
PRE-BLOCH INVARIANT FOR 3-MANIFOLD WITH HIGHER
GENUS BOUNDARY

東京工業大学理工学研究科数学専攻・ 蒲谷祐一 ・ (KABAYA Yuichi)
Department of Mathematics, Tokyo Institute of Technology

ABSTRACT. This is an exposition of the author’s paper [3].

1. INTRODUCTION

In [5], Neumann and Yang defined the Bloch invariant for oriented hyperbolic
3-manifold with finite volume. The Bloch invariant is defined on the Bloch group
and has intimate relation with volume of the manifold and Chern-Simons invariant.

In this exposition, we generalize the Bloch invariants for infinite volume hyper-
bolic 3-manifolds. Uike finite volume hyperbolic manifolds, this invariant is not
invariant of a hyperbolic manifold. In this case, we essentiany need a boundary
condition. The boundary condition is given by pants decomposition.

2. DEFINITION OF THE BLOCH INVARIANT

The pre-Bloch group $\mathcal{P}(\mathbb{C})$ is the quotient of the free abelian group generated
by $\mathbb{C}-\{0,1\}$ factored, by the relation:

(2.1) $[x]-[y]+[ \frac{y}{x}]-[\frac{1-x^{-1}}{1-y-1}]+[\frac{1-x}{1-y}]=0$ .

We denote $[z]$ the class which contains $z$ . Then we define a map
$\lambda$ : $\mathcal{P}(\mathbb{C})arrow \mathbb{C}^{*}\wedge z\mathbb{C}^{*}$ , $[z]\mapsto 2(z\wedge z(1-z))$ ,

where we regard C’ as an abelian group by multiplication. For example, $xy\wedge zz=$

$x\wedge zz+y\wedge zz$ .
Theorem 2.1 (Bloch-Wigner, Dupon-Sah [2]).
(2.2)

$0arrow \mathbb{Q}/\mathbb{Z}arrow H_{3}(PSL(2, \mathbb{C}),$ $\mathbb{Z}$)$f_{1}arrow \mathcal{P}(\mathbb{C})f_{2}arrow\lambda$ C’ $\bigwedge_{\mathbb{Z}}\mathbb{C}^{*}arrow H_{2}(PSL(2,\mathbb{C}),\mathbb{Z})f_{8}arrow 0$

is exact. $(H_{i}(PSL(2, \mathbb{C}),$ $\mathbb{Z}$) represents i-th homology of group!)

In the above exact sequence, $f_{1}$ is defined by the composition $\mathbb{Q}/\mathbb{Z}\subset H_{3}(\mathbb{C}", \mathbb{Z})arrow$

$H_{3}(PSL(2, \mathbb{C}),\mathbb{Z})$ . $f_{2}$ is defned by $[g_{1}|g_{2}|g_{3}]\mapsto[[z : g_{1}z : g_{1}g_{2}z : g_{1}g_{2}g_{3}z]]$ where
$[g_{1}|g_{2}|g_{8}]$ is the bar notation and $[z_{0} : z_{1} : z_{2} : z_{3}]= \frac{(z_{2}-z_{1})(z_{3}-z_{0})}{(z_{2}-z_{0})(z_{3}-z_{1})}f_{3}$ is the

composition C’ $\bigwedge_{\mathbb{Z}}$ C’ $\cong H_{2}(\mathbb{C}^{*}, \mathbb{Z})arrow H_{2}(PSL(2, \mathbb{C}),$ $\mathbb{Z}$).
We define the Bloch group by

$\mathcal{B}(\mathbb{C})=Ker(\mathcal{P}(\mathbb{C})arrow \mathbb{C}^{*}\bigwedge_{\mathbb{Z}}\mathbb{C}^{n})$ .
Neumann and Yang introduced the Bloch invariant by the $follow\dot{i}g$ way. An
ideal tetrahedron is a $g\infty desic$ 3-simplex on $\mathbb{H}^{3}$ with each vertex at infinity $\mathbb{C}P^{1}$ .
An oriented ideal tetrahedron with prescribed edge is parametrized by a complex
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number. Let $M$ be an oriented complete finite volume hyperbolic manifold. Let
$M=\Delta(z_{1})\cup\cdots\cup\triangle(z_{n})$ be an ideal triangulation (we omit the precise definition
of ideal triangulation. For example, Thurston’s hyperbolic Dehn surgeryn produces

an ideal triangulation. See detail in [5].) Then we define $\beta(M)=\sum_{\nu=1}[z_{\nu}]$ . The

very definition depends on the triangulation and only states that $\beta(M)\in \mathcal{P}(\mathbb{C})$ ,
but Neumann and Yang showed that

Theorem 2.2 (Neumann-Yang [5]). $\beta(M)$ is an invariant of $M$ and $\beta(M)\in \mathcal{B}(\mathbb{C})$ .
If $M$ is closed, the discrete faithful representation of $\pi_{1}(M)$ induces $\rho 0$ : $H_{3}(M)arrow$

$H_{8}(PSL(2, \mathbb{C}))$ and $\beta(M)$ is equal to $f_{2}((\rho_{0})_{*}([M]))$ where $[M]$ is the fundamental
cycle of $M$ .

Let $M$ be a compact 3-manifold with torus boundary and $\rho$ be a representation
of $\pi_{1}(M)$ to $PSL(2, \mathbb{C})$ . Neumann and Yang also defined an invariant $\beta(M,\rho)$ in
$\mathcal{P}(\mathbb{C})$ . If $\rho$ corresponds to the holonomy of hyperbolic Dehn filled manifold, then
$\beta(M, \rho)$ is equal to the Bloch invariant of the Dehn filled manifold (in paxticular
$\beta(M, \rho)\in \mathcal{B}(\mathbb{C}))$ . But in general $\beta(M, \rho)$ takes value in $\mathcal{P}(\mathbb{C})$ . Let $(\mathcal{L},\mathcal{M})$ be a set
of generators of $H_{1}(\partial M)$ . Let $L_{0}$ and $M_{0}$ be the derivatives of holonomies along $\mathcal{L}$

and $\mathcal{M}$ . Then we have

Theorem 2.3 (Neumann [4]).
$\lambda(\beta(M, \rho))=L_{0}\bigwedge_{Z}M_{0}$ .

This theorem states that a difference from $\mathcal{B}(\mathbb{C})$ can be expressed in terms of
the representation of the boundary of $M$ .

They also defined $\beta(M, \rho)$ for more general manifold. Let $M$ be a compact
3-manifold with boundary $S$ and $\rho$ be a representation of $\pi_{1}(M)$ to $PSL(2, \mathbb{C})$ .
They defined an invariant $\beta(M, \rho)$ if the restriction of $\rho$ to $\partial M=S$ has a fixed
point i.e. the restriction of $\rho$ to the boundary is reducible. If the boundary has
genus more than 1, this assumption is too strong. In fact the set of reducible
surface representations has strictly smaller dimension than the set of all the surface
representations.

3. PANTS DECOMPOSITION AND IDEAL TRIANGULATION

Let $M$ be acompact oriented 3-manifold. For simplicity, we assume that $S=\partial M$

is aconnected surface of genus $g>1$ . The pants decomposition $C$ of $S$ is amaximal
set of distinct isotopy classes of disjoint simple closed curves. The number of curves
of $C$ is $3g-3$ . Let $0$ be orientations of the curves of C. The pair $(C, 0)$ definae
ideal triangulation of $S$ as foUows. $S-Ci_{8}$ aset of pair8 of pants (3-holed spheres).
Then each pair of prts $P$ admits ideal tritgulation by two ideal tritgle8 so that
the ideal vertices of ideal triangles spinning around the boundaries of the pair of
prts to the direction $0$ . Let $T$ be an ideal triangulation which is coincide with
the ideal triangulation of the boundary given by $(C, 0)$ . We can imagine easily this
situation if we attach truncated ideal 3-simplices each other. buncated vertice8
make 2-dimensional triangles. When we attach 3-simplices along their faces to each
other, then these triangles are attached to each other. These tritgles form annuli
which are the boundaries of aneighborhood of pants curves C. For each curve
$\gamma_{k}\in C$ , we denote these rnuli by $A_{k}(k=1, \ldots, 3g-3)$ . We can use more general
ideal tritgulation, but in this paper we use this definition for simplicity.
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4. REPRESENTATION OF $\pi_{1}(M)$ AND PRE-BLOCH INVARIANT

Let $M,$ $C$ and $0$ be as in the last section. Let $\rho$ be a representation of $\pi_{1}(M)$ to
$PSL(2, \mathbb{C})$ . We assume that restriction of $\rho$ to each pair of pants (3-holed sphere)
is irreducible and the holonomies around boundaries of pair of pants are hyperbolic
elements of $PSL(2, \mathbb{C})$ . Then $(C, 0, \rho)$ determines developing map of $S$ uniquely
up to conjugation as follows. Let $P$ be a pair of pants of $S-C$. Let $\gamma_{1},$ $\gamma_{2},$ $\gamma_{3}$

be boundary curves of $P$ . Let $g_{1},$ $g_{2},$ $g_{3}$ be elements of $\pi_{1}(P)$ which go around
$\gamma_{1},$ $\gamma_{2},$ $\gamma_{3}$ . Then $\rho(g_{i})$ have distinct fixed points in $\mathbb{C}P^{1}$ by the assumption. Put
ideal triangle in $\mathbb{H}^{3}$ so that ideal vertices are at fixed points of $\rho(g_{i})$ . Then we can
develop this ideal triangle by the action of $\rho(\pi_{1}(P))$ . Do this construction for each
pair of pants, we get a developing map of $S$ for $\rho$ . By putting the ideal triangle at
another position, we can conjugate the representation $\rho$ .

After constructing developing map of $\partial M$ , we extend it to the developing map
of $M$ by using $\rho$ . The developing map defines a complex parameter for each ideal
tetrahedron. We denote such complex number by $z_{\nu}$ . Then we define

Definltion 4.1. $\beta(M, \rho, C, 0)=\sum_{\dot{j}=1}^{n}[z_{i}]\in \mathcal{P}(\mathbb{C})$ .

Proposition 4.2. $\beta(M, \rho, C, 0)$ only depends on $M,$ $\rho_{f}C,$ $0_{f}$ and not on the choice
of triangulation of $M$ .

5. SOME PROPERTIES OF $\beta(M, \rho, C, 0)$

As in [6], we define the edge relation for each l-simplex of $T$ which is not facing
to $\partial M$ :

$R_{i}= \pm\prod_{\nu=1}^{n}z_{\nu}^{r_{\nu}’}(1-z_{\nu})^{r_{\nu}’’}\dot{\cdot},=1$ $(i=1,2, \ldots,n-3(g-1))$ .

For l-simplex of $T$ which is facing to $\partial M$ , we define a complex number by multi-
plication the complex numbers of edges which are adjacent to the l-simplex:

$B_{i}= \pm\prod_{\nu=1}^{n}z_{\nu}^{b_{\nu}’}(1-z_{\nu})^{b_{\nu}’’}\cdot$, $(i=1,2, \ldots, 6(g-1))$ .

Because the number of pairs of pants on $S-C$ is $2g-2$ , the number of boundary
l-simplices are $6g-6$ . Unhike $R_{i},$ $B_{i}$ is not equal to 1. We call such a l-simplex
boundary 1-simplex. $B_{i}$ measures how bent two ideal triangles at the boundary
l-simplex.

Take a loop $h_{k}$ on $A_{k}$ so that $h_{k}$ is a generator of $H_{1}(A_{k}, \mathbb{Z})$ . Take a path $w_{k}$ of
$(A_{k}, \partial A_{k})$ so that $w_{k}$ represents a generator of $H_{1}(A_{k}, \partial A_{k}, \mathbb{Z})$ . Then we can define
a complex number by multiplication complex parameters as torus boundary case
(see, for example, [6].)

$H_{k}= \pm\prod_{\nu\approx 1}^{n}z_{i}^{h_{k,\nu}’}(1-z_{i})^{h_{k,\nu}’’}$ , $W_{k}= \pm\prod_{\nu=1}^{n}z_{i}^{w_{k,\nu}’}(1-z_{i})^{w_{k,\nu}’’}$ $(k=1, \ldots, 3(g-1))$ .

We call $W_{k}$ a twist parameter of $\gamma_{k}$ for $k=1,$ $\ldots,$ $3(g-1)$ . $H_{k}$ depends only on the
homology class of $h_{k}$ and $H_{k}$ represents the square of eigenvalue of the holonomy
around the curve $\gamma_{k}\in C$ . On the other hand $W_{k}$ is not $wen$-defined. If we deform
the endpoint of $w_{k}$ across the boundary l-simplex $i$ , then $W_{k}$ changes to $W_{k}B_{i}$ .
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Let $e_{i},$ $e_{j}$ be a boundary l-simplex of a pair of pants P. $e_{i}$ and $e_{j}$ are intersect
with common pants curve $\gamma_{k}$ . Then we can observe that $B_{i}B_{j}$ measures how bent
ideal triangles on $P$ around $\gamma_{k}$ . In fact we can show $B_{i}B_{j}=H_{k}$ . Since $\gamma_{k}$ has
two adjacent pair of pants, we denote the other one by $P’$ . Then $P$‘ has two
boundary l-simplex which intersect with $\gamma_{k}$ . We denote them by $i’$ and $j’$ . By
above observation we have a relation $B_{i}B_{j}=H_{k}=B_{i’}B_{j’}$ . So $(B_{1}, \ldots, B_{6g-6})$

is essentially $(6g-6)-(3g-3)=3g-3$ dimensional object. Moreover we can
represent $B_{i}$ in terms of $H_{k}’ s$ .

$(H_{k}, W_{k})$ reminds us the Fenchel-Nielsen coordinate. Fenchel-Nielsen coordinate
define a coordinate of Teichm\"uller space by length and twist. A length is well-
defined for given hyperbolic surface, on the other hand twist is not determined by
given hyperbolic surface.

We have a version of Theorem 2.3 for higher genus boundary case.

Theorem 5.1.

$\lambda(\beta(M, \rho, C_{0}))=\sum_{k=1}^{3(g-1)}H_{k}\wedge zW_{k}$ .

We remark that $W_{k}$ is not well defined as we mentioned, but the right hand side
of the above equation is well-defined.

6. VOLUMES OF REPRESENTATIONS

By using invariance of $\beta(M, \rho,C, 0)$ , we can define a volume of a representation.

We define $Li_{2}(z)=- \int_{0}^{\infty}\frac{\log(1-t)}{t}dt$ and

$D(z)={\rm Im} Li_{2}(z)+\log|z|arg(1-z)(z\in \mathbb{C}-\{0,1\})$ .

For an ideal simplex with complex parameter $z$ of ideal simplex, we can describe
its volume by $D(z)$ . $D$ satisfies five term relation,

$D(x)-D(y)+D(y/x)-D( \frac{1-x^{-1}}{1-y-1})+D(\frac{1-x}{1-y})=0$ .

So we have a homomorphism $D$ : $\mathcal{P}(\mathbb{C})arrow \bm{R}$ . We can define volume of $\beta(M, \rho, C, 0)$

by $D(\beta(M, \rho, C, 0))$ . We next consider the variation of volume in deformation space.
Consider smooth family of representations of $\pi_{1}(M)$ to $PSL(2,\mathbb{C})$ parametrized by
$t$ . Then the derivative of volume is

$\frac{dVo1}{dt}=-\frac{1}{2}\sum_{k=1}^{3(g-1)}(\log|W_{k}|\frac{d\arg(H_{k})}{dt}-\log|H_{k}|\frac{d\arg(W_{k})}{dt})$ .

This formula shows that the derivative of volume is written by in terms of the
representations of the boundary. We remark that Bonahon proved a variation
formula of volume for geometrically finite hyperbolic manifolds (see Theorem 3 of
[1]). Bonahon’ theorem shows the variation of volume bounded by pleated surface
with fixed pleated locus geodesic $lam\dot{i}$ation. In our case, the geodesic larnination
is given by ideal triangulation by pants decomposition.
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