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1 Introduction

Dynammical systems such as electric circuits, mechanical systems, and chemical plants are often
described by differential-algebraic equations (DAEs), which consist of algebraic equations and
differential operations. DAEs present numerical and analytical difficulties which do not occur
with ordinary differential equations (ODEs).

Several numerical methods have been developed for solving DAEs. For example, Gear [6]
proposed the backward difference formulae (BDF), which were implemented in the DASSL code
by Petzold (cf. [2]). Hairer and Wanner [9] implemented an implicit RungeKutta method in
their RADAU5 code.

The index concept plays an important role in the analysis of DAEs. The index is a measure
of the degree of difficulty in the numerical solution. In general, the higher the index is, the
more difficult it is to solve the DAE. While many different concepts exist to assign an index to
a DAE such $a\epsilon$ the differentiation index [2, 4, 9], the perturbation index [3], and the tractability
index [20], we focus on the nilpotency index in this paper. In the case of linear DAEs with
constant coefficients, dl these indices are equal $[3, 19]$ .

In order to transform a DAE into an altemative form easier to solve, some index reduction
methQds have been developed [7, 15, 16]. These methods introduce additional variables, which
leads to a drawback that the resulting DAE is a larger system than the original one.

This paper focuses on linear DAEs with constant coefficients

$A_{0}x(t)+A_{1^{\frac{dx(t)}{dt}}}=f(t)$ , (1)

where $A_{0}$ and $A_{1}$ are constant matrices, to propose two index reduction methods.
The first one [21], based on the substitution method, always reduces by one the index of

DAEs in the form of (1) such that $A_{1}$ has at most one nonzero entry in each row. This
class of DAEs includes the semi-explicit form and most circuit equations (which consist of
Kirchhoff’s conservation laws and constitutive equations). The substitution method elin$\dot{i}$ates
some variables by replacement to obtain a smaller system than the $orig_{\dot{i}}$al one. In contrast to
other existing methods [7, 15, 16], it does not introduce any additional variables.

The other one [13] is applicable to DAEs in circuit simulation. The most commonly used
analysis method is the modified nodal analysis (MNA). However, the index of the DAE arising
from MNA is determined uniquely by the structure of the circuit [20]. Hence there is no room
to reduce the index in MNA. Instead, we consider a broader class of analysis method called the
hybrid analysis. It is famous for the theory of minimizing the size of the hybrtd equations, i.e.,
the system of equations to be solved numerically [10, 14, 18]. For linear time-invariant electric
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circuits, we devise an algorithm for finding an optimal hybrid analysis in which the index of
the hybrid equations attains the minimum. The optimal hybrid analysis often results in a DAE
with lower index than MNA.

The organization of this paper is as follows. In Section 2, we explain matrix pencils and
the definition of the nilpotency index. In Section 3, we propose the index reduction method
by the substitution method. Section 4 presents an algorithm for minimizing the index of the
hybrid equations. Numerical examples are given in Section 5.

2 DAEs and Matrix Pencils

For a polynomial $a(s)$ , we denote the degree of $a(s)$ by deg $a$ , where deg0 $=-\infty$ by convention.
A polynomial matrix $A(s)=(a_{kl}(s))$ with deg $a_{kl}\leq 1$ for an $(k,l)$ is called a matrin pencil.
Obviously, a matrix pencil $A(s)$ can be represented as $A(s)=A_{0}+sA_{1}$ in terms of a pair of
constant matrices $A_{0}$ and $A_{1}$ . A matrix pencil $A(s)$ is said to be regular if $A(s)$ is square and
det $A(s)$ is a nonvanishing polynomial.

With the use of the Laplace transformation, the DAE in the form of (1) is expressed by
the matrix pencil $A(s)=A_{0}+sA_{1}$ as $A(s)\overline{x}(s)=\tilde{f}(s)$ , where $s$ is the variable for the Laplace
transform that corresponds to $d/dt$ , the differentiation with respect to time.

Theorem 2.1 ([2, Theorem 2.3.1]). The linear DAE with constant coefficients (1) is solvable
if and only if $A(s)$ is a regular matriv pencil.

The reader is referred to [2, Definition 2.2.1] for the precise definition of solvability. By
Theorem 2.1, we assume that $A(s)$ is a regular matrix pencil throughout this paper. A regular
matrix pencil is known to have the Kronecker canonical form, which determines the nilpotency
index. Let $N_{\mu}$ denote a $\mu\cross\mu$ matrix pencil defined by

$N_{\mu}=(0001$

$0s1$

.

$00s.\cdot$

$01$

$01s0:$ ).
A matrix pencil $A(s)$ is said to be strictly equivalent to $\tilde{A}(s)$ if $A(s)$ can be brought into $\tilde{A}(s)$

by an equivalence transformation with nonsingular constant matrices.

Theorem 2.2 ([5, Chapter XII, Theorem 3]). An $nxn$ regular $mat\dot{m}$ pencil $A(s)$ is stnctly
equivalent to its Kronecker canonical form:

$(\begin{array}{lllll}sI_{\mu}+J O O OO N_{\mu 1} O OO O N_{\mu_{2}} |\vdots \vdots \ddots OO O O N_{\mu b}\end{array})$ ,

where
$\mu_{1}\geq\mu_{2}\geq\cdots\geq\mu_{b}$ , $\mu_{0}+\mu_{1}+\mu_{2}+\cdots+\mu_{b}=n$,

and $J$ is a $\mu_{0}x\mu 0$ constant matrix.
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The matrices $N_{\mu:}(i=1, \ldots, b)$ are called the nilpotent blocks. The maximum size $\mu_{1}$ of
them i8 the nilpotency index, denoted by $\nu(A)$ . It is obvious that ODEs have index zero, and
algebraic equations have index one.

We denote by $A[K, L]$ the submatrix of $A(s)$ with row set $K\subseteq R$ and column set $L\subseteq C$ ,
where $R$ and $C$ are the row set and the column set of $A(s)$ , respectively. FUrthermore, we
demote $w(K, L)=$ deg det $A[K,L]$ , where $w(\emptyset, \emptyset)=0$ by convention. Then $w$ enjoys the
following property.

Lemma 2.3 ([17, pp. 287-289]). Let $A(s)$ be a matrix pencil with row set $R$ and column set
C. For any $(K, L)\in\Lambda$ and $(K’, L^{j})\in\Lambda$ , where $\Lambda=\{(K,L)||K|=|L|, K\subseteq R, L\subseteq C\}$ , both
(VB1) and (VB-2) below hold;

(VB-1) For any $k\in K\backslash K’$ , at least one of the following two assertions holds:

(1a) $\exists l\in L\backslash L’$ : $w(K,L)+w(K’,L’)\leq w(K\backslash \{k\},L\backslash \{l\})+w(K’\cup\{k\},L’\cup\{l\})$,
(1b) $\exists h\in K’\backslash K:w(K,L)+w(K’,L’)\leq w.(K\backslash \{k\}\cup\{h\},L)+w(K’\backslash \{h\}\cup\{k\},L’)$ .

(VB-2) For any $l\in L\backslash L’$ , at least one of the following two assertions holds:

(2a) $\exists k\in K\backslash K’$ : $w(K,L)+w(K’,L’)\leq w(K\backslash \cdot\{k\},L\backslash \{l\})+w(K’\cup\{k\},L’\cup\{l\})$,
(2b) $\exists j\in L’\backslash L:w(K,L)+w(K’,L’)\leq w(K,L\backslash \{l\}\cup\{j\})+w(K’,L’\backslash \{j\}\cup\{l\})$ .

Let $\delta_{r}(A)$ denote the highest degree of a minor of order $r$ in $A(s)$ :

$\delta_{r}(A)=m\epsilon x\{w(K, L)K,L||K|=|L|=r,K\subseteq R, L\subseteq C\}$.

The index $\nu(A)$ is determined from $\delta_{r}(A)$ as follows.

Theorem 2.4 ([17, Theorem 5.1.8]). Let $A(s)$ be an $nxn$ regular matrix pencil. The nilpotency
index $\nu(A)$ is given by

$\nu(A)=\delta_{n-1}(A)-\delta_{\mathfrak{n}}(A)+1$ .

3 Index Reduction for DAEs by Substitution Method

This section presents our first method of index reduction. In Section 3.1, we introduce the
substitution method. Then, in Section 3.2, we show that the method reduces the index exactly
by one if $A_{1}$ has at most one nonzero entry in each row.

3.1 Substitution Method

In this section, we introduce the substitution method for solving linear DAEs with constant
coefficients.

Let $A(s)$ be an $n\cross\dot{n}$ regular matrix pencil with row set $R$ and column set $C$ , and $B$ be a
nonsingular constant submatrix of $A$ with row set $P\subset R$ and column set $Q\subset C$ . We transform
$A$ into $\tilde{A}$ by row operations:

$A=(\begin{array}{ll}B FG H\end{array})arrow\tilde{A}=(\begin{array}{ll}I O-GB^{-1} I\end{array})(\begin{array}{ll}B FG H\end{array})=(\begin{array}{ll}B FO H-GB^{-1}F\end{array})$ (2)
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where $F=A[P, C\backslash Q],$ $G=A[R\backslash P, Q]$ , and $H=A[R\backslash P, C\backslash Q]$ . We denote $H-GB^{-1}F$ by
$D$ , which is not necessarily a matrix pencil.

Let $\hat{B},\hat{F},\hat{G},\hat{H}$ , and $\hat{D}$ denote the matrices obtained by replacing $s$ with $d/dt$ in $B,$ $F,$ $G$ ,
$H$ , and $D$ , respectively. Consider the DAE

$\hat{B}x_{1}(t)+\hat{F}x_{2}(t)=f_{1}(t)$ , (3)
$\hat{G}x_{1}(t)+\hat{H}x_{2}(t)=f_{2}(t)$ . (4)

By aPpiying the transformation shown in (2), we obtain

$\hat{B}x_{1}(t)=fi(t)-\hat{F}x_{2}(t)$ , (5)
$\hat{D}x_{2}(t)=f_{2}(t)-\hat{G}\hat{B}^{-1}f_{1}(t)$ . (6)

Note that $\hat{B}$ is a constant matrix. The outline of the substitution method is as follows.

Phase 1: Solve the DAE (6) for $x_{2}(t)$ .
Phase 2: Solve the system of linear equations (5) for $x_{1}(t)$ .

In the substitution method, the numerical difficulty is determined by the index $\nu(D)$ of the
DAE (6). We show that $\nu(D)$ can be expressed in terms of the degrees of minors in $A$.

For each $k\in R$ and $l\in C$ , let $d_{k}$, denote the degree of det $A[R\backslash \{k\}, C\backslash \{l\}]$ . Then we have

$d_{kl}=\deg\det\tilde{A}[R\backslash \{k\}, C\backslash \{l\}]$ , $\forall k\in R\backslash P,$ $\forall l\in C$, (7)

because we can transfom $\tilde{A}[R\backslash \{k\}, C\backslash \{l\}]$ into $A[R\backslash \{k\}, C\backslash \{l\}]$ by row operations for each
$k\in R\backslash P$ and $l\in C$ . The index $\nu(D)$ can be rewritten as follows.

Theorem 3.1. For an $n\cross n$ regular $mat\dot{m}$ pencil $A(s)$ , the index of $D$ is given by

$\nu(D)=\max\{d_{kl}k,l|k\in R\backslash P,l\in C\backslash Q\}-\delta_{n}(A)+1$ . (8)

Proof. We denote the size of $D$ by $m$ . By Theorem 2.4, we have $\nu(D)=\delta_{m-1}(D)-\delta_{m}(D)+1$ .
Recall that $\tilde{A}=(\begin{array}{ll}B FO D\end{array})$ and that $B$ is a constant matrix. It fonows from det $A=\det\overline{A}$ that

$\delta_{m}(D)=\deg$ det $D=\deg$ det $\tilde{A}$ -deg det $B=\deg$ det $A$ .
Moreover, we have

$\delta_{m-1}(D)=m\alpha K,L${deg det $D[K,$ $L]||K|=|L|=m-1$ }

$= \max${deg det $\tilde{A}[K,$$L]x,\iota||K|=|L|=n-1,$ $K\supseteq P,$ $L\supseteq Q$} -deg det $B$

$= \max\{d_{kl}k,l|k\in R\backslash P, l\in C\backslash Q\}$ ,

where the last step is due to (7). Thus we obtain (8). 口
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3.2 Index Reduction
Let $A(s)=A_{0}+sA_{1}$ be an $n\cross n$ regular matrix pencil such that $A_{1}$ has at most one nonzero
entry in each row. We denote the row set of $A(s)$ by $R$ , and the column set by $C$. Moreover, we
assume that $\nu(A)$ is positive. Let $Q\subseteq C$ be the set of indices such that their column vectors
in $A_{1}$ are zero vectors. Since $A[R,Q]$ has full column rank by the regularity of $A(s)$ , we can

$|findP\subseteq R$ such that $A[P, Q]$ is regular. Note that because $B=A[P, Q]$ and $G=A[R\backslash P, Q]$

are constant matrices, $D=\tilde{A}[R\backslash P, C\backslash Q]$ is a matrix pencil. We prove that the index of $D$

is one lower than that of $A$ .

Lemma 3.2. For each $k\in R$ and each $l\in C\backslash Q$ , we have $dkl<.\delta_{n-1}(A)$ .
Proof. Suppose to the contrary that there exist $k\in R$ and $l\in C\backslash Q$ such that $d_{kl}=\delta_{n-1}(A)$ .
Let $h$ be a row such that the $(h, l)$ entry of $A_{1}$ is nonzero. We put $(K, L)=(\{h\}, \{l\})$ and
$(K’, L’)=(R\backslash \{k\}, C\backslash \{l\})$ . By (VB-2) in Lemma 2.3, at least one of the following two
assertions holds:

(2a) $h=k,$ $w(\{h\}, \{l\})+w(R\backslash \{k\}, C\backslash \{l\})\leq w(\emptyset, \emptyset)+w(R, C)$,

(2b) $\exists j\in C\backslash \{l\}$ : $w(\{h\}, \{l\})+w(R\backslash \{k\}, C\backslash \{l\})\leq w(\{h\}, \{j\})+w(R\backslash \{k\}, C\backslash \{j\}).\cdot$

Note that $w(\{h\}, \{l\})=1$ and $w(R\backslash \{k\}, C\backslash \{l\})=d_{kt}=\delta_{n-1}(A)$.
If (2a) holds, then it follows from $w(\emptyset, \emptyset)=0$ and $w(R, C)=\delta_{n}(A)$ that $1+\delta_{n-1}(A)\leq\delta_{n}(A)$ ,

which implies $\nu(A)\leq 0$ by Theorem 2.4. This contradicts $\nu(A)>0$ .
On the other hand, if (2b) holds, we have $1+\delta_{n-1}(A)\leq w(\{h\}, \{j\})+d_{kj}$ . Since $A_{1}$ has at

most one nonzero entry in each row, we have $w(\{h\}, \{j\})=0$ . Thus we obtain $1+\delta_{\mathfrak{n}-1}(A)\leq d_{k_{J}’}$ ,
which contradicts the definition of $\delta_{n-1}(A)$ . $\square$

Theorem 3.3. The index of $D=\tilde{A}[R\backslash P, C\backslash Q]$ is exactly one lower than that of $A$ .

Proof. By Theorems 2.4 and 3.1 and Lemma 3.2,

$\nu(A)-\nu(D)=\delta_{n-1}(A)-m_{k,l}u\{d_{kl}|k\in R\backslash P,l\in C\backslash Q\}>0$ .

We now prove $\nu(D)\geq\nu(A)-1$ . It foUows from Lemma 3.2 that there exist $k\in R$ td $l\in Q$

such that $d_{kl}=\delta_{n-1}(A)$ .
Suppose that there exist $k\in R\backslash P$ and $l\in Q$ such that $d_{kl}=\delta_{n-1}(A)$ . By applying (VB-2)

in Lemma 2.3 to $(P, Q)$ and $(R\backslash \{k\}, C\backslash \{l\})$ , we have

$\exists j\in C\backslash Q$ : $w(P, Q)+w(R\backslash \{k\}, C\backslash \{l\})\leq w(P, Q\backslash \{l\}\cup\{j\})+w(R\backslash \{k\}, C\backslash \{j\})$ .

Note that $w(P, Q)=0$, because $A[R, Q]$ is a constant matrix. Since $A$ is a matrix pencil and
$A[P, Q]$ is a constant matrix, $w(P, Q\backslash \{l\}U\{j\})\leq 1$ . Therefore, we have $d_{kl}\leq d_{kj}+1$ , which
implies $\nu(D)\geq d_{kj}-\delta_{n}(A)+1\geq d_{kl}-\delta_{n}(A)=\nu(A)-1$ by Theorems 2.4 and 3.1.

We now consider the other case, which means that there exist $k\in P$ and $l\in Q$ such that
$du=\delta_{n-1}(A)$ , and $d_{m}<\delta_{n-1}(A)$ for any $p\in R\backslash P$ and $q\in Q$ . By applying (VB-1) in
Lemma 2.3 to $(P, Q)$ and $(R\backslash \{k\}, C\backslash \{l\})$ , at least one of the foUowing assertions holds:

(1a) $w(P, Q)+w(R\backslash \{k\}, C\backslash \{l\})\leq w(P\backslash \{k\}, Q\backslash \{l\})+w(R, C)$,

(1b) $\exists h\in R\backslash P:w(P, Q)+w(R\backslash \{k\}, C\backslash \{l\})\leq w(P\backslash \{k\}\cup\{h\}, Q)+w(R\backslash \{h\}, C\backslash \{l\})$ .
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Since $A[R, Q]$ is a constant matrix, we have $w(P, Q)=w(P\backslash \{k\}, Q\backslash \{l\})=w(P\backslash \{k\}\cup\{h\}, Q)=$

$0$ .
If (1a) holds, then we have $d_{kl}\leq\delta_{n}(A)$ . Therefore, $\nu(A)=d_{kl}-\delta_{n}(A)+1\leq 1$ by

Theorem 2.4. It follows from the nonnegativity of $\nu(D)$ that $\nu(D)\geq\nu(A)-1$ .
On the other hand, if (1b) holds, we have $d_{kl}\leq d_{hl}$ . This contradicts the assumption that

$d_{pq}<\delta_{n-1}(A)$ for any $p\in R\backslash P$ and $q\in Q$ . $\square$

Theorem 3.3 implies that the index of $D$ is the same for any $P$ with $A[P, Q]$ being a
nonsingular constant matrix.

4 Hybrid Analysis

For linear timeinvariant electric circuits, we propose a combinatorial algorithm for finding an
optImal hybrid analysis in which the index of the DAE to be solved attains the minimum. Our
method firvt finds a degree $matn\dot{x}$, which is defined by cofactors in the associated polynomial
matnix. Then, it makes use of the satisfiability problem for 2-CNF $(2SAT)$ . The time complexity
of this algorithm is $O(n^{6})$ , where $n$ is the number of elements in an electric circuit. We can
improve the time complexity to $O(n^{3})$ under the assumption that the set of nonzero entries
coming from the physical parameters is algebraically independent.

We describe the procedure of the hybrid analysis in Section 4.1. Section 4.2 is devoted to
a characterization of the index of the DAE to be solved in the hybrid analysis. Section 4.3
presents an index minimization algorithm.

4.1 . Hybrid Analysis
$\bm{i}$ this section, we describe the procedure of the hybrid analysi8. We focus on linear time-
invariant electric circuit8 which are composed of. $resi_{8}tances$ , capacitances, inductances, inde-
$pendent/dependent$ voltage $sourc\alpha,$ $\bm{t}dindependent/dependent$ current sources. For more
complicated $devic\propto liketran8ietors$, there exist equivalent circuits whii cooist of the previ-
ously mentioned devicae.

Let $\Gamma=(W, E)$ be anetwork graph with vertex set $W$ and edge set E. An edge $i^{}n\Gamma$

corresponds to abrani that $cont_{8_{\mathfrak{l}}}ins$ one element in the circuit. We denote the set of edg\’e
corresponding to independent voltage sources and independent current sources by $E_{g}$ and $E_{h}$ ,
raePectively. We split $E_{*}:=E\backslash (E_{g}\cup E_{h})$ into $E_{y}$ and $E_{z}$ , I.e., $E_{y}\cup E_{z}=E_{*}mdE_{y}\cap E_{z}=\emptyset$ .
$S\ddagger nce$ the previous works [10, 14, 18] deal with circuits in the frequency domain, the hybrid
analysis $de8cribed$ therein can choose any partition $(E_{y}, E_{z})$ . In order to deal with DAEs In
the time domain, however, we $needto$:consider araetrIcted $cla\epsilon s$ of partitions. Apartition
$(E_{y}, E_{z})$ is called an admissible $part\iota tion$ , if $E_{y}$ includae $W$ the capacitanc\’e and dependent
current sources, $\bm{t}dE_{z}$ include8 $a^{g}$ the inductances and dependent voltage sources.

We now explain circuit equatiom for alinear $tim\triangleright inv\epsilon riant$ electric circuit. Let $\xi$ denote
the vector of currents through all branies of the circuit, and $\eta$ the vector of voltagae acroes
all branches. We denote the reduced cutset $mat\dot{m}$ by $\Psi$ and the reduced loop $mat\dot{m}$ by $\Phi$ .
Using Kirchhoff’s current law (KCL), which statae that the sum of currents entering $eacH$

node is equal to zero, we have $\Psi\xi=0$ . Similarly, using Kirchhoff’s voltage law (KVL), whii
statae that the sum of voltagae in each loop of the network is equal to zero, we have $\Phi\eta=0$ .
The physical iaracteristics of elements determine constitutive $e$quations. Given an admissible
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partition $(E_{y}, E_{z})$ , we split $\xi$ and $\eta$ into

$\xi=(\begin{array}{l}\xi_{g}\xi_{y}\xi_{z}\xi_{h}\end{array})$ and $\eta=(\begin{array}{l}\eta_{g}\eta_{y}\eta_{z}\eta_{h}\end{array})$ ,

where the subscripts correspond to the partition of $E$ . Circuit equations, which consist of KCL,
KVL, and constitutive equations, are described by

(9)

ffier the Laplace transfomation. The coefficient matrix $A(s)$ of the circuit equations is a
matrix pencil. The row set and the $\dot{c}olumn$ set of $A(s)$ are denoted by $R$ and $C$ , raepectively.

We $caU$ aspanning tree $T$ of $\Gamma$ areference tree if $T$ contains all edges in $E_{g}$ , no edge8 in $E_{h}$ ,
and as many edge8 in $E_{y}$ as possible. Note that $T$ may contain some edge8 in $E_{z}$ . The cotree
of $T$ is denoted by $\overline{T}=E\backslash T$ .

Given an admissible partition $(E_{y},E_{z})$ , we denote the column sets of $A(s)$ corraeponding to
the current variablae and the voltage variables for elements in $E_{g},$ $E_{y},$ $E_{z},$ $E_{h}$ by $I_{g},$ $I_{y},$ $I_{z},$ $I_{h}$ ,
and $V_{g},$ $V_{y},$ $V_{z},$ $V_{h}$ , r\’epectively. Moreover, given areference tree $T$ , we denote the column sets
of $A(s)$ corresponding to the current variablae and the voltage variablu for elements in $E_{y}\cap T$

$\bm{t}dE_{y}\cap\overline{T}$ by $I_{y}^{\tau},$
$I_{y}^{\lambda},$ $\bm{t}dV_{y}^{\tau},$ $V_{y}^{\lambda}$ , r\’epectively. The $super8cript_{8}\tau \bm{t}d\lambda$ d\’eignate the tree $T$

$\bm{t}d$ the cotree $\overline{T}$ . We define $I_{z}^{\tau},$
$I_{z}^{\lambda},$ $\bm{t}dV_{z}^{\tau},$ $V_{z}^{\lambda}$ similarly. We&o use $I^{\tau}=I_{g}\cup I_{y}^{\tau}\cup\Gamma_{z}$ td

$V^{\lambda}=V_{y}^{\lambda}\cup V_{z}^{\lambda}\cup V_{h}$ for convenience. The row sets of $A(s)$ corresponding to KCL, KVL, and
$con\epsilon titutive$ equations are denoted by $R_{I},$ $R_{V}$ , and $S$ , raepectively.

Given $\bm{t}$ ffimissible partition $(E_{y}, E_{z})\bm{t}d$ areference tree $T$ , we trtsfom $A(s)$ into $A_{T}(s)$

$su\dot{\bm{i}}$ that $A_{T}[R_{I}, I^{\tau}]=I$ and $A_{T}[R_{V}, V^{\lambda}]=I$ by row operations in $R_{I}\cup R_{V}$ . Thi8 is possIbl$e$

because $A[R_{I}, I^{\tau}]$ and $A[R_{V}, V^{\lambda}]$ are $non\sin_{1^{1ar}}$ . Note that $R_{I}$ and $\Gamma$ as $weU$ as $R_{V}$ and $V^{\lambda}$

have one-to-one correspondence. The row sets of $A_{T}(s)$ corresponding to $I_{g},$ $I_{y}^{\tau},$ $I_{z}^{\tau}$ , and $V_{y}^{\lambda}$ ,
$V^{\lambda},$ $V$ are denoted b$R_{g}zh$y, $\eta,$ $R_{z}^{\tau},$ $mdR_{y}^{\lambda},$ $R_{z}^{\lambda},$ $R_{h},$ where we have $A_{T}[K,L]=I$ if $K\subseteq R$ and
$L\subseteq.C$ have the same superscript and subscript. Similarly, the row sets corresponding to $I_{y},$ $V_{z}$ ,
$V_{g}$ , and $I_{h}$ are denoted by $S_{y},$ $S_{z},$ $S_{g}$ , and $S_{h}$ . Let $i_{e}\bm{t}dv_{e}$ denote the column corresponding to
the current variable and the voltage variable for an element $e$ . By the definition of areference
trae, $A_{T}(s)$ has the following property.

Lemma 4.1. For a reference tree $T$ , we have $A_{T}[R_{z}^{r},I_{y}^{\lambda}]=O$ and $A_{T}[R_{y}^{\lambda}, V_{z}^{\tau}]=O$ .

Proof. Suppose to the contrary that there exists $e\in E_{y}\backslash T$ such that $A_{T}[R_{z}^{\tau}, \{i_{e}\}]\neq 0$. Then
the unique cycle in $T\cup\{e\}$ is not contained in $E_{y}\cup E_{9}$ . Hence, there exists an edge $f\in E_{z}\cap T$

such that $T\backslash \{f\}\cup\{e\}$ is a tree, which contradicts the assumption that $T$ is a reference tree.
Therefore, we have $A_{T}[R_{z}^{\tau},I_{y}^{\lambda}]=O$. Similarly, we aJso have $A_{T}[R_{y}^{\lambda}, V_{z}^{\tau}]=O$ . $\square$
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Thus $A_{T}(s)$ is in the form of

$I_{9}$ $I_{y}^{\tau}$
$I_{y}^{\lambda}$ $I_{z}^{\tau}$

$I_{z}^{\lambda}$ $I_{h}$ $V_{9}$ $V_{y}^{\tau}$
$V_{y}^{\lambda}$ $V_{z}^{\tau}$

$V_{z}^{\lambda}$ $V_{h}$

$where*means$ a constant matrix $and**means$ a matrix pencil. We can determine $A_{T}(s)$ only
after being given both an adnl山 ible $pa$ 七 ition $(E_{y},E_{z})$ and a reference tree $T$ .

We now consider the transfommation shown in (2) for $P=R\backslash (m\cup R_{z}^{\lambda})$ and $Q=C\backslash (I_{z}^{\lambda}\cup V_{y}^{\tau})$ .
We call the resulting DAE (6) the hybrid equations. Let us denote the vectors of currents
$corre8ponding$ to $I_{g},$ $I_{y}^{\tau},$

$I_{y}^{\lambda},$ $\Gamma_{z},$ $I_{z}^{\lambda},$ $I_{h}$ by $\xi_{g},$ $\xi_{y}^{\tau},$
$\xi_{y}^{\lambda},$ $\xi_{z}^{\tau},$

$\xi_{z}^{\lambda},$ $\xi_{h}$ , and the vectors of voltages
corresponding to $V_{g},$ $V_{y}^{\tau},$ $V_{y}^{\lambda},$ $V_{z}^{\tau},$ $V_{z}^{\lambda},$ $V_{h}$ by $\eta_{9},$ $\eta_{y}^{\tau},$ $\eta_{y}^{\lambda},$ $\eta_{z}^{\tau},$

$\eta_{z}^{\lambda},$

$\eta_{h}$ . The procedure of the
hybrid analysis is as follows:

1. The values of $\xi_{h}$ and $\eta_{g}$ are obvious from the equations corresponding to $S_{h}$ and $S_{g}$ .
2. Find the values of $\xi_{z}^{\lambda}$ and $\eta_{y}^{\tau}$ by solving the hybrid equations (6).

3. Compute the values of $\xi_{z}^{\tau}$ and $\eta_{y}^{\lambda}$ by substituting the values obtained in Steps 1-2 into
the equations corresponding to $R_{z}^{\tau}$ and $R_{y}^{\lambda}$ .

4. Compute the values of $\xi_{y}^{\tau},$
$\xi_{y}^{\lambda},$ $\eta_{z}^{\tau}$ , and $\eta_{z}^{\lambda}$ by substituting the values obtained in Steps 1-3

into $S_{y}$ and $S_{z}$ .
5. Compute the values of $\xi_{g}$ and $\eta_{h}$ by substituting the vaJues obtained in Steps 1-4 into

$R_{g}$ and $R_{h}$ .
In the case of $E_{y}=\emptyset$ , the above procedure is called the loop analysis or the tieset analysis.

In the case of $E_{z}=\emptyset$ , the procedure is called the cutset analysis, which is essentially equivalent
to MNA. $l$

In order to ensure that the hybrid equations are a DAE, we require $D=H-GB^{-1}F$ to
be a matrix pencil, which is not obviously satisfied because $B=A_{T}[P,Q]$ is a matrix pencil.
Moreover, $B$ needs to be an upper triangular matrix with diagonal ones so that we can compute
the vaJues in Steps 3-5 by only substituting the obtained values. The following lemma ensures
this for admissible partitions.

Lemma 4.2 ([13, Lemma 3]). If $(E_{y}, E_{z})$ is an admissible partition, then we can transfom $B$

into an upper $tri$angular matnx with diagonal ones by permutations, and $D$ is a matri pencil.

Since we only substitute the obtained values in Steps 3-5, the numerical diMculty is deter-
mined by the index of the hybrid equations (6).
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4.2 Index of Hybrid Equations

In this section, we give a characterization of the index of the hybrid equations. Given an
admissible partition $(E_{y}, E_{z})$ and a reference tree $T$ , consider the transformation shown in (2).
We now show that $\nu(D)$ can be expressed in terms of the degrees of minors in $A_{T}(s)$ . For each
$k\in R$ and $l\in C$ , let $d_{kl}$ denote the degree of det $A_{T}[R\backslash \{k\}, C\backslash \{l\}]$ . Then we have

$d_{kl}=\deg$ det $\tilde{A}_{T}[R\backslash \{k\}, C\backslash \{l\}]$ , $\forall k\in R\backslash P,$ $\forall l\in C$ , (11)

because we can transfom $\tilde{A}_{T}[R\backslash \{k\}, C\backslash \{l\}]$ into $A_{T}[R\backslash \{k\}, C\backslash \{l\}]$ by row operations. The
index $\nu(D)$ can be rewritten as follows, similarly to Theorem 3.1.

Lemma 4.3. Given an admissible partition $(E_{y}, E_{z})$ and a reference tree $T_{f}$ the index of $D$ is
given by

$\nu(D)=\max\{d_{kl}k,l|k\in R\backslash P,l\in C\backslash Q\}-\delta_{n}(A_{T})+1$ .

The index of the hybrid equations has the following property.

Theorem 4.4 ([13, Theorem 7]). Given an admissible partition $(E_{y}, E_{z})$ , the index $\nu(D)$ is
the same for any reference tree.

Theorem 4.4 implies that the index of the hybHd equations is detemined only by an ado山ト

sible partition $(E_{y}, E_{z})$ . By Lemma 4.3, the index $\nu(D)$ is determined by the maximum of $d_{kl}$

such that $k\in R\backslash P$ and $l\in C\backslash Q$ . However, all the values of $d_{kl}$ are not invariant under row
operations on the coefficient matrix $A(s)$ of the circuit equations, while we have to transfom
$A(s)$ into $A_{T}(s)$ with respect to an admissible partition $(E_{y},E_{z})$ and a reference tree $T$. We
now introduce a degree $mat\dot{m}$, which consists of some invariants under row operations. Let us
denote by $I_{*}\bm{t}dV_{*}$ the sets corr\’eponding to current and voltage vaniables for $E_{*},$ raePectively.

Definition 4.5 (degree matrix). For each pair of $k\in I_{*}\cup V_{*}$ and $l\in I_{*}\cup V_{*}$ , define

$\theta_{kl}=\deg\det$ ( $A[S,C\backslash \{l\}]$

$A[R_{J}\cup R_{V)}\{k\}]0$).
Then the degree matrix is the matm $\Theta=(\theta_{kl})$ whose row and colv,$mn$ sets are both identical
with $I_{*}\cup V_{*}$ .

Note that the degree matrix is uniquely determined by the circuit, despite $A(s)$ is not
unique. By Theorem 4.4, the index of the hybrid equations is expressed in terms of the degree
matrix $\Theta$ .

Theorem 4.6 ([13, Theorem 11]). Given an admissible partition $(E_{y},E_{z})_{J}\uparrow ve$ have

$\nu(D)=\max\{\theta_{kl}k,l|k\in I_{y}\cup V_{z},l\in I_{z}\cup V_{y}\}-\delta_{n}(A)+1$ , (12)

where $A$ is a coefficient matrix of the circuit equations.
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4.3 Index Minimization of Hybrid Equations

Let $\Theta=(\theta_{kl})$ be a degree matrix, where the row set and the column set are identical with
$I_{*}\cup V_{*}$ , and $A(s)$ be a coefficient matrix of the circuit equations. By Theorem 4.6, minimizing
the index of the hybrid equations is equivalent to minimizing $\max\{\theta_{kl}|k\in I_{y}\cup V_{z}, l\in I_{z}\cup V_{y}\}$ .
In this section, we describ$e$ how to find an admissible partition $(E_{y}, E_{z})$ which minimizes this
maximum value.

Theorem 4.7. We have $\nu(D)<\alpha-\delta_{n}(A)+1$ if and only if an admissible partition $(E_{y}, E_{z})$

satisfies $(i)-(iv)$ for any pair of $k$ and $l$ with $\theta_{kl}\geq\alpha$ .
(i) If $\theta_{kl}\geq\alpha$ for $k=i_{e}$ and $l=i_{f}$ , then $e\in E_{z}$ or $f\in E_{y}$ .
(ii) If $\theta_{kl}\geq\alpha$ for $k=i_{e}$ and $l=v_{f}$ , then $e\in E_{z}$ or $f\in E_{z}$ .

(iii) If $\theta_{kl}\geq\alpha$ for $k=v_{e}$ and $l=i_{f}$ , then $e\in E_{y}$ or $f\in E_{y}$ .
(iv) If $\theta_{kl}\geq\alpha$ for $k=v_{e}$ and $l=v_{f}$ , then $e\in E_{y}$ or $f\in E_{z}$ .

Finding an admissible partition satisfying $(i)-(iv)$ reduces to 2SAT as follows, using the
boolean variable $u_{e}$ to represent $e\in E_{z}$ . First, in order to ensure that $(E_{y},E_{z})$ is an admissible
partition, we impose $u_{e}=0$ if the element $e$ is a capacitance or a dependent current source,
and we impose $u_{e}=1$ if $e$ is an inductance or a dependent voltage source. Next, we rewrite (i)
into $u_{e}\vee\overline{u}_{f}=1$ , (ii) into $u_{e}\vee u_{f}=1$ , (iii) into $0f_{e}V\overline{u}_{f}=1$ , and (iv) into $\overline{u}_{\epsilon}\vee u_{f}=1$ . Thus
we obtain the following problem:

$2SAT(\alpha)$ Find $u_{e}$ for any element $e$ satisfying (1)$-(6)$ .
(1) If $e$ is a capacitance or a dependent current source, then $u_{e}=0$ .

(2) If $e$ is an inductance or a dependent voltage source, then $u_{e}=1$ .
(3) If $\theta_{kl}\geq\alpha$ for $k=i_{e}$ and $l=i_{f}$ , then $u_{e}\vee\overline{u}_{f}=1$ .
(4) If $\theta_{kl}\geq\alpha$ for $k=i_{e}$ and $l=v_{f}$ , then $u_{e}\vee u_{f}=1$ .

(5) If $\theta u\geq\alpha$ for $k=v_{e}$ and $l=i_{f}$ , then $\overline{u}_{e}\vee\overline{u}_{f}=1$ .
(6) If $\theta_{kl}.\geq\alpha$ for $k=v_{e}$ and $l=v_{f}$ , then $\overline{u}_{e}\vee u_{f}=1$ .
We can solve 2SAT in linear time in the size of literaJs and clauses [1].

We describe the algorithm for finding an admissible partition which minimizes the index of
the hybrid equations.

Algorithm for minimum index hybrid analysis

Step 1: Compute the degree matrix $\Theta=(\theta_{kl})$ .
Step 2: Set $E_{y}arrow$ {$e|e$ : capacitance or dependent current source}, $E_{z}arrow E_{*}\backslash E_{y}$, and

$\alphaarrow\max\{\theta_{kl}|k\in I_{*}UV_{*}, l\in I_{*}\cup V_{l}\}$ .
Step3: Solve $2SAT(\alpha)$ to obtain a feasible assignment $u_{e}$ for $eEE_{*}$ . If $2SAT(\alpha)$ is infeasible,

then go to Step 5.

Step 4: Set $E_{y}arrow\{e|u_{e}=0\},$ $E_{z}arrow\{e|u_{e}=1\}$ , and $\alphaarrow\alpha-1$ . Go baCls to Step 3.
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Figure 1: Linear circuit described by circuit equations with index three.

Step 5: Return $(E_{y}, E_{z})$ and $\alpha$ .

Algorithm for minimum $i\mathfrak{n}deX$ hybrid analysis finds an optimal adnissible partition $(E_{y},E_{z})$ to-
gether with the $m8ximum$ value of $\alpha su\bm{i}$ that $2SAT(\alpha)i_{8}$ infeasible. Therefore, $Th\infty rem4.7$

impliae that the index of the r\’eulting hybrid equations is $\alpha-\delta_{n}(A)+1$ for any reference tree
with respect to $(E_{y}, E_{z}).$ tstead of the above decremental method, we may adopt the binary
search on $\alpha$ .

Finally, we $discu8S$ the complexity of our algorithm. Let $n$ be the size of the coefficient
matrix of the circuit equations, $i.e.$ , the number of elements in the electric circuit is $n/2$ . We
ct compute the degree of the deteminrt of a $\gamma x\gamma$ matrix pencil in $O(\gamma^{4})$ time [11]. By
using this algorithm for $n^{2}$ timae, adegree matrix cm be found in $O(n^{6})$ time. Since $2SAT(\alpha)$

in Step 3 $h\epsilon\epsilon O(n)$ literals and $O(n^{2})$ clauses, we ct solve it in $O(n^{2})$ time. Thu8 the total
time complexity of the algorithm is $O(n^{6})$ .

If one can compute adegree matrix faster, the total time complexity of the algorithm $wiU$

be better. $\bm{i}[12]$ , we discuss how to compute adegree matrix in $O(n^{3})$ time under agenericity
assumption that the set of nonzero entries coming $hom$ the physical parmeters like $raei_{8}tances$

is algebraically independent, whii implies that $A(s)$ is amixed polynomial matrix [17]. Thus,
we improve the time complexity of Algorithm for minimum $i\mathfrak{n}deX$ hybrid analys$is$ to $O(n^{3})$ .

If the genericity assumption is not valid, the $de_{\Psi^{ee}}$ matrix obtained by the improved $algc\succ$

rithm may have larger entries than the true value8 because of $u\iota 4ucky$ numericd canceUations.
Relying on this degree matrix, we may fail to ffid the $m\dot{i}$imum index of hybrid equations.

5 Numerical Examples

In this section, we demonstrate the proposed methods in numerical examples. Example 5.1
presents an exmple of using the substitution method, and Exmple 5.2 presents $an$ exmple
of applying the hybrid analysis. We use RADAU5 [9] in Matlab as the DAE solver. RADAU5
is an implementation of a fifth order implicit RungeKutta method with three stages (RADAU
IIA). This is applicable to ODEs and DAEs with index at most three.

Example 5.1 (Electric circuit with index three [8]). Consider a circuit depicted in Figure 1,
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Figure 2: The current through the induc- Figure 3: The error in the current through the
tance: numerical solutions of the original inductance: the original DAE (dash-dotted

DAE (dash-dotted line), the substitution line) and the substitution method (solid line).

method (solid line), and the exact solu-
tion (dotted line).

which is described by the circuit equations with index three:

$c_{1}$ $c_{2}$ $c_{3}$ c4 c5 $c_{6}$ $c_{7}$ $c_{8}$

$rrr_{3}r_{4}r_{5}r_{6}r_{8}r_{7}21(1000000a$ $\frac{00001}{00}1$
$0^{J}0000101$ $s_{0}L000001$ $00000011$ $\frac{00}{s_{0}00,0}1C$ $00000001$ $\frac{000}{}\frac{00}{0}11]\{\begin{array}{l}\tilde{\xi}_{V}\tilde{\xi}_{I}\tilde{\xi}_{L}\tilde{\xi}_{G}\tilde{W}\tilde{\eta}c\tilde{\eta}_{I}\tilde{\eta}_{L}\end{array}\}=(0000000]$ . (13)

The modified nodal analysis results in a DAE with index three [8]. However, our method finds

$X=\{r_{1},r_{4},r_{5}, r_{6},r_{7},r_{8}\}$ and $Y=\{c_{1},c_{2}, c_{3},c_{5}, c_{7}, c_{8}\}$,

and we obtain
$D=(\begin{array}{ll}1 saC0 -1\end{array})$

which has index two.
Setting $C=5[\mu F],L=8[mH],a=0.99$ , and $V(t)=10\sin(200t)[V]$ , we numerically solve

both the original and the resulting DAEs. Figure 2 presents these two numerical solutions
and the exact solution, which can be obtained analytically. In Figure 2, the exact solution
coincides with the solution of the substitution method. Figure 3 shows the discrepancy of
the two numerical solutions from the exact solution. It is observed that the index reduction
effectively improves the accuracy of the numerical solution.
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Figure 4: The current through the induc-. Figure 5: The error in the current through
tance in Example 5.2: numerical solutions of the inductance in Example 5.2: MNA (dash-
MNA (dash-dotted line), the hybrid analy- dotted line) and the hybrid amalysis (solid
sis (solid line), and the exact solution (dotted line).
line).

Example 5.2 (Electric circuit with index three [8]). Consider the circuit depicted in Figure 1
again, which is described by the circuit equations (13) with index three. In this example, an
admissible partition is uniquely determined and we have

$E_{g}=\{V\}$ , $E_{h}=\emptyset$ , $E_{y}=\{C,I\}$ , $E_{z}=\{L\}$ . (14)

By applying the hybrid analysis with respect to the partition (14) and the reference tree
$T=\{V, I\}$ , we obtain

$D=(\begin{array}{ll}1 0-\epsilon L 1\end{array})$

which has index two. The hybrid equations are $\tilde{\xi}_{L}=$ -saCV$(s)md-sL\tilde{\xi}_{L}+\tilde{\eta}_{I}=0$.
Setting.the values of $C,$ $L,$ $a$ ; and $V$ as given in Example 5.1, we numerically solve both

DAEs arising from MNA and the hybrid analysis. Figure 4 presents these two numerical
solutions and the exact solution, which can be obtained analytically. In Figure 4, the exact
solution coincides with the solution of the hybrid analysis. Figure 5 shows the discrepancy of
the two numerical solutions from the exact solution. It is observed that the index reduction
effectively improves the accuracy of the numerical solution.
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