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Abstract

A preconditioned method for saddle point problems is presented and analyzed. We show a
double preconditioned method for special saddle point problems, and apply the new method
to some standard iterative solution methods. The method is illustrated by several examples
derived $hom$ the surface fitting problems. Preliminary numerical results indicate that the
method is efficient.
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1 Introduction

In this paper, we consider the following saddle point problems.

$(\begin{array}{ll}\mathcal{A} B^{T}B 0_{m}\end{array})(\begin{array}{l}xy\end{array})=(\begin{array}{l}fg\end{array})$ (1.1)

where $\mathcal{A}$ is an $nxn$ symmetric and positive semi-definite matrix, $B$ is an $mxn$ matrix and
$f\in R^{n},$ $g\in R^{m}$ are given vectors. It is assumed that $n\geq m$ .

The problem (1.1) $arise8$ in the partial differential equations and optimization problems
([12][14]) and usually becomes large systems. The matrix in (1.1) is known as a saddle point
matrix which is an indefinite matrix. In general, a numerical solution method for the indefinite
problem is theoretically difficult compared with positive definite problems, and the convergence
rate becomes slow. Recently, preconditioned Uzawa algorithms are studied ([3][5][6][8]) and
are shown as an effective iterative solution method for the saddle point problem. Under some
assumptions, these algorithms will be devised by using the outer iteration. Then we can refor-
mulate the coefficient matrix (1.1) as a symmetric and positive definite problem.

1.1 The unique solvability

Let $U$ be an $mxm$ symmetric and positive definite matrix. We know that if $(A, B^{T})$ has
full-row rank, that is, $r\bm{t}k(\mathcal{A}, B^{T})=n$ then $\mathcal{A}_{U}\equiv \mathcal{A}+B^{T}UB$ is positive definite. Hence we
now consider the following saddle point problems.

$(\begin{array}{ll}A_{U} B^{T}B 0_{m}\end{array})(\begin{array}{l}xy\end{array})=(\begin{array}{l}f_{U}g\end{array})$ (1.2)

where $f_{U}$ $:=f+B^{T}Ug$ .
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Since (1.1) is equivalent to (1.2), we generally know that if $\mathcal{A}_{U}$ and $S_{U}\equiv B\mathcal{A}_{U}^{-1}B^{T}$ are
positive definite then (1.1) has a unique solution. Then an exact solution $(x^{*}, y^{*})$ of (1.1) is
written by

$y^{*}$ $=$ $S_{U}^{-1}(B\mathcal{A}_{U}^{-1}f_{U}-g)$ , (1.3)
$x^{*}$ $=$ $\mathcal{A}_{U}^{-1}(f_{U}-B^{T}y^{*})$ .

Notice that for the formula (1.3), we can easily solve the second equation since $n\geq m$ . In this
paper, we consider the preconditioned method for the first equation (linear system $S_{U}$ ).

1.2 Motivation and Purpose

During the years, much raeearch has been devoted to inner iterative solution methods for sym-
metric and positive definite problems $([1][11])$ , then $the8e$ preconditioned methods are fast.
Moreover, the preconditioned method for the saddle point problem is also $pr\infty ented([2][3][4][9])$ .

For almost mathematical modek of physical and natural phenomena, using the finite ele-
$ment/difference$ method with amaeh size $h>0$ , we generally know that the cost (time) for
numerical computations is increasing when $h$ is decreasing. For example, if we use aprecondi-
tioner for discretizations by the incomplete Cholesky decomposition with afixed tolerance then
the iteration number is also increasing. It meao that atotal computing cost depends on the
dimension and iteration numbers. Note that the condition number influences the iteration num-
ber. Thus, if we assume that the condition number is a $con8tant$ independent of the mesh size
$h$ then we can easily $\infty timate$ the total cost of numerIcal computations for large systems. Note
that the saddle point problem is reduced to the linear system $S_{U}hom(1.3)$ . Of course, if we
take the preconditioner as the inverse matrix then the condition number is always one. However,
we expect that it is difficult for the linear system $S_{U}$ to generate agood preconditioner, because
$S_{U}$ is not give and is generally dense. Hence we consider adouble preconditioned method to
give agood condition number independent of the dimeoion without using $\mathcal{A}_{U}^{-1}$ .

Here we only show the preconditioned CG method of the Uzawa-type below.

Algorithm 1 (Q-Preconditioned $CG$ Method of the Uzawa-type)
For an initial guess $y_{0}$ ,

Solve $x_{0}=\mathcal{A}_{U}^{-1}(f_{U}-B^{T}y_{0})$ ;
Compute $r_{0}=Bx_{0}-g$ ; $p_{0}=Q^{-1}r_{0}$ ;
For $k=0$ to convergence

Solve $[Sp]_{k}=BA_{U}^{-1}B^{T}p_{k}$ ;
Compute $y_{k+1}=y_{k}+\alpha_{k}p_{k}$ ; where $\alpha_{k}=(r_{k},p_{k})/(p_{k}, [Sp]_{k})$ ;
Compute $r_{k+1}=r_{k}-\alpha_{k}[Sp]_{k}$ ;
Solve $u=Q^{-1}r_{k+1}$ ;
Compute $p_{k+1}=u-\beta_{k}p_{k}$ ; where $\beta_{k}=(u, [Sp]_{k})/(p_{k}, [Sp]_{k})$ ;

End
Solve $x_{k+1}=\mathcal{A}_{U}^{-1}(f_{U}-B^{T}y_{k+1})$ ;

Since many saddle point problems of mathematical models satisfy that there exists a constant
$M>0$ independent of the dimension $n$ such that $||A||_{2}\leq M$ , if we take preconditioners $U$ and
$Q$ satisfying $cond_{2}(Q^{-}1rS_{U}Q^{-1}2)<1+\epsilon\Vert A\Vert_{2}$ , where $1\gg\epsilon>0$ (independent of n) then it
becomes a fast solution method for large saddle point systems.

Therefore, our purpose of this paper is to take good preconditioners $U$ and $Q$ , and apply
these preconditioners to some standard iterative solution methods (cf. Algorithm 1).
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We denote the largest and smallest eigenvalues of a matrix by $\lambda_{\max}(\cdot)$ and $\lambda_{lni\mathfrak{n}}(\cdot)$ , respec-
tively. Moreover, $\rho(\cdot)$ and $cond_{2}(\cdot)$ denote a spectral radius and condition number with respect
to 2-norm, respectively. Also $I_{k}$ denotes the k-th identity matrix and $0_{k}\equiv 0\cdot I_{k}$ . For the
discussion, we assume that $B$ has full-row rank, that is, rank$(B)=m$.

2 The preconditioned method
In this section, we discuss a preconditioned method for the saddle point problems (1.1), and
we aesume that $A_{U}\equiv A+B^{T}UB$ is positive definite and $B$ has full-row rank, it implies that
the matrix $S_{U}\equiv BA_{U}^{-1}B^{T}$ is also positive definite. For our problems, it is important for the
convergence of iterative solution methods to analyze the property of $S_{U}$ . Usually, we want to
take the preconditioner as approximations of $S_{U}^{-1}$ , however, $S_{U}$ is not a given matrix. Hence we
introduce an effective preconditioned method without using $\mathcal{A}_{U}^{-1}$ .

Here we show a standard preconditioned method for the problem (1.2). Let $Q$ be an $mxm$
symmetric and positive definite matrix. Then (1.2) is equivalent to the following preconditioned
problems.

$(\begin{array}{ll}I_{n} 00 Q^{-\}\end{array})(\begin{array}{ll}\mathcal{A}_{U} B^{T}B 0_{m}\end{array})(\begin{array}{ll}I_{n} 00 Q^{-l}2\end{array})(\begin{array}{ll}x Q\} y\end{array})=(\begin{array}{l}f_{U}Q^{-A}2g\end{array})$ . (2.1)

Let $V$ and $W$ be $mxm$ symmetric and positive definite matrices. If $A+B^{T}VB$ is positive
definite and $B$ has full-row rank then we have the following equality which was presented by
Golub et al. in [9].

$(B(\grave{A}+B^{T}VB)^{-1}B^{T})^{-1}=(B(\mathcal{A}+B^{T}(V+W)B)^{-1}B^{T})^{-1}-W$ . (2.2)

First we briefly discuss a single preconditioned method for (1.2). From (2.2), we have

$cond_{2}(WS_{(V+W)}W^{A}2=\frac{\lambda_{\min}(WS_{V}W)+1}{\lambda_{\max}(WaS_{V}WAi)+1}cond_{2}(WS_{V}W)$ , (2.3)

where $S_{V}\cong BA_{V}^{-1}B^{T}$ . Thus if we take $V=\kappa_{1}I_{m}$ and $W=\kappa_{2}I_{m}$ then it implies that

$cond_{2}(S_{(\kappa_{1}I_{m}+\kappa_{2}I_{m})})=\frac{\lambda_{\min}(S_{(\kappa_{1}I_{m})})+\kappa_{2}^{-1}}{\lambda_{mu}(S_{(\kappa_{1}I_{m})})+\kappa_{2}^{-1}}cond_{2}(S_{(n_{1}I_{n})})$,

where $\kappa_{1}$ and $\kappa_{2}$ are positive constants. Henoe if we take $\kappa_{2}$ satisfying $\kappa_{2}\cdot\lambda_{\min}(S_{(\kappa_{1}I_{m})})\cdot\gg 1$ for
a fixed $\kappa_{1}$ then $U=(\kappa_{1}+\kappa_{2})I_{m}$ becomes a good preconditioner for (1.2).

Next we consider a double preconditioned method. Notice that matrices $U$ and $Q$ in (2.1)
become the first and second preconditioners, respectiveiy. As a similar argument, if we take $V$

and $W$ satisfying $\lambda_{\min}(W\# s_{V}W^{\frac{1}{l}})\gg 1$ then $V$ and $W$ become good preconditioners. Here we
show the following result which was presented by Chen and the author in [7].

Lemma 2 Let $S\equiv BA^{-1}B^{T}+C$ , where $A$ is an $nxn$ symmetric and positive definite matrix,
$C$ is an $mxm$ symmetric and positive semi-definite matrix. If $B$ has full-row rank then we have

$\Vert L^{T}S^{-1}L\Vert_{2}\leq\frac{||A||_{2}}{1+\lambda_{\min}(L^{-1}CL^{-T})||A\Vert_{2}}$,

where $L$ is an $mxm$ nonsingular matrix satisfying $LL^{T}=BB^{T}$ .
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Using above lemma, we show the following main results of this paper.

Theorem 3 (Double: $U=\kappa Q^{-1},$ $Q=BB^{T}$) Assume that $(A, B^{T})$ and $B$ have full-row rank.
Then we have

$cond_{2}((BB^{T^{1}T^{1}})^{-f}S_{(\kappa(BB^{T})^{-1})}(BB)^{-f})<1+\kappa^{-1}\Vert A||_{2}$ ,

where $\kappa$ is a positive constant.

Proof: For (2.3), if we take $W=\kappa_{2}(BB^{T})^{-1}$ then it implies that

$cond_{2}(W^{1}zS_{(V+W) ,\}}W^{1}z)cond_{2}(2$ $=$ $\frac{cond_{2}((BB^{T})^{-}z1S_{(V+\kappa_{2}(BB^{T})^{-1})}(BB^{T})^{-\frac{1}{2}})}{Cond_{2}(2}$

$=$ $\frac{\lambda_{\min}((BB^{T})^{-p}1S_{V}(BB^{T})^{-:})+\kappa_{2}^{-1}}{\lambda_{\max}((BB^{T})^{-\}}S_{V}(BB^{T})^{-:})+\kappa_{2}^{-1}}$

Then using Lemma 2, we can obtain the following estimation.

$\lambda_{\min}((BB^{\tau^{\iota\iota}})^{-\pi}S_{V}(BB^{T})^{-f})\geq\frac{1}{\Vert \mathcal{A}_{V}\Vert_{2}}$ .
Hence it implies that

$\lambda_{\min}((BB^{T^{1}})^{-f}S_{V}(BB^{T})^{-\#})+\kappa_{2}^{-1}\leq\lambda_{\min}(2(1+\kappa_{2}^{-1}||A_{V}\Vert_{2})$ .

Since $\kappa_{2}$ is positive, if we take $V=\kappa_{1}(BB^{T})^{-1}$ then it impies that

$cond_{2}((BB^{T})^{-\Delta}2S_{((\kappa_{1}+\kappa_{2})(BB^{T})^{-1})}(BB^{T})^{-:})<1+\kappa_{2}^{-1}\Vert A_{(\kappa_{1}(BB^{T})^{-1})}\Vert_{2}$ .
Moreover, we can obtain

$\Vert A\tau-1$ $=$ $\Vert \mathcal{A}+\kappa_{1}B^{T}(BB^{T})^{-1}B\Vert_{2}$

$\leq$ $\Vert \mathcal{A}\Vert_{2}+\kappa_{1}$ ,

which follows that the largest eigenvalue of $B^{T}(BB^{T})^{-1}B$ is equal to 1. Therefore, taking
$\kappa\equiv\kappa_{1}+\kappa_{2}$ and $\kappa_{1}arrow 0$ , this proof is completed. $\blacksquare$

Corollary 4 (Single; $U=\kappa Q^{-1},$ $Q=I_{m}$)[$9J$ Assume that $(A, B^{T})$ and $B$ have full-row rank.
Then $cond_{2}(S_{(\kappa I_{m})})$ is strictly decreasing, that is, $cond_{2}(S_{(\kappa I_{m})})arrow 1$ as $\kappaarrow\infty$ .
Here we can write matrices $\mathcal{A}$ and $B$ by

$\mathcal{A}=(\begin{array}{ll}A_{*} \mathcal{A}_{\perp}^{T}A_{\perp} \mathcal{A}_{o}\end{array})$ $B=(B_{o},B_{n})$ ,

respectively. It is assumed that $A_{*},$ $A_{o}$ and $B_{n}$ are square, and $\dim(A_{o})=\dim(B_{*})=m$. If
$\mathcal{A}_{1}\neq 0$ then the computing cost of $cond_{2}(A)$ and $cond_{2}(\mathcal{A}_{U})$ in Theorem ?? is almost same.
Thus as a special case, we show the following estimate.

Corollary 5 Assume that $\mathcal{A}\perp=0$ , that is, $\mathcal{A}=diag(A_{*},\mathcal{A}_{o})$ . If $A_{*}$ is positive definite and $B_{*}$

is nonsingular then we have

$\Vert \mathcal{A}_{U}^{-1}\Vert_{2}\leq\Vert$ ( $-B_{*}^{-1}B_{o}I_{(\mathfrak{n}-m)}$ $B_{*}^{-1}0$ ) $(\begin{array}{ll}\mathcal{A}_{*}^{-1} 00 U^{-l}\end{array})(I_{(n-m)}$ $-B_{o}^{T}B^{-T}B_{*}^{-T^{r}})\Vert_{2}$ .
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Proof: Since $\Vert A_{U}^{-1}\Vert_{2}=\lambda_{\min}(\mathcal{A}_{U})^{-1}$ and (diag$(A_{*},$ $0_{m}),$ $B^{T}$ ) has full-row rank, we have

$\lambda_{\min}(\mathcal{A}_{U})$ $=$ $\lambda_{\min}((\begin{array}{ll}\mathcal{A}_{*} 00 \mathcal{A}_{o}\end{array})+($ $B_{o}^{T}UB_{o}B_{*}^{T}UB_{o}$ $B_{o}^{T}UB_{*}B_{*}^{T}UB_{*}$ ) $)$

$\geq$ $\lambda_{m\ln}((\begin{array}{ll}\mathcal{A}_{*} 00 0_{m}\end{array})+(B_{o}^{T}UB_{o}B_{*}^{T}UB_{o}$ $B_{*}^{T}UB_{*}B_{o}^{T}UB_{*}))$

$=$ $\lambda_{\min}$ (( $I_{(n-m)}$
$B_{o}^{T}B_{*}^{T}$ ) $(\begin{array}{ll}\mathcal{A}_{*} 00 U\end{array})(\begin{array}{ll}I_{(n-m)} 0B_{o} B_{*}\end{array})$).

Therefore, this proof is completed. $\blacksquare$

Corollary 6 If $U=\kappa(BB^{T})^{-1}$ then we have $||\mathcal{A}_{(\kappa(BB^{T})^{-1})}\Vert_{2}\leq\Vert A\Vert_{2}+\kappa$ .
Proof: Since the largest eigenvalue of $B^{T}(BB^{T})^{-1}B$ is equal to 1, this proof is completed. $\blacksquare$

3 Numerical examples

In this section, we report Iome numerical results for the preconditioned method to solve the
saddle point problems. Let $\Omega\subset R^{2}$ be a bounded and open domain. We denote the usual k-th
order $L^{2}$ Sobolev space on $\Omega$ (note that $(x,y)\in R^{2}$ ) by $H^{k}(\Omega)$ and define $(\cdot, \cdot)_{L^{2}}$ as the $L^{2}$ inner
product. We also consider the following some Sobolev spaces.

$H_{0}^{1}(\Omega)$ $\equiv$ { $v\in H^{1}(\Omega)$ ; $v=0$ on $\partial\Omega$ },
$H_{0}^{2}(\Omega)$ $\equiv$ {$v\in H^{2}(\Omega)$ ; $v=\nabla_{x}v=\nabla_{y}v=0$ on $\partial\Omega$ }.

Let $X_{h}\subset H_{0}^{1}(\Omega)$ be a finite element subspace which depends on a parameter $h$ , and let $\{\varphi_{1}\}_{i=1}^{m}$

be the basis of $X_{h}$ .

3.1 The surface fitting problems

Consider the following surface fitting problems.

min $\nu||\Delta u\Vert_{L^{2}}^{2}+\Vert u(z)-f\Vert_{2}^{2}$ , (3.1)
$u\in H_{0}^{2}(\Omega)$

where $z=(z_{1}^{(1)}, z_{i}^{(2)})\in R^{ex2},$ $f=(f_{i})\in R^{c}$ are given vectors and $\nu>0$ is a relaxation parameter.

Since $u\in H_{0}^{2}(\Omega),$ $\nabla_{x}u,$ $\nabla_{y}u$ and $u$ belong to $H_{0}^{1}(\Omega)$ . Thus using the $H^{1}$-method ([12]), an
approximate problem of (3.1) is given by

$\min$ $\nu\Vert\nabla u_{h}^{(1)}\Vert_{L^{2}}^{2}+\nu\Vert\nabla u_{h}^{(2)}\Vert_{L^{2}}^{2}+\Vert u_{h}^{(3)}(z)-f\Vert_{2}^{2}$ ,
$u_{h}^{(1)},u_{h}^{(2)},u_{h}^{(S)}\in x_{h}$ (3.2)

subject to $(\nabla u_{h}^{(3)}, \nabla v_{h})_{L^{2}}=(-div(u_{h}^{(1)},u_{h}^{(2)}),v_{h})_{L^{2}}$ $\forall v_{h}\in X_{h}$ .
Then using the solutions $u_{h}^{(1)},$ $u_{h}^{(2)},$ $u_{h}^{(3)}\in X_{h}$ and $u_{h}^{(4)}\in X_{h}$ , we can take an approximate solution
$u_{h}\in H_{0}^{2}(\Omega)$ of (3.1) by the Hermite spline functions ([13]), where $u_{h}^{(4)}\in X_{h}$ satisfies

$(u_{h}^{(4)},v_{h})_{L^{2}}= \frac{1}{2}(div(u_{h}^{(2)},u_{h}^{(1)}),v_{h})_{L^{2}}$ $\forall v_{h}\in X_{h}$ .
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Let matrices $A_{1}=(a_{ij}^{(1)})\in R^{mxm},$ $A_{3}=(a_{ij}^{(3)})\in R^{cxm}$ and $B_{1}=(b_{ij}^{(1)}),$ $B_{2}=(b_{ij}^{(2)})\in R^{mxm}$

have the entries
$a_{ij}=\varphi_{j}(z_{i}^{(1)}, z_{i}^{(2)})a_{i}^{(1)}j_{3)}=(\nabla\varphi_{j},\nabla\varphi_{i})_{L^{2}}$

,
$b_{ij}i_{2)}=(\nabla_{y}\varphi j\varphi_{i})_{L^{2}}b_{9}^{(1)}=(\nabla_{x}\varphi_{j}, \varphi_{i})_{L^{2}}$

,

respectively. $(n=3m)$ In this example, we choose the basis for the finite element subspace $X_{h}$

as piecewise bi-linear functions for the uniform and square mesh. Then letting $A_{2}=B_{3}=A_{1}$ ,
the problem (3.2) has the following saddle point form.

(3.3)

Notice that if $c<m$ then $A_{3}^{T}A_{3}$ is always positive 8emi-definite. Thus we cannot assume that
$A_{3}^{T}A_{3}$ is positive definite. However, this example satiIfies that $(A, B^{T})$ and $B$ have $fullarrow row$

rank since $B_{3}=A_{1}$ , where $A:=diag(\nu A_{1}, \nu A_{2}, A_{3}^{T}A_{3})$ and $B:=(B_{1}, B_{2}, B_{3})$ . Henoe using
techniques of Section 1.1, we reformulate (3.3) as

$(\begin{array}{ll}A+B^{T}UB B^{T}B 0_{m}\end{array})(\begin{array}{l}x_{l}x_{2}\frac{x_{3}}{y}\end{array})=(\begin{array}{l}00\frac{A_{3}^{T}f}{0}\end{array})$ .

Here we briefly consider a linear system $\mathcal{A}_{U}\equiv \mathcal{A}+B^{T}UB$ for this example. For the surface
fitting problems, we expect that if $harrow 0$ then $A_{3}^{T}A_{3}$ becomes sparse, it implies that $A_{U}\approx$

diag $(A_{*}, 0_{m})+B^{T}UB$ , where $A_{*}:=diag(\nu A_{1}, \nu A_{2})$ . Thus setting $B_{o}$ $:=(B_{1}, B_{2})$ , the following
matrix will become a good preconditioner for the linear system $A_{U}$ since the matrices satisfy
the assumption in Corollary 5.

$(\begin{array}{ll}\mathcal{A}_{*} 00 0_{m}\end{array})+B^{T}UB=($
$I_{(n-m)}$

$B_{3}^{T}B_{o}^{T}$ ) $(\begin{array}{ll}A_{*} 00 U\end{array})(I_{(n-m)}$ $B_{3}0)$ .

3.2 Numerical results

In this section, we consider the following two examples.

Figure 1: Data points for Example 1

Example 1 We set the exact solution $u^{*}\equiv u^{*}(x,y)$ as
$u^{*}(x,y)=\pi^{4}(xy)^{2}(1-x)^{2}(1-y)^{2}\sin(2\pi x)\sin(3\pi y)$ ,

for $\Omega=(0,1)^{2}$ . Moreover, we take $10^{4}$ random data points $(c=10^{4})$ in $\Omega$ .
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Example 2 We use real data $(c=327)$ of Niigata Prefecture Chuetsu Earthquake which was
happened at 17:56 in October 23, 2004 ($S7.291N,$ $lS8.867E$, lSKm, M6.8), and take $\Omega=$

$(135,34)x(142,41)$ . Note that we take data $z=(z_{i}^{(1)},z_{i}^{(2)})$ and $f=(f_{i})$ as (East longitude,
North latitude) and the maximum acceleration $(gal)$ at the station point, respectively. Moreover,
the maximum value of data $f$ is 1307.911. This data is supported by K-Net in National Research
Institute for Earth Science and Disaster Prevention.

First we show some norms for Examples 1 and 2 in Tables 1 and 2, respectively. Note that
computed minimum eigenvalues of $A_{3}^{T}A_{3}$ for $h^{-1}=80$ , 100 in Table 1 are less than $2^{-52}$ .

From above tables, we can assume that $\Vert \mathcal{A}\Vert_{2}=\max\{\nu\cdot\lambda_{\max}(A_{1}), \lambda_{\max}(A_{3}^{T}A_{3})\}$ is the constant
independent of the dimension. Hence we expect that our preconditioned methods lead good
(effective) condition numbers for both examples.
Therefore, we next show the condition number $Cond_{2}(Q^{-i_{S_{U}Q^{-}7)}^{1}}$ for Example 1 in Figure
2. For $\nu=10^{-2}$ , the left-hand side and right-hand side in Figure 2 show several results for
$U=\kappa Q^{-1}$ and $U\neq\kappa Q^{-1}$ , respectively. Note that $U\neq\kappa Q^{-1}$ means if $Q=BB^{T}$ and $Q=I_{m}$

then $U=\kappa I_{m}$ and $U=\kappa(BB^{T})^{-1}$ , respectively.

Figure 2; $cond_{2}(Q-1lS_{U}Q^{-\int})$ for Example 1 for $\kappa=10$

Finally we show numerical results for Examples 1 and 2 by the preconditioned CG method
(CG: Algorithm 1) in Tables 3 and 4, respectively. We apply the single and double precon-
ditioned methods to the $case8h^{-1}=60,80$ , 100 for Example 1 and $h^{-1}=100,200$ , 300 for
Example 2.
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Note that we use the direct method (Complete Cholesky Decomposition and Gaussian Elimina-
tion) for linear systems $A_{1}(A_{3}^{T}A_{3})$ and $BB^{T}$ . Moreover, for the linear system $\mathcal{A}+B^{T}UB$ , we
use the preconditioned CG method with respect to the criterion $\delta$ of the relative residual error,
that is, $\delta<10^{-12}$ . We only show an approximation of Example 2 for $h^{-1}=300$ in Figure 3.

Figure 3: An approximation for Example 2 for $\nu=10^{-4}$

All computations in tables and figures are carried out on the Dell Precision 650 Workstation
Intel Xeon CPU 3.$20GHz$ by MATLAB.

Conclusion

We have proposed a good preconditioner and double preconditioned method for saddle point
problems, and shown the actual effectiveness to numerical computations. Comparing other case,
our methods lead a few iteration numbers independent of the dimension by numerical results.
Of course, when we take $U=\kappa BB$ then a cost for one time iteration is more expensive than
the case $U=\kappa I_{m}$ . However, total computing cost for the former is much less than the latter,
because only a few iteration numbers are required.
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