of the
Ford domains of hyperbolic structures on punctured torus bundles. We ex-
pect to understand in detail the hyperbolic structures on manifolds with
non-fiber surfaces from the combinatorial structures of Ford domains. Prob-
lem 1.1 is the first step to the attempt to fill in the box with “???” in the
following table, which tells the relation between analytic and combinatorial
aspects of Thurston’s Hyperbolization Theorem for Haken manifolds.

2 A family of 3-manifolds with a pair of punc-
tured tori as boundary

We denote the one-holed torus (resp. once-punctured torus) by $T_{0}$ (resp. $T$).
Let $\gamma$ be an essential simple closed curve on the level surface $T_{0}\cross\{0\}$ of
the product manifold $T_{0}\cross[-1,1]$ , and denote by $M_{0}$ the exterior of $\gamma$ , i.e.,
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$M_{0}=T_{0}\cross[-1\rangle 1]$ –Int $N(\gamma)$ , where $N(\gamma)$ is a regular neighborhood of $\gamma$ .
For each sign $\epsilon=\pm$ , we denote the one-holed torus $T_{0}\cross\{\epsilon 1\}\subset\partial M_{0}$ by $T_{0}^{\epsilon}$ ,
and denote the natural homeomorphism between $T_{0}$ and $T_{0}^{\epsilon}$ by $\iota^{\epsilon}$ : $T_{0}arrow T_{0}^{\epsilon}$ .
We define the slopes ($=free$ homotopy classes) $\mu$ and $\lambda$ in $\partial N(\gamma)$ as follows.
$\mu$ is the meridian slope of $\gamma$ , i.e., $\mu$ is represented by an essential simple
closed curve which bounds a disk in $N(\gamma)$ , and $\lambda$ is the slope represented by
the intersection of $\partial N(\gamma)$ and the annulus $\gamma^{t}\cross[0,1]$ . Then $\{\mu, \lambda\}$ generates
$H_{1}(\partial N(\gamma))$ .

For a pair of coprime integers $(p, q)$ , let $M(p, q)$ be the result of Dehn
filling on $M_{0}$ with slope $p\mu+q\lambda$ , i.e., the manifold obtained from $M_{0}$ by
gluing the solid torus $V$ by an orientation-reversing homeomorphism $\partial Varrow$

$\partial N(\gamma)\subset\partial M_{0}$ so that the meridian of $V$ is identified with a simple closed
curve on $\partial N(\gamma)$ of slope $p\mu+q\lambda$ . We regard $M_{0}$ as a submanifold of $M(p, q)$

by using the canonical embedding. In particular, $M(\pm 1,0)$ is canonically
homeomorphic to the product $T_{0}\cross[-1,1]$ .

Proposition 2.1. For any pair of coprime integers $(p, q),$ $M(p, q)$ is home-
omorphic to the handlebody of genus 2.

Set $P=\partial T_{0}\cross[-1,1]$ . In contrast to Proposition 2.1, the pair $(M(p, q),P)$

does not necessarily admit a product structure.

Proposition 2.2. The surfaces $T_{0}^{\pm}$ is incompressible in $M(p, q)$ if and only
if $(p, q)\neq(0, \pm 1)$ . In this case, it follows that $(M(p, q),$ $P$ ) is an atoroidal
Haken pared manifold in the sense of [12].

By the Thurston’s Hyperbolization Theorem for Haken pared manifolds
(cf. [12, Theorem 1.43]), we obtain the following corollary.

Corollary 2.3. For any pair of coprime integers $(p)q)\neq(0, \pm 1),$ $M(p, q)$

admits a complete geometrically finite hyperbolic structure with the parabolic
locus $P$ .

For the rest of this paper, $(p, q)$ denotes a pair of coprime integers distinct
from $(0, \pm 1)$ .

Definition 2.4. We shall denote by $\mathcal{M}\mathcal{P}(p, q)$ the space of geometrically
finite (marked) hyperbolic structures on the pared manifold $(M(p, q),$ $P$) with
the parabolic locus $P$ .

By Corollary 2.3, $\mathcal{M}\mathcal{P}(p, q)$ is not empty. The following proposition fol-
lows from Marden’s isomorphism theorem.

Proposition 2.5. The space $\mathcal{M}\mathcal{P}(p, q)$ is isomorphic to the square $\mathcal{T}\cross \mathcal{T}$

of the Teichmuller space $\mathcal{T}$ of the punctured torus.
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3 Punctured torus groups
We fix a generator pair $(\alpha, \beta)$ of $\pi_{1}(T)$ and denote the commutator $[\alpha, \beta]=$

$\alpha\beta\alpha^{-1}\beta^{-1}$ by $\kappa$ .

Definition 3.1. A representation $\rho$ : $\pi_{1}(T)arrow PSL(2, \mathbb{C})$ is a (marked)
punctured torus group if it is a faithful discrete representation which maps $\kappa$

to a parabolic element. Two punctured torus groups are said to be equivalent
if they are conjugate to each other. Denote the set of equivalence classes of
punctured torus groups $by\overline{Q\mathcal{F}}$ . The set $\overline{\mathcal{Q}\mathcal{F}}$ is identified with a subset of the
$PSL(2, \mathbb{C})$-representation space of $\pi_{1}(T)$ . The topology on $\overline{\mathcal{Q}\mathcal{F}}$ is induced
from this identification.

For any $\rho\in\overline{Q\mathcal{F}},$ $\mathbb{H}^{3}/p(\pi_{1}(T))$ is homeomorphic to Int $(T_{0}\cross(-1,1))$ . For
each end of $T_{0}\cross(-1,1)$ , one can define the end invariant of $\rho$ , denoted by
$\lambda^{\epsilon}(\rho)(\epsilon\in \{-, +\})$ , as follows. If there is asimply connected component of
the domain of discontinuity of $\rho(\pi_{1}(T))$ corresponding to the end, then its
quotient determines amarked conformal structure on $T$ , which is defined to
be the end invariant $\lambda^{\epsilon}(\rho)\in \mathcal{T}$ . If the subset of domain of discontinuity of
$\rho(\pi_{1}(T))$ corresponding to the end is the disjoint union of countable family
of round disks, then its quotient determines amarked conformal structure
on $T$ with node, which is defined to be the end invariant $\lambda^{\epsilon}(\rho)\in\partial_{\mathbb{Q}}\mathcal{T}$.
If the subset of domain of discontinuity of $\rho(\pi_{1}(T))$ corresponding to the
end is empty, then one can define the end invariant $\lambda^{\epsilon}(\rho)\in\partial \mathcal{T}-\partial_{\mathbb{Q}}\mathcal{T}$ by
using asequence of simple closed geodesics whlch exits the end. Here $\mathcal{T}$ is
compactified via Thurston’s compacticfication. Then $\mathcal{T}$ (resp. $\mathcal{T}\cup\partial \mathcal{T}$ and
$\partial_{\mathbb{Q}}\mathcal{T})$ is canonically identified with $\mathbb{H}^{2}$ (resp. $\overline{\mathbb{H}^{2}}$ and $\partial_{\mathbb{Q}}\mathbb{H}^{2}=\hat{\mathbb{Q}}=\mathbb{Q}\cup\{\infty\}$).
(See [14] for details.)

Definition 3.2. The end invariant map $\lambda$ : $\overline{\mathcal{Q}\mathcal{F}}arrow \mathbb{H}^{2}\cross \mathbb{H}^{2}-diag(\partial \mathbb{H}^{2})$ is
defined by $\lambda(\rho)=(\lambda^{-}(\rho), \lambda^{+}(\rho))(\rho\in\overline{\mathcal{Q}\mathcal{F}})$ .

Theorem 3.3 (Minsky [14]). The end invari ant map $\lambda=(\lambda^{-}, \lambda^{+})$ : $\overline{\mathcal{Q}\mathcal{F}}arrow$

$\overline{\mathbb{H}^{2}}\cross\overline{\mathbb{H}^{2}}-diag(\partial \mathbb{H}^{2})$ is a bijection and its inverse is a continuous map. $In$

particular, $\overline{Q\mathcal{F}}$ is equal to the closure of the quasifuchsian space $\mathcal{Q}\mathcal{F}$ .

Given an element $\sigma\in \mathcal{M}\mathcal{P}(p, q)$ , let $p_{\sigma}\wedge$ : $\pi_{1}(M(p, q))arrow PSL(2, \mathbb{C})$ be
the holonomy representation. Then let $\iota_{\sigma}$ : $\pi_{1}(T)arrow PSL(2, \mathbb{C})\cross PSL(2, \mathbb{C})$

be the composition $\iota_{\sigma}=(\rho_{\sigma}\wedge 0\iota_{*}^{-\wedge}\rho_{\sigma}0\iota_{*}^{+})$ . The following proposition follows
from Proposition 2.2 and the covering theorem [7].

Proposition 3.4. The correspondence $\sigma\mapsto\iota_{\sigma}$ induces an embedding of
$\mathcal{M}\mathcal{P}(p, q)$ into $\mathcal{Q}\mathcal{F}\cross \mathcal{Q}\mathcal{F}$.
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Figure 1: Ford domain of a cyclic Kleinian group

4 Ford domain
In what follows, we use the upper half space model for $\mathbb{H}^{3}$ .

Definition 4.1. For an element $\gamma$ of $PSL(2,\mathbb{C})$ which does not stabilize $\infty$ ,
the isometric hemisphere, $Ih(\gamma)$ , of $\gamma$ is the set of points in $\mathbb{H}^{3}$ where $\gamma$ acts
as an isometry with respect to the canonical Euclidean metric on the upper
half space. We denote the exterior of $Ih(\gamma)$ by $Eh(\gamma)$ .

Definition 4.2. For a Kleinian group $\Gamma$ , the Ford domain, $Ph(\Gamma)$ , of $\Gamma$ is
defined by $Ph( \Gamma)=\bigcap_{\gamma\in\Gamma-\Gamma_{\infty}}Eh(\gamma))$ where $\Gamma_{\infty}$ is the stabilizer of $\infty$ in F.
For any hyperbolic structure $\sigma$ on $M_{0}$ or $M(p, q)$ , the Ford domain for $\sigma$ is
defined to be the Ford domain of the image of a holonomy representation for
$\sigma$ which sends the peripheral element $[\partial T_{0}\cross\{0\}]$ of the fundamental group
to $\{\begin{array}{ll}1 20 l\end{array}\}$ .

Example 4.3. The Ford domain $Ph(\langle\gamma\rangle)$ of the cyclic Kleinian group $\langle\gamma\rangle$ ,
generated by a loxodromic element $\gamma\in PSL(2, \mathbb{C})$ which does not stabilize
$\infty$ , is as depicted in Figures 1 and 2. Every (face’ of $Ph(\Gamma)$ is supported by an
isometric hemisphere; there are 8 faces in this example. The characterization
of combinatorial structures of the Ford domains of cyclic Kleinian groups is
given by Jorgensen [10] (cf. [8]).

Let $\mathcal{D}=\{\gamma\langle\infty,0,1\rangle|\gamma\in PSL(2, \mathbb{Z})\}$ be the Farey tessellation of $\mathbb{H}^{2}$ .
The combinatorial structure of the Ford domain of $\rho(\pi_{1}(T))$ for $\rho\in\overline{\mathcal{Q}\mathcal{F}}$ is
characterized by the extension of Jorgensen’s side parameter $\nu=(\nu^{-}, \nu^{+})$ :
$\overline{Q\mathcal{F}}arrow \mathbb{H}^{2}\cross \mathbb{H}^{2}-diag(\partial \mathbb{H}^{2})$ . (See [5, Section 4] for detail.)
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Figure 2: Ford domain of a cyclic Kleinian group and its dual

Figure 3: Ford domain of a quasifuchsian punctured torus group

Here we briefly review the idea of the characterization. The combinatorial
structures of Ford domains are characterized by using EPH-decomposition
introduced in [4].

Definition 4.4. For a hyperbolic structure $\sigma$ on $M_{0}$ or $M(p,q)$ , let $\Delta_{E}(\sigma)$ be
the subcomplex of the EPH-decomposition for $\sigma$ consisting of the Euclidean
facets. Let $\Delta_{E,0}(\sigma)$ be the subcomplex of $\triangle_{E}(\sigma)$ consisting of the facets whose
vertices correspond to the parabolic locus $P$ .

By the observation in [4, Section 10], it can be proved that $\triangle_{E,0}(\sigma)$ is
dual to the Ford domain for $\sigma$ .

For any point $\nu\in\overline{\mathbb{H}^{2}}\cross\overline{\mathbb{H}^{2}}-diag(\partial \mathbb{H}^{2})$ , a topological ideal polyhedral
complex Trg(v) is defined in [5, Section 5]. Then, for any $\rho\in\overline{\mathcal{Q}\mathcal{F}},$ $\Delta_{E,0}(\rho)$

is isotopic to $Rg(\nu(\rho))$ in the convex core of $\mathbb{H}^{3}/\rho(\pi_{1}(T))$ (see [5, Theorem
5.1]). Figure 3 illustrates the Ford domain of a generic quasifuchsian punc-
tured torus group, and Figure 4 illustrates the intersection of $\Delta_{E}(p)$ and a
sufficiently small horosphere centered at $\infty$ , which is the fixed point of the
parabollc subgroup corresponding to $P$ by normalization.
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Figure 4: Dual of Ford domain

5 Ford domains for hyperbolic structures in
$\mathcal{M}\mathcal{P}(p, q)$

To answer Problem 1.1 for the pared manifold $(M(p, q),$ $P$) with a coprime
integers $(p, q)\neq(O, \pm 1)$ , we will follow the following program.

(1) Construct a geometrically finite hyperbolic structure, $\sigma_{0}$ , on the pared
manifold $(M_{0}, P\cup\partial N(\gamma)\cup N(\alpha^{\pm}))$ with the parabolic locus $P\cup\partial N(\gamma)\cup$

$N(\alpha^{\pm})$ , where $N(\alpha^{\pm})$ is the regular neighborhood in $T_{0}^{\pm}$ of the union of
two simple closed curves $\alpha^{\pm}\subset T_{0}^{\pm}$ .

(2) Construct a geometrically finite hyperbolic structure, $\sigma(p, q)$ , on the
pared manifold $(M(p, q),$ $P\cup N(\alpha^{\pm}))$ in $\partial \mathcal{M}\mathcal{P}(p, q)$ by hyperbolic Dehn
filling on the structure $\sigma_{0}$ .

(3) By using the (geometric continuity” argument, which is used in the Jor-
gensen theory, characterize the combinatorial structures of Ford domains
of the structures in $\mathcal{M}\mathcal{P}(p, q)$ .

See Figures 5 and 6, which illustrates the Ford domains for $\sigma_{0}$ and $\sigma(3,5)$ .

For the step (1), the desired hyperbolic structure, $\sigma_{0}$ , is obtained from
two copies of the manifold of the double cusp group $\lambda^{-1}$ (oo, 1/2) by gluing
along a pair of boundary components of their convex cores.

Definition 5.1. For each $s\in\hat{\mathbb{Q}}$ with $0<s<1$ , let $\Delta_{0}^{s}$ be the complex ob-
tained from the two copies of the complex $Rg(\infty, s)$ by gluing them together
along the edge with slope $\infty$ (see Figure 7).

The following proposition follows from [5, Theorem 9.1].
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Figure 5: Ford domain for $\sigma_{0}$

Figure 6: Ford domain for $\sigma(3,5)$

Figure 7: The link of the ideal vertex of $\Delta_{0}^{1/2}$

11



Figure 8: The link of the ideal vertex of $\triangle^{1/2}(p, q)$ ; this figure illustrates the
case $(p, q)=(3,5)$

Proposition 5.2. The complex $\Delta_{E,0}(\sigma_{0})$ is combinatorially equivalent to the
complex $\Delta_{0}^{1/2}$ .

For the step (2), the following Proposition 5.4 is proved by studying the
Ford domains after hyperbolic Dehn filling. See [2] for an outline, in which
the definition of layered sohd torus is not correct; it should be modified as
follows. The following construction is parallel to the construction of the
topological ideal triangulation of the two bridge link complement introduced
in [15]. Let $\sigma^{+}$ be the triangle of $\mathcal{D}$ with vertices $0,1/2$ and 1/3. For any
coprime integers $(p, q)$ , let $l$ be the geodesic in $\mathbb{H}^{2}$ with endpoints $p/q$ and
$s^{+}\in\{0,1/2,1/3\}$ which intersects the interior of $\sigma^{+}$ . Let $\sigma^{-}$ be the triangle
of $\mathcal{D}$ with vertex $p/q$ whose interior intersects $l$ . Let $\sigma^{-,*}$ be the triangle which
shares an edge with $\sigma^{-}$ and does not contain $p/q$ . Let $s^{-}$ be the vertex of
$\sigma^{-,*}$ which is not contained in $\sigma^{-}$ . We introduce the equlvalence $relation\sim_{s^{-}}$

on the boundary component of $Rg(s^{-}, s^{+})$ corresponding to $\sigma^{-,*}$ following
[15, Section II.2]. Let $V(p, q)$ be the quotient space $Trg(s^{-}, s^{+})/\sim_{s^{-}}$ . Then
$V(p, q)$ is homeomorphic to the solid torus with apoint on the boundary
removed whenever $\sigma^{+}$ and $\sigma^{-,*}$ do not share an edge. We can see also that
the meridian of $V(p, q)$ has slope $p/q$ .

Definition 5.3. Let $\overline{V}\cdot(p, q)$ be the double cover of $V(p,q)$ . For each $s\in \mathbb{Q}$

with $0<s<1$ , let $\Delta^{s}(p, q)$ be the complex obtained by gluing $\uparrow(p,q)\sim_{V}$ to
$\triangle_{0}^{s}$ so that the triangle of $\partial\tilde{V}(p, q)$ with edges of slopes $(0,1/3,1/2)$ and the
triangle of $\partial\triangle_{0}^{s}$ with edges of slopes $(\infty, 0,1)$ are identified. (See Figure 8.
See also Figures 10 and 11.)

Proposition 5.4. For all but finite coprime integers $(p, q)$ , the complex
$\Delta_{E,0}(\sigma(p, q))$ is combinatorially equivalent to $\Delta^{1/2}(p)q)$ (see Figure 8).
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Figure 9: Ford domain for a hyperbolic structure in $J_{sym}^{thick}\subseteq \mathcal{M}\mathcal{P}_{S\}},m(p, q)$

for $(p, q)=(3,5)$

Let $\mathcal{M}\mathcal{P}_{sym}(p\rangle q)$ be the subspace of $\mathcal{M}\mathcal{P}(p, q)$ consisting of the elements
whose image $(\lambda^{-},\cdot\lambda^{+})$ in $\mathcal{T}\cross \mathcal{T}$ by the map defined in Proposition 2.5 satisfies
that $\lambda^{+}$ is the mirror image of $\lambda^{-}$ . Then $\sigma(p, q)$ is contained in $\partial \mathcal{M}\mathcal{P}_{sym}(p, q)$ .
The symmetry of this kind seems to be useful to carry out the “geometric
continuity’) argument.

Question 5.5. Is the combinatorial structure of the Ford domain for every
hyperbolic structure in $\mathcal{M}\mathcal{P}_{s\}},m(p)q)$ characterized by a way similar to that
given Fn Proposition 5.4?

We say a hyperbolic structure $\sigma\in \mathcal{M}\mathcal{P}_{sym}(p)q)$ is thick good if $\triangle_{E}(\sigma)$ is
combinatorially equivalent to $\triangle^{s}(p, q)$ for some $s\in \mathbb{Q}$ with $0<s<1$ , and
denote the subset of $\mathcal{M}\mathcal{P}_{sym}(p, q)$ consisting of the thick good structures by
$\mathcal{J}_{sym}^{thick}$ . Figure 9 illustrates the Ford domain for a hyperbolic structure con-
tained in $\mathcal{J}_{sym}^{thick}\subset \mathcal{M}\mathcal{P}_{sym}(p, q)$ for $(p, q)=(3,5)$ . We can draw a conjectural
picture of $\mathcal{J}_{sym}^{thick}$ for $(p, q)=(3,5)$ as Figure 12. In the Pgure, the hyper-
bolic structures are parametrized by $Tr\rho(\gamma)$ , where $\rho$ is a lift to a $SL(2, \mathbb{C})-$

representation of the holonomy representation for the structure. A point in
the plane is colored gray if the corresponding representation determines an
embedding into $\mathbb{C}$ of a simplicial complex which is supposed to be the dual of
the Ford domain and if the radii of the isometric hemispheres corresponding
to the vertices of the complex do not exceed 1. The condition on the radii
of isometric hemispheres is necessary for the corresponding holonomy rep-
resentation to be discrete. Those points are colored by two different colors

13



Figure 10: Idea of construction of the dual complex (1): The dual complex is
based on two copies of the dual complex for a quasifuchsian punctured torus
group
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Figure 11: Idea of construction of the dual complex (2): By drilling and filling
with the dual complex for a cyclic Kleinian group, we obtain the desired
complex

according to the change of combinatorial structures of the Ford domains.

Question 5.6. How is the Ford domain for a hyperbolic structure in $\mathcal{M}\mathcal{P}(p,q)-$

$\mathcal{J}_{sym}^{thick}$ characterized?

References
[1] H. Akiyoshi, “On the Ford domains of once-punctured torus groups”,

Hyperbolic spaces and related topics, RIMS, Kyoto, Kokyuroku 1104
(1999), 109-121.

[2] H. Akiyoshi, (Canonical decompositions of cusped hyperbolic 3-
manifolds obtained by Dehn fillings”, Perspectives of Hyperbolic Spaces,
RIMS, Kyoto, Kokyuroku 1329, 121-132, (2003).

[3] H. Akiyoshi, “Ford domains of a certain hyperbolic 3-manifold whose
boundary consists of a pair of once-punctured tori”, Complex Analysis
and Geometry of Hyperbolic Spaces, RIMS, Kyoto, Kokyuroku 1518,
63-75, (2006).

15



Figure 12: Conjectural picture of $f_{sym}$ for $(p, q)=(3,5)$

[4] H. Akiyoshi and M. Sakuma, (Comparing two convex hull constructions
for cusped hyperbolic $manifold_{S}$ )’ Kleinian groups and hyperbolic 3-
manifolds (Warwick, 2001), 209-246, London Math. Soc. Lecture Note
Ser., 299, Cambridge Univ. Press, Cambridge, (2003).

[5] H. Akiyoshi, M. Sakuma, M. Wada and Y. Yamashita, “Jorgensen’s
picture of punctured torus groups and its refinement“, Kleinian groups
and hyperbolic 3-manifolds (Warwick, 2001), 247-273, London Math.
Soc. Lecture Note Ser., 299, Cambridge Univ. Press, Cambridge, (2003).

[6] H. Akiyoshi, M. Sakuma, M. Wada, and Y. Yamashita, “Punctured
torus groups and 2-bridge knot groups (I), preprint.

[7] R. Canary, (A covering theorem for hyperbolic 3-manifolds and its ap-
plications”, Topology, 35 (1996), 751-778.

[8] T. A. Drumm and J. A. Poritz, “Ford and Dirichlet domains for cyclic
subgroups of $PSL(2, C)$ action on $\mathbb{H}_{\mathbb{R}}^{3}$ and $\partial \mathbb{H}_{R)}^{3}$ Conformal Geometry
and Dynamics, An Electronic Journal of the A.M.S. Vol. 3 (1999), 116-
150.

[9] W. Floyd and A. Hatcher, “Incompressible surfaces in punctured torus
bundles”, Topology Appl., 13 (1982), 263-282.

[10] T. Jorgensen, “On cyclic groups of Mobius transformations“, Math.
Scand., 33 (1973), 250-260.

[11] T. Jorgensen, “On pairs of punctured tori“, in Kleinian Groups and
Hyperbolic 3-Manifolds, Y. Komori, V. Markovic &C. Series (Eds.),
London Mathematical Society Lecture Notes 299, Cambridge University
Press, (2003).

16



[12] M. Kapovich, Hyperbolic manifolds and discrete groups, Progress in
Mathematics 183, Birkhauser Boston, Inc., Boston, MA, (2001).

[13] M. Lackenby, “The canonical decomposition of once-punctured torus
bundles”, Comment. Math. Helv., 78 (2003), no. 2, 363-384.

[14] Y. Minsky, “The classification of punctured torus groups”, Ann. of
Math., 149 (1999), 559-626.

[15] M. Sakuma and J. Weeks, “Examples of canonical decompositions of
hyperbolic link complements”, Japan. J. Math. (N.S.) 21 (1995), no. 2,
393-439.

Osaka City University Advanced Mathematical Institute,
Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
e-mail: akiyoshi@sci.osaka-cu.ac.jp

17


